Loading...
Thumbnail Image
Publication

Bond behaviors between nano-engineered concrete and steel bars

Wang, X.
Dong, S.
Ding, S.
Han, B.
Publication Date
2021-09
End of Embargo
Supervisor
Rights
© 2021 Elsevier Ltd. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
Peer-Reviewed
Yes
Open Access status
Green
Accepted for publication
2021-07-13
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
This paper investigated the bond characteristics between eight types of nanofillers modified reactive powder concrete (RPC) and plain steel bars, aiming to explore the modifying mechanisms and establish a bond-slip relationship model for nanofillers modified RPC and steel bar interface. The experimental results indicated that the incorporation of nanofillers can increase the bond strength and reduce the slip between RPC and plain steel bars. It was shown that a 2.15 MPa/20.5% of absolute/relative increase in cracking bond strength, a 1.25 MPa/10.3% of absolute/relative increase in ultimate bond strength, a 2.35 MPa/22.4% of absolute/relative increase in residual bond strength, a 0.592 mm/56.5% of absolute/relative reduction in ultimate bond slip, and a 1.779 mm/52.1% of absolute/relative reduction in residual bond slip were the best achieved due to the addition of various nanofillers. The enhancement of nanofillers on RPC-steel bar interface has been mainly attributed to RPC microstructure improvement, optimization of intrinsic compositions, and elimination of defects in the interface, especially the underside near steel bar, due to the nano-core effect of nanofillers enriched in the interface. In addition, the bond-slip relationship of nanofillers modified RPC-steel bar interface can be accurately described by the proposed model considering an initial branch.
Version
Accepted manuscript
Citation
Wang X, Dong S, Ashour A et al (2021) Bond behaviors between nano-engineered concrete and steel bars. Construction and Building Materials. 299: 124261.
Link to publisher’s version
Link to published version
Type
Article
Qualification name
Notes