Loading...
Predicting the vertical low suspended sediment concentration in vegetated flow using a random displacement model
Huai, W. ; Yang, L. ; Wang, W-J. ; ; Wang, T. ; Cheng, Y.
Huai, W.
Yang, L.
Wang, W-J.
Wang, T.
Cheng, Y.
Publication Date
2019-11
End of Embargo
Supervisor
Rights
© 2019 Elsevier B.V. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
Peer-Reviewed
Yes
Open Access status
openAccess
Accepted for publication
2019-09-02
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
Based on the Lagrangian approach, this study proposes a random displacement model (RDM) to predict the concentration of suspended sediment in vegetated steady open channel flow. Validation of the method was conducted by comparing the simulated results by using the RDM with available experimental measurements for uniform open-channel flows. The method is further validated with the classical Rouse formula. To simulate the important vertical dispersion caused by vegetation in the sediment-laden open channel flow, a new integrated sediment diffusion coefficient is introduced in this study, which is equal to a coefficient multiplying the turbulent diffusion coefficient. As such, the RDM approach for sandy flow with vegetation was established for predicting the suspended sediment concentration in low-sediment-concentration flow with both the emergent and submerged vegetation. The study shows that the value of for submerged vegetation flow is larger than that for emergent vegetation flow. The simulated result using the RDM is in good agreement with the available experimental data, indicating that the proposed sediment diffusion coefficient model can be accurately used to investigate the sediment concentration in vegetated steady open channel flow.
Version
Accepted manuscript
Citation
Huai W, Yang L, Wang W-J et al (2019) Predicting the vertical low suspended sediment concentration in vegetated flow using a random displacement model. Journal of Hydrology. 578: 124101.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article