Loading...
Developed Hybrid Model for Propylene Polymerisation at Optimum Reaction Conditions
Khan, M.J.H. ; Hussain, M.A. ;
Khan, M.J.H.
Hussain, M.A.
Publication Date
2016-02-10
End of Embargo
Supervisor
Rights
© 2016 The Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (http://creativecommons.org/licenses/by/4.0) license.
Peer-Reviewed
Yes
Open Access status
Accepted for publication
2016-01-28
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
A statistical model combined with CFD (computational fluid dynamic) method was used to explain the detailed phenomena of the process parameters, and a series of experiments were carried out for propylene polymerisation by varying the feed gas composition, reaction initiation temperature, and system pressure, in a fluidised bed catalytic reactor. The propylene polymerisation rate per pass was considered the response to the analysis. Response surface methodology (RSM), with a full factorial central composite experimental design, was applied to develop the model. In this study, analysis of variance (ANOVA) indicated an acceptable value for the coefficient of determination and a suitable estimation of a second-order regression model. For better justification, results were also described through a three-dimensional (3D) response surface and a related two-dimensional (2D) contour plot. These 3D and 2D response analyses provided significant and easy to understand findings on the effect of all the considered process variables on expected findings. To diagnose the model adequacy, the mathematical relationship between the process variables and the extent of polymer conversion was established through the combination of CFD with statistical tools. All the tests showed that the model is an excellent fit with the experimental validation. The maximum extent of polymer conversion per pass was 5.98% at the set time period and with consistent catalyst and co-catalyst feed rates. The optimum conditions for maximum polymerisation was found at reaction temperature (RT) 75 °C, system pressure (SP) 25 bar, and 75% monomer concentration (MC). The hydrogen percentage was kept fixed at all times. The coefficient of correlation for reaction temperature, system pressure, and monomer concentration ratio, was found to be 0.932. Thus, the experimental results and model predicted values were a reliable fit at optimum process conditions. Detailed and adaptable CFD results were capable of giving a clear idea of the bed dynamics at optimum process conditions.
Version
Accepted Manuscript
Citation
Khan MJH, Hussain MA and Mujtaba IM (2016) Developed Hybrid Model for Propylene Polymerisation at Optimum Reaction Conditions. Polymers. 8(2): 47.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article