Loading...
Thumbnail Image
Publication

Analytic representation of quantum systems

Eissa, Hend A.
Publication Date
2016
End of Embargo
Rights
Creative Commons License
The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
Faculty of Engineering and Informatics Department of Computing
Awarded
2016
Embargo end date
Collections
Additional title
Abstract
Finite quantum systems with d-dimension Hilbert space, where position x and momentum p take values in Zd(the integers modulo d) are studied. An analytic representation of finite quantum systems, using Theta function is considered. The analytic function has exactly d zeros. The d paths of these zeros on the torus describe the time evolution of the systems. The calculation of these paths of zeros, is studied. The concepts of path multiplicity, and path winding number, are introduced. Special cases where two paths join together, are also considered. A periodic system which has the displacement operator to real power t, as time evolution is also studied. The Bargmann analytic representation for infinite dimension systems, with variables in R, is also studied. Mittag-Leffler function are used as examples of Bargmann function with arbitrary order of growth. The zeros of polynomial approximations of the Mittag-Leffler function are studied.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD
Notes