MicroRNA/mRNA regulatory networks in the control of skin development and regeneration.
Botchkareva, Natalia V.
Botchkareva, Natalia V.
Publication Date
2012
End of Embargo
Supervisor
Rights
Peer-Reviewed
Yes
Open Access status
closedAccess
Accepted for publication
Institution
Department
Awarded
Embargo end date
Collections
Additional title
Abstract
Skin development, postnatal growth and regeneration are governed by complex and well-balanced programs of gene activation and silencing. The crosstalk between small non-coding microRNAs (miRNAs) and mRNAs is highly important for steadiness of signal transduction and transcriptional activities as well as for maintenance of homeostasis in many organs, including the skin. Recent data demonstrated that the expression of many genes, including cell type-specific master transcription regulators implicated in the control of skin development and homeostasis, is regulated by miRNAs. In addition, individual miRNAs could mediate the effects of these signaling pathways through being their downstream components. In turn, the expression of a major constituent of the miRNA processing machinery, Dicer, can be controlled by cell type-specific transcription factors, which form negative feedback loop mechanisms essential for the proper execution of cell differentiation- associated gene expression programs and cell-cell communications during normal skin development and regeneration. This review summarizes the available data on how miRNA/mRNA regulatory networks are involved in the control of skin development, epidermal homeostasis, hair cycle-associated tissue remodeling and pigmentation. Understanding of the fundamental mechanisms that govern skin development and regeneration will contribute to the development of new therapeutic approaches for many pathological skin conditions by using miRNA-based interventions.
Version
No full-text in the repository
Citation
Botchkareva NV (2012) MicroRNA/mRNA regulatory networks in the control of skin development and regeneration. Cell Cycle. 11 (3):468-74.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article