Loading...
Publication Date
2015-07-22
End of Embargo
Supervisor
Rights
© 2015 Elsevier. Reproduced in accordance with the publisher's selfarchiving
policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-Reviewed
Yes
Open Access status
openAccess
Accepted for publication
2015-03-15
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
This study uses an improved k –ε coupled shallow water equations (SWE) model that equipped with the numerical computation of the velocity fluctuation terms to investigate the turbulence structures of the open channel flows. We adapted the Kolmogorov K41 scaling model into the k –ε equations to calculate the turbulence intensities and Reynolds stresses of the SWE model. The presented model was also numerically improved by a recently proposed surface gradient upwind method (SGUM) to allow better accuracy in simulating the combined source terms from both the SWE and k –ε equations as proven in the recent studies. The proposed model was first tested using the flows induced by multiple obstructions to investigate the utilised k –ε and SGUM approaches in the model. The laboratory experiments were also conducted under the non-uniform flow conditions, where the simulated velocities, total kinetic energies (TKE) and turbulence intensities by the proposed model were used to compare with the measurements under different flow non-uniformity conditions. Lastly, the proposed numerical simulation was compared with a standard Boussinesq model to investigate its capability to simulate the measured Reynolds stress. The comparison outcomes showed that the proposed Kolmogorov k –ε SWE model can capture the flow turbulence characteristics reasonably well in all the investigated flows.
Version
Accepted manuscript
Citation
Pu JH (2015) Turbulence modelling of shallow water flows using Kolmogorov approach. Computers and Fluids. 115: 66-74.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article