Publication

Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors

Ali, Hany S.M.
Blagden, Nicholas
York, Peter
Amani, Amir
Brook, Toni
Publication Date
28/06/2009
End of Embargo
Supervisor
Rights
Peer-Reviewed
Yes
Open Access status
closedAccess
Accepted for publication
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
This study employs artificial neural networks (ANNs) to create a model to identify relationships between variables affecting drug nanoprecipitation using microfluidic reactors. The input variables examined were saturation levels of prednisolone, solvent and antisolvent flowrates, microreactor inlet angles and internal diameters, while particle size was the single output. ANNs software was used to analyse a set of data obtained by random selection of the variables. The developed model was then assessed using a separate set of validation data and provided good agreement with the observed results. The antisolvent flow rate was found to have the dominant role on determining final particle size.
Version
No full-text in the repository
Citation
Ali, H.S.M., Blagden, N., York, P., Amani, A. and Brook, T. (2009). Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors. European Journal of Pharmaceutical Sciences. Vol. 37, No. 3-4, pp. 514-522.
Link to publisher’s version
Link to published version
Type
Article
Qualification name
Notes