Publication

Repeatability and reproducibility of Macular Thickness Measurements Using Fourier Domain Optical Coherence Tomography

Bruce, Alison
Pacey, Ian E.
Dharni, Poonam
Scally, Andy J.
Barrett, Brendan T.
Publication Date
2009
End of Embargo
Supervisor
Rights
Peer-Reviewed
Yes
Open Access status
closedAccess
Accepted for publication
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
To evaluate repeatability and reproducibility of macular thickness measurements in visually normal eyes using the Topcon 3D OCT-1000. Methods: Phase 1 investigated scan repeatability, the effect of age and pupil dilation. Two groups (6 younger and 6 older participants) had one eye scanned 5 times pre and post- dilation by 1 operator. Phase 2 investigated between-operator, within and between-visit reproducibility. 10 participants had 1 un-dilated eye scanned 3 times on 2 separate visits by 2 operators. Results: Phase 1: No significant difference existed between repeat scans (p=0.75) and no significant difference was found pre- and post-dilation (p=0.54). In the younger group variation was low (95% limits ± 3.62 m) and comparable across all retinal regions. The older group demonstrated greater variation (95% limits ± 7.6 m). Phase 2: For a given retinal location, 95% confidence limits for within-operator, within-visit reproducibility was 5.16 m. This value increased to 5.56 m for the same operator over two visits and to 6.18 m for two operators over two visits. Conclusion: A high level repeatability, close to 6 m, of macular thickness measurement is possible using the 3D OCT- 1000. Measured differences in macular thickness between successive visits that exceed 6 m in pre-presbyopic individuals are therefore likely to reflect actual structural change. OCT measures are more variable in older individuals and it is advisable to take a series of scans so that outliers can be more easily identified.
Version
No full-text in the repository
Citation
Bruce A, Pacey IE, Dharni P et al (2009) Repeatability and reproducibility of Macular Thickness Measurements Using Fourier Domain Optical Coherence Tomography. The Open Ophthalmology Journal. 3: 10-14.
Link to publisher’s version
Link to published version
Type
Article
Qualification name
Notes