Loading...
Temporal estimation in prediction motion tasks is biased by a moving destination
Flavell, Jonathan ; Barrett, Brendan T. ; ; Harris, J.M. ; Scally, Andy J. ; Beebe, Nathan B. ; Cruickshank, Alice G. ; Bennett, S.J.
Flavell, Jonathan
Barrett, Brendan T.
Harris, J.M.
Scally, Andy J.
Beebe, Nathan B.
Cruickshank, Alice G.
Bennett, S.J.
Publication Date
2018-02
End of Embargo
Supervisor
Rights
(c) 2018 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/)
Peer-Reviewed
Yes
Open Access status
openAccess
Accepted for publication
13/12/2017
Institution
Department
Awarded
Embargo end date
Collections
Additional title
Abstract
An ability to predict the time-to-contact (TTC) of moving objects that become momentarily hidden is advantageous in everyday life and could be particularly so in fast-ball sports. Prediction motion (PM) experiments have sought to test this ability using tasks where a disappearing target moves towards a stationary destination. Here, we developed two novel versions of the PM task in which the destination either moved away from (Chase) or towards (Attract) the moving target. The target and destination moved with different speeds such that collision occurred 750, 1000 or 1250ms after target occlusion. To determine if domain-specific experience conveys an advantage in PM tasks, we compared the performance of different sporting groups ranging from internationally competing athletes to non-sporting controls. There was no difference in performance between sporting groups and non-sporting controls but there were significant and independent effects on response error by target speed, destination speed and occlusion period. We simulated these findings using a revised version of the linear TTC model of response timing for PM tasks (Yakimoff et al. 1987, 1993) in which retinal input from the moving destination biases the internal representation of the occluded target. This revision closely reproduced the observed patterns of response error and thus describes a means by which the brain might estimate TTC when the target and destination are in motion.
Version
Published version
Citation
Flavell JC, Barrett BT, Buckley JG et al (2018) Temporal estimation in prediction motion tasks is biased by a moving destination. Journal of Vision. 18(5): 1-11.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article