Loading...
Thumbnail Image
Publication

Fast and Accurate Image Feature Detection for On-The-Go Field Monitoring Through Precision Agriculture. Computer Predictive Modelling for Farm Image Detection and Classification with Convolution Neural Network (CNN)

Abdullahi, Halimatu S.
Publication Date
2020
End of Embargo
Rights
Creative Commons License
The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
Faculty of Engineering and Informatics, School of Electrical Engineering and Computer Science
Awarded
2020
Embargo end date
Collections
Additional title
Abstract
This study aimed to develop a novel end-to-end plant diagnosis model for the analysis of plant health conditions in near real-time to optimize the rate of production on farmlands for an intensive, yet environmentally safe farming production to preserve the natural environment. First, field research was conducted to determine the extent of the problems faced by farmers in agricultural production. This allowed us to refine the research statement and the level of technology involved in the production processes. The advantages of unmanned aerial systems were exploited in the continuous monitoring of farm plantations to develop automated and accurate measures of farm conditions. To this end, this thesis applies the Precision Agricultural technology as a data based management system that takes into account spatial variations by using the Global Positioning System, Geographical Information System, remote sensing, yield monitors, mapping, and guidance system for variable rate applications. An unmanned aerial vehicle embedded with an optic and radiometric sensor was used to obtain high spectral resolution images of plantation status during normal production/growth cycle. Then, an ensemble of classifiers with Convolution Neural Networks (CNN) was used as off the shelf feature extractor to train images to develop an end-to-end feature detection and multiclass classification system for plant overall health’s conditions. Whereby previous works have concentrated on using CNN as off the shelf feature extractor and model training to detect only plant diseases from plants. To date, no research has yet been carried out to develop an end-to-end model for the overall plant diagnosis system. Previous studies focused on the detection of diseases at any given time, making it difficult to implement comprehensive real-time PA systems. Applying the pretrained model to the new images showed that the model can accurately predict any plant condition with an average of 97% accuracy.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD
Notes