Selectivity analysis of diaminopyrimidine-based inhibitors of MTHFD1, MTHFD2 and MTHFD2L
Jha, Vibhu ; Eriksson, L.A.
Jha, Vibhu
Eriksson, L.A.
Publication Date
2024-09
End of Embargo
Supervisor
Rights
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Peer-Reviewed
Yes
Open Access status
openAccess
Accepted for publication
2024-09-02
Institution
Department
Awarded
Embargo end date
Collections
Additional title
Abstract
The mitochondrial enzyme methylenetetrahydrofolate dehydrogenase (MTHFD2) is involved in purine and thymidine synthesis via 1C metabolism. MTHFD2 is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. However, the two close homologs of MTHFD2 known as MTHFD1 and MTHFD2L are expressed in healthy adult human tissues and share a great structural resemblance to MTHFD2 with 54% and 89% sequence similarity, respectively. It is therefore notably challenging to find selective inhibitors of MTHFD2 due to the structural similarity, in particular protein binding site similarity with MTHFD1 and MTHFD2L. Tricyclic coumarin-based compounds (substrate site binders) and xanthine derivatives (allosteric site binders) are the only selective inhibitors of MTHFD2 reported till date. Nanomolar potent diaminopyrimidine-based inhibitors of MTHFD2 have been reported recently, however, they also demonstrate significant inhibitory activities against MTHFD1 and MTHFD2L. In this study, we have employed extensive computational modeling involving molecular docking and molecular dynamics simulations in order to investigate the binding modes and key interactions of diaminopyrimidine-based inhibitors at the substrate binding sites of MTHFD1, MTHFD2 and MTHFD2L, and compare with the tricyclic coumarin-based selective MTHFD2 inhibitor. The outcomes of our study provide significant insights into desirable and undesirable structural elements for rational structure-based design of new and selective inhibitors of MTHFD2 against cancer.
Version
Published version
Citation
Vibhu J and Eriksson LA (2024) Selectivity analysis of diaminopyrimidine-based inhibitors of MTHFD1, MTHFD2 and MTHFD2L. Scientific Reports. 14: 21073.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article