Loading...
Dermal fibroblasts cultured from donors with type 2 diabetes mellitus retain an epigenetic memory associated with poor wound healing responses
Al-Rikabi, Aaiad H.A. ; Tobin, Desmond J. ; ; Thornton, M. Julie
Al-Rikabi, Aaiad H.A.
Tobin, Desmond J.
Thornton, M. Julie
Publication Date
2021-01
End of Embargo
Supervisor
Rights
© The Author(s) 2021. Open Access Tis article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. Te images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Peer-Reviewed
Yes
Open Access status
openAccess
Accepted for publication
2020-12-02
Institution
Department
Awarded
Embargo end date
Collections
Additional title
Abstract
The prevalence of Type 2 diabetes mellitus (T2DM) is escalating globally. Patients suffer from multiple complications including the development of chronic wounds that can lead to amputation. These wounds are characterised by an inflammatory environment including elevated tumour necrosis factor alpha (TNF-α). Dermal fibroblasts (DF) are critical for effective wound healing, so we sought to establish whether there were any differences in DF cultured from T2DM donors or those without diabetes (ND-DF). ND- and T2DM-DF when cultured similarly in vitro secreted comparable concentrations of TNF-α. Functionally, pre-treatment with TNF-α reduced the proliferation of ND-DF and transiently altered ND-DF morphology; however, T2DM-DF were resistant to these TNF-α induced changes. In contrast, TNF-α inhibited ND- and T2DM-DF migration and matrix metalloprotease expression to the same degree, although T2DM-DF expressed significantly higher levels of tissue inhibitor of metalloproteases (TIMP)-2. Finally, TNF-α significantly increased the secretion of pro-inflammatory cytokines (including CCL2, CXCL1 and SERPINE1) in ND-DF, whilst this effect in T2DM-DF was blunted, presumably due to the tendency to higher baseline pro-inflammatory cytokine expression observed in this cell type. Collectively, these data demonstrate that T2DM-DF exhibit a selective loss of responsiveness to TNF-α, particularly regarding proliferative and secretory functions. This highlights important phenotypic changes in T2DM-DF that may explain the susceptibility to chronic wounds in these patients.
Version
Published version
Citation
Al-Rikabi AHA, Tobin DJ, Riches-Suman K et al (2021) Dermal fibroblasts cultured from donors with type 2 diabetes mellitus retain an epigenetic memory associated with poor wound healing responses. Scientific Reports. 11: 1474.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article