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Sequential Investments with Stage Specific Risks and Drifts 

Abstract 

We provide a generalized analytical methodology for evaluating a real sequential investment 

opportunity, which does not rely on a multivariate distribution function, but which allows for 

stage specific risks and drifts.  This model may be a useful capital budgeting and valuation tool 

for exploration and development projects, where risks change over the stages. We construct a 

stage threshold pattern whereby the final stage threshold exceeds the early stage threshold due to  

drift differentials between the project values at the various stages, value volatility differences, 

and correlation differentials, implying a rich menu of parameter values that may be suitable for a 

variety of projects.  Governments seeking to motivate early final stage investments might lower 

final stage project volatility or specify project value decline over time, unless prospective owners 

are willing to pay the real option value (ROV) for concessions.  In contrast, concession owners, 

more interested in ROV than thresholds that motivate early investments, may welcome final 

stage value escalation, or guarantees that reduce the correlation between project value and 

construction cost. 
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 Introduction 

We determine the project value thresholds that justify an investment at any stage for a project 

composed of multiple sequential investments, allowing for stage specific risks and drifts. This 

extends the Adkins and Paxson (2014) multi-factor model, which requires the project failure 

probabilities to decline at each stage approaching the final completion stage.  It also 

complements Cassimon et al. (2011), which allows for stage specific project volatilities but not 

for stage specific value drifts or for other uncertainties regarding project failure or investment 

cost risks and drifts.  Cassimon et al. (2011) builds on the Geske (1979) European compound 

option approach, so no thresholds are determined, and there is no flexibility in investment 

timing.   Our solution requires some package of positive drift or volatility or correlation 

differentials between the final stage and the initial stage, (if there is no probability of complete 

project failure), which is a characteristic of many exploration and development (E&D),  and 

infrastructure projects. 

 

Suppose  a real sequential investment opportunity consists of a set of distinct, ordered 

investments that have to be made before the project can be completed. The project can be 

interpreted as a collection of investment stages, such that no stage investment, except the first, 

can be started until the preceding stage has been completed. The project value is realized when 

all the stages have been successfully completed. The following four-stage E&D opportunity from 

Cortazar et al. (2003) provides an illustration: (i) undertaking geological research. (ii) drilling an 

exploratory well, (iii) drilling development wells and (iv) implementing the infrastructure for 

production.   
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Making an investment at any stage depends on whether the prevailing project value is of 

sufficient magnitude to economically justify making the stage investment. We are interested in 

the package of value and investment cost drifts, volatilities and correlations that result in a 

pattern of project value thresholds that justify making an immediate investment at each stage that 

increase as the stages near completion. Adkins and Paxson (2014) obtain this result through 

assuming that the investment opportunity at any stage is subject to a catastrophic failure that 

causes the option value to be entirely destroyed, so the project as an entity becomes irredeemably 

lost like in some R&D and venture capital activities. There are investment opportunities such as 

mineral leases where there is no doubt that the reservoir or relevant minerals exist but economic 

development depends on the prevailing commodity prices, and investment and operating costs.  

(Canadian tar sands are a primary example at low crude oil prices.) There are three sources of 

uncertainty, the stochastic project values and the stochastic investment costs, which are permitted 

to be correlated at each of the project stages. Because of value conservation, the option for any 

stage except completion is evaluated at the point where the investment required to continue is 

less than the value of the option created at the next stage. In this way, the sequential opportunity 

is a compound option specified over multiple stages. We formulate an analytical solution to a 

multiple compound option based on American perpetuities. 

 

One of the first attempts to obtaining a solution for sequential investments based on American 

perpetuity options is formulated by Dixit and Pindyck (1994). They suggest a rule for a two-

stage sequential investment with fixed investment costs, but their solution is seemingly 

implausible as it is identical to the one-stage result except for the accumulated costs.  This 

problem is noted by Rodrigues (2009), who uses differential segment demand volatilities, 
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investment costs, and some other measures, to evaluate optimal timing among segments, with 

thresholds increasing with time and investment, under an endogenous regime-switching process.  

Kort et al. (2010) propose that the American perpetuity option value for a two-stage sequential 

investments is equal to the sum of the separate option values, but this formulation suffers the 

defect of a lack of compoundedness in the sense that the first and second stage option values are 

independent. 

 

An alternative method for reaching a closed-form rule for sequential investment opportunities is 

to suspend the need for an elapse time between stages that is unknown and uncertain, and to 

replace it by one that is known and fixed. This relaxation converts the underlying option type 

from American to European.  Cassimon et al. (2011) extends the Cassimon et al. (2004) 

European compound model and illustrates that the ROV of a mobile payments project with value 

volatilities declining from 54% to 35% in four stages approaching completion is €20.14m, 

compared to €22.10m with a constant volatility of 54%
1
.  Of course, these European options are 

not investment timing models.  

 

Some authors eschew the reputed merits of closed-form European compound options and solve 

the sequential investment opportunity through the power of numerical techniques.   A trinomial 

lattice formulation is used by Childs and Triantis (1999) to solve a multiple sequential 

investment model having cash-flow interaction.  Schwartz and Moon (2000) provide a numerical 

solution for complex R&D options, with project failure that does not always decline as the 

                                                 
1
 They did not provide the stage specific ROVs, or (since European) the V thresholds that would justify making the 

required investments at each stage. 
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project approaches completion, but with constant asset volatility, drifts and investment cost 

volatility over four stages.  Cortazar et al. (2003) assume the probability of success increases as 

the E&D stages near completion (production) with investment costs almost always increasing 

near completion.  An implicit finite-difference numerical solution provides a value first without 

options, and then with operating, development and exploration options as a function of expected 

copper mine size. Cortelezzi and Villani (2009) use Monte Carlo simulation for valuing a R&D 

project characterized as an American sequential exchange option.  Koussis et al. (2013) provide 

numerical solutions for multi-stages with multiple options. The shortcomings of these solution 

methods are the possibly onerous and not always transparent calculations.  

 

The aim of this paper is to reformulate and solve analytically the sequential investment model by 

incorporating three distinct sources of stage specific uncertainties. The three sources are 

characterized by the uncertainty associated with the project value and the investment cost for 

each stage, and the correlation of value and cost. Based on an American perpetuity option 

framework, we find that the project value threshold that justifies investment at each stage is a 

recursive expression represented by a function of the investment cost threshold at the particular 

stage and those for all the subsequent stages. Further, we demonstrate that the option value for 

each stage is a homogenous degree-1 and convex function, in keeping with the Merton (1973) 

assertion. In contrast to Adkins and Paxson (2014), there is no requirement that the probability of 

catastrophic failure continually declines at each stages until completion. However, there are 

usually alternative requirements that, for instance, the expected project value (V) drift (as 

defined in EQ 1 or its risk neutral equivalent as in EQ 2) for the final stage exceeds that for the 

initial stage, or the stage one V1 volatility exceeds the stage two V2 volatility, or that the 



7 

 

correlation of V1 and investment cost (K1) is sufficiently lower than the V2,K1 correlation, and 

possibly other correlation differentials, which result in the threshold for the initial stage being 

lower than the final stage.  While various combinations of these requirements may not be present 

in all projects, this approach offers a richer menu and package of requirements than the simple 

Adkins and Paxson (2014) project failure pattern.  

 

The major analytical findings for this sequential investment model are developed in Section 2. 

Based on the three sources of uncertainty, the model is presented first for a one-stage 

opportunity, and then  developed for a two-stage sequential investment opportunity. We develop 

closed-form solutions for whether or not to commence investment at a particular stage and for 

the option value at each stage. In Section 3, we obtain further insights into the behavior of the 

model through numerical illustrations. The last section summarizes some advantages and 

limitations of this model and suggests plausible extensions. 

  

Sequential Investment Model 

 

A  monopolist  is considering an investment project made up of a two sequential stages, each 

involving an individual non-zero instantaneous investment cost. The project as an entity is not 

fully implemented and the project value not realized until  the two sequential stages have been 

successfully completed. Each successive investment stage relies on the successful completion of 

the investment made at the preceding stage.  We order each investment stage by the number J  

of remaining stages, including the current one, until project completion, so the final stage is stage 

1.  
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After an initial investment, there may be differences in expected project value drifts, volatilities, 

K drifts, volatilities and/or correlations, so that the thresholds that justify making any subsequent 

investments increase approaching completion. Generally this will be accompanied by an increase 

in the power parameter values nearing completion. It may be that these stage specific parameter 

values are due to the previous stage investments being made, or they may also be exogenous, 

perhaps due to the nature of the stage. Situations do arise when an investment can produce an 

innovative breakthrough and generate an unanticipated increase in the project value. We have 

ignored this possibility, but allow for an exogenous change in project value drift or volatility, 

possibly due to a change in or different segments of the term structure of forward commodity 

prices.  Also, other forms of optionality, such as terminating a project before completion for its 

abandonment value, are not considered. 

 

The value of the project is defined byV . This value cannot be realized until the ultimate 

investment at 1J   has been successfully completed. Both the project value and the set of 

investment expenditures are treated as stochastic. It is assumed that they are individually well 

described by the geometric Brownian motion process: 

 d d d
J J JX X XX X t X z   , (1) 

for  ,J JX V K J  , where 
JX  represent the respective drift parameters for each stage, 

JX  

the respective instantaneous volatility parameter, and d
JXz  the respective increment of a 

standard Wiener process. Dependence between any two of the factors is represented by the 

covariance term; so, for example, the covariance between the project value and the investment 

expenditure at stage J  is specified by: 
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  Cov d ,d d
J J J JJ J V K V KV K t   . 

The project value and investment cost drift, volatility and correlation parameter values are 

permitted to vary by stage, but are assumed to remain constant during the stage. It is assumed 

that the investment expenditure at each stage is instantaneous with a zero time-to-build and that 

sufficient internally generated or external funds are available on time to meet the financing needs 

at each stage.  

1.1 One-Stage Model 

The stage-1 model represents the investment opportunity for developing a project value 1V  

following the investment cost 1K . We develop the solution based on the two-factor solution of  

Adkins and Paxson (2011), which is extendable to dimensions greater than two. The value 

1 1ROV F  of the investment opportunity at stage 1J   depends on the project value and the 

investment cost, so  1 1 1 1,F F V K . By Ito’s lemma, the risk neutral valuation relationship is: 

 
1 1 1 1 1 1

1 1

2 2 2
2 2 2 21 1 11 1

1 1 1 12 22 2

1 1 1 1

1 1
1 1 1

1 1

0

V K V K V K

V K

F F F
V K V K

V K V K

F F
V K rF ,

V K

  
      

   

 
     

 

 (2) 

where the 
JX  for  ,J JX V K J  denote the respective risk neutral drift rate parameters

2
 and r 

the risk-free rate treated as constant over all stages. The generic solution to (2) is the two-factor 

power function: 

 1 1

1 1 1 1 ,F AV K 
  (3) 

                                                 
2
 See Dixit and Pindyck (1994) for some theories relating the real world and risk-neutral drift.  We assume for 

convenience that  is not affected by changes in volatilities, or correlations. 
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where 1  and 1  denote the generic unknown parameters for the two factors, project value and 

investment cost, and 1A  denotes a generic unknown coefficient. In this notation, the first 

subscript for 1A , 1  and 1  refers to the specific stage under consideration, while the second 

subscript refers to the stage specific power parameter value where appropriate. We expect 
1 0A   

since the option value is positive. A justified economic incentive to exercise the stage-1 option 

exists whenever the project value is sufficiently high and the investment cost is sufficiently low, 

and this incentive intensifies for project value increases and investment cost decreases. The 

threshold levels for the project value and the investment cost signaling the optimal exercise for 

the investment option at stage 1J   are denoted by 
1V̂  and 

1K̂ , respectively. The value matching 

relationship describes the conservation equality at optimality that the option value 

 1 1 1 1
ˆ ˆ ˆ,F F V K  exactly compensates for the net asset value 

1 1
ˆ ˆV K  obtained by spending the 

investment cost. Then:  

    1 1

1 1 1 1 1
ˆ ˆ ˆ ˆAV K V K

 
  .                       (4) 

The first order condition for optimality is characterized by the two associated smooth pasting 

conditions, one for each factor, Samuelson (1965).  These can be expressed as: 

 1 1 1
1 1 1

1

ˆ
ˆ ˆ V

AV K
 


 . (5) 

     1 1 1
1 1 1

1

ˆ
ˆ ˆ K

AV K 


              (6) 

Since the option value is always non-negative, 1 0A  , as expected. Together, (4,5,6) 

demonstrate Euler’s result on homogeneity degree-1 functions, so 1 1 1   . So the 

characteristic root equation satisfying (2) is: 
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        
1 1 1

21
1 1 1 1 1 1 12

1 1 0                
V K K

Q , r ,  (7) 

where 
1 1 1 1 1 1

2 2 2

1
2        

V K V ,K V K
. From (7), 

1  is obtained as the positive root solution for 

the quadratic characteristic equation, which is greater than 1. Further, the threshold levels are 

related by:     1
1 1

1

ˆ ˆ ,
1

V K






            (8) 

with   11
1

1 1 1 1A
 

  . 

1.2 Two-Stage Model 

At the preceding stage, 2J  ,  the firm examines the viability of committing an investment 
2K  

to acquire the option to invest 
1F  by comparing the value of the compound option 

2 2ROV F  

with the net benefits 
1 2F K .  

2F  depends on the three factors 2V , 1K  and 2K , so 

 2 2 2 1 2, ,F F V K K . By Ito’s lemma, the risk neutral valuation relationship for 2F  is: 

 

2 1 2

2 1 2 1 2 2 2 2 1 2 1 2

2 2 1

2 2 2
2 2 2 2 2 22 2 21 1 1

2 1 22 2 22 2 2

2 1 2

2 2 2

2 2 2
, 2 1 , 2 2 , 1 2

2 1 2 2 1 2

2 2 2
2 2 1 2

2 2 1

0.

V K K

V K V K V K V K K K K K

V K K

F F F
V K K

V K K

F F F
V K V K K K

V K V K K K

F F F
V K K rF

V K K

  

        

  

  
 

  

  
  

     

  
    

  

 (9) 

We conjecture that the solution to (9) is a product power function, with generic form: 

 2 21 22

2 2 2 1 2 ,F A V K K
  

  (10) 

where 2 , 21  and 22  denote the generic unknown parameters for the three factors, project 

value at stage two and investment expenditures envisioned as of stage two, and 2A  denotes an 

unknown coefficient. It is similarly expected that 2 0A  . We conjecture that 2 0   because 
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project value increases incentivize the option exercise, while 
21 22, 0    because investment cost 

increases inhibit the option exercise.  

 

We specify that the stage-2 threshold levels signaling an optimal exercise are represented by 
2V̂ , 

21K̂  and 
22K̂  for V , 

1K  and 
2K , respectively. The set  2 21 22

ˆ ˆ ˆ, ,V K K  forms the boundary that 

discriminates between the “exercise” decision and the “wait” decision. This boundary is 

determined from establishing the relationship amongst
2V̂ , 

21K̂  and 
22K̂  , or alternatively, from 

identifying the dependence of 
2V̂  with respect to 

21K̂  and 
22K̂ . A stage-2 option exercise occurs 

for the balance between the stage-2 option value 2 21 22

2 2 21 22
ˆ ˆ ˆA V K K

    and the stage-1 option value 

1 11

1 1 11
ˆ ˆAV K

   less the investment cost 
22K̂ incurred in its acquisition. This equilibrium amongst the 

threshold levels is the value matching relation that is expressed as: 

 2 21 22 1 11

2 2 21 22 1 2 21 22
ˆ ˆ ˆ ˆ ˆ ˆ ,A V K K AV K K

    
   (11) 

where 
1A  and 

1  are known from the stage-1 evaluation . The three smooth pasting conditions 

associated with (11), one for each of the three factors V , 1K  and 2K , respectively, can be 

expressed as:     2 21 22 1 11

2 2 2 21 22 1 1 2 21
ˆ ˆ ˆ ˆ ˆ ,A V K K AV K

      
          (12) 

  2 21 22 1 11

21 2 2 21 22 1 1 2 21
ˆ ˆ ˆ ˆ ˆ1 ,A V K K AV K      

   (13) 

 2 21 22

22 2 2 21 22 22
ˆ ˆ ˆ ˆ .A V K K K

      (14) 

Since an option value is non-negative, then 2 0A   as expected. This implies that 2 0   from 

(12), 21 0   from (13), and 22 0   from (14).  If we specify 1 1   and 2 2 1/ 0    , then  

 2 1
22 21 2 2 21 22

1 1

1
1 , , 1.

 
     

 


        (15) 
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Also, the quadratic function 
2Q  can be expressed as: 

 

 

   

      
 

2 2 1

2 1 2 1 2 1 1 1 1 1

2

21
2 2 2 22

2 1

2 21
1 12

1

1 2

0.

K V V

V V V K V K V K V K

K

Q

r

r

  

    

         



 

   

     
 

  

  (16) 

where  

 
 

   
2 1 2

2 1 2 1 2 2 2 2 1 2 1 2

22 2 2 2 2

2 1 1

1 1 1 1

1

2 1 2 2 1

V K K

V K V K V K V K K K K K .

     

            

   

    
  (17) 

The parameter 
2 , which is required to be greater than one, is evaluated as the positive root of 

the quadratic function
2Q  (16), knowing 

1 1   from the previously calculated stage-1 solution. 

The values of 
2 , 

21  and 
22 are then obtained from 

2  and  1 . Subsequently, we show that 

2 1  , so 
2 1  .  

 

Because of  (15), 
2A , 

2V̂ , 
21K̂  and 

22K̂  can be determined more conveniently by expressing 
2F , 

(10), as a function of the stage-1 option value 1F , (3), and the stage-2 investment cost 2K , and 

noting that 2F  is characterized as homogenous degree-1: 

    
22

2 1 11 21 1

2 22 1 2 2 1 1 2 2 1 1 2, , ,F F F K B F V K K B AV K K
               (18) 

where 2

2 2 1B A A


 . If the optimal stage-2 thresholds are,  12 1 2 21
ˆ ˆ ˆF F V ,K for the stage-1 option, 

and 
22K̂ , then the stage-2 value matching relationship (11). 

 2 21

2 12 22 12 22
ˆ ˆ ˆ ˆ .B F K F K

 
    (19) 
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Except for the change in variable, (19) is identical in form to (4), so  
 2 2

1

2 2 21 /B
  


  , which 

implies: 

 
 

 
 

2
2 1

2 1

1 1

2 1

2

2 1

1 1
A

 

 

 

 

   
  

  

,  

so the stage-2 option value is specified by: 

  
 

 
   

2
2 1

1 21 2 2

2 1

1 1

12 1 1

2 2 1 2 2 1 2

2 1

1 1
, ,F V K K V K K

 

   

 

 

 

 

 
  

  
  

 . (20) 

The stage-2 option value function is homogenous degree-1 in the project value and investment 

costs. Also, the stage-2 option threshold level is given by: 

   1 11 2
12 1 2 12 1 2 21 22

2

ˆ ˆ ˆ ˆ ˆ,
1

F F V K AV K K
  




  


 . (21) 

Clearly, an economically meaningful solution to the stage-2 option threshold can only emerge 

provided 2 1  . Re-arranging (21) to yield the solution expressed in terms of the stage-2 project 

value threshold level: 

 
  1

1

1 1

1
1 1

2 11
2 21 22

1 2

1ˆ ˆ ˆ .
1 1

V K K




  

 


 

  
  

  (22) 

The project value threshold is a homogenous degree-1 function of the two investment cost 

thresholds, determined from their geometric mean with the  21 22
ˆ ˆ,K K power parameters dependent 

only on the stage-1 1 . The relative magnitude of 
1V̂  and 

2V̂  is determined from comparing (8) 

and (22): 

 
  1

1

2 12 2

21 1

ˆ ˆ1

ˆ ˆ1

V K

V K

 



  
  

  
  (23) 
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where 
1 11 12

ˆ ˆ ˆK K K   and 
2 22

ˆ ˆK K . Since 
1 1  , then for stage-2 investment to be justified 

earlier than stage-1 investment, 
2 1
ˆ ˆV V , the following lower bound LB  must hold: 

 
 2 11

22

ˆ 1
1

ˆ 1

K

K

 




 


 . (24) 

The sequential investment model  of Dixit and Pindyck (1994), Chapter 10, is based on identical 

stage-1 and -2 parameter values. It yields identical project value thresholds justifying immediate 

investment for the two sequential stages, so the two sequential stages effectively collapse to a 

single stage. For the current model, their assumption implies that all the stage-1 and -2 risk-

neutral drifts, volatilities and correlations are equal, or 
2 1V V  , 

2 1

2 2

V V   and 
2 1 1 1V K V K  . 

Substituting this in (16) yields 
2 1  , which produces an indefinite solution for the two-stage 

model. A meaningful economic solution also requires (24) to hold. This lower bound depends on 

the parameter values for the relevant stochastic factors at the two stages, the package of relative 

V1, V2 drifts and volatilities, K1, K2 drifts and volatilities, the covariance matrix, and the risk-free 

rate.  We conjecture that possibly 
1 2
ˆ ˆV V  if 

2 1V V  , 
2 1

2 2

V V  , 
2 1 1 1V K V K  .  There may be 

several other differentials that also result in 
1 2
ˆ ˆV V , see the Appendix 2, also for an easy 

analytical solution. Note that 
2V̂  is dependent on both 

1K̂  and 
2K̂ , (22), whereas 

1V̂  is dependent 

on only
1K̂ ,(8). 

3.  Numerical Illustrations 

To obtain additional insights into the behavior of the analytical framework, we conduct some 

numerical analyses on a two stage sequential investment project using the base case specification  
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in Table 1, which  shows the standard input required, with  
1 2

.02, 0V V   . Note a spreadsheet 

for the calculations is shown in Appendix 1. 

 

Initially, the variances for the investment costs at the stages have been set to be equal and in the 

base case, the covariance terms between all of the factors equal zero. Some of these covariance 

terms are changed for the correlation sensitivity analysis.  The sensitivity analyses show the 

impact of parametric changes on the option value and the exercise threshold for the two stages. A 

change in parameter value yields a corresponding variation in the lower bound conditions JLB , 

which affects the option moneyness and the relative project value thresholds for the various 

stages. For consistent comparisons to be made across the various sensitivity analyses, first the 

magnitudes of the project value and the stage investment costs should result in the option values 

all being out-of-the money. To this end, all the analyses set the project value 40V  , and the  

 

  

      

 

Table 1 

         Base Case Data 
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Stage 1 model 
1V̂  is the solution for equations 7 and 8, ROV1 is the result from equation 3, with 

the base data in Table 1.  Stage 2 model 
2V̂  is the solution using equations 11-17, (or 16 and 22), 

ROV2 is the result from equation 10.  Note  
1 2

.02, 0V V   .  This drift differential results in 

1 2
ˆ ˆV V  and ROV1>ROV2.  The restrictive lower bound LB is 2.9 which is exceeded by the ratio 

of 1 2
ˆ ˆ/K K , equation 24. 

 

 

stage investment costs 1 90K  and 2 10K  . There is the requirement that the magnitudes of the 

stage investment cost threshold levels should result in the project value thresholds forming an 

ordered set with 
1 2
ˆ ˆV V , which entails that the ratios of the consecutive investment cost 

thresholds obey the lower bound condition. For convenience, we set the threshold investment 

costs equal to their actual expected levels.   

 

INPUT Stage 1 Stage 2

Project value   V 40 V^ 216.7596 111.8724

ROV 7.0466 3.0136

Risk-free rate 6%  1.7100 1.3236

Stage 1 LB 2.9043

_V1 0.02 Correlations V1 K1 K2

_V1 20% V1 100%

_K1 0 K1 0% 100%

_K1 5% K2 0% 0% 100%

Stage 2

_V2 0 Correlations V2 K1 K2

_V2 20% V2 100%

_K2 0 K1 0% 100%

_K2 5% K2 0% 0% 100%

Threshold Levels Factor Levels

K1^/K2^ 9.0000 K1^ 90 K1 90

 K2^ 10 K2 10
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We first consider the results for the base case, and then explore the impact of key sensitivities on 

the model solution. We comment on the results from the viewpoint of the Chief Real Options 

Manager (CROM) who seeks a high ROV, and then from the viewpoint of a government (GOV) 

which seeks low V thresholds in order to encourage early investment.  We also offer some 

guidelines for investors (INVEST) who believe that ROV implied by available stock market 

prices are different from evaluated ROV, based on investors particular expected volatilities and 

other parameter values.  

 

Table 2 is designed to show how a change in one parameter value like 
1V affects the V thresholds 

and the ROV at each stage.  We compare Panels B1 and C1 to A1 (the effect of changing one 

parameter value), and B2 to B1, C2 to C1 (the effect of increasing one parameter value, also 

shown in the Figures). 

 

 

 

 

 

 

 

Table 2 

Summary:  Differential Results 
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Stage 1 model 
1V̂  is the solution for equations 7 and 8, ROV1 is the result from equation 

3, with the base data in Table 1.  Stage 2 model 
2V̂  is the solution using equations 11-17, 

ROV2 is the result from equation 10.  Note 
1 2

.02, 0V V   , except for Panel A2. 

 

3.1  Real Option Value and V Thresholds for
1 2V V   

 

In Panel A1 all parameter values are as in Table 1, but in Panel A2  
1V is increased from .02 to 

.04. As a consequence the threshold that justifies immediate investment increases from 217 to 

394 in stage 1, but decreases from 112 to 54 in stage 2.  The ROV increases for both stages, from 

7 to 16 in stage 1 and from 3 to 7 in stage 2.  So just a difference in V drifts between the stages 

results in higher thresholds for the final stage 1, but lower for the initial stage 2 (as the final stage 

is more valuable, waiting for the V1 escalation to proceed).   The greater the drift difference, the 

Table 2

Stage 1 Stage 2 Stage 1 Stage 2

Panel A1 Panel A2

_V1 0.02 _V1 0.04

V^ 216.7596 111.8724 V^ 393.9406 54.4155

ROV 7.0466 3.0136 ROV 15.6773 6.6525

 1.7100 1.3236  1.2961 1.7484

Panel B1 _V1 0.02 Panel B2 _V1 0.02

_V1 30% _V1 40%

V^ 286.6809 75.3040 V^ 375.4515 56.8412

ROV 11.1436 4.2966 ROV 15.0114 6.2374

 1.4576 1.5549  1.3153 1.7230

  

Panel C1 _V1 0.02 Panel C2 _V1 0.02

_V1K1 -50% _V1K1 -75%

_V2K1 50% _V2K1 50%

V^ 231.6018 91.5822 V^ 238.8103 87.9894

ROV 8.0101 2.8528 ROV 8.4591 2.9922

 1.6356 1.4351  1.6048 1.5006
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greater this effect.  The CROM ought to favour greater drift differences with 
1 2V V  , since the 

ROV increase. GOV should welcome increases in the V1 drift only if the objective is to motivate 

early initial, but not final, stage investments. 

 

Figure 1 shows a stage specific divergence between the stage thresholds, and the stage ROVs.  

There is a dramatic divergence between the stage thresholds as the V1 drift approaches the 

riskless interest rate, while the V2 drift remains 0, and a gradual divergence between the ROVs 

for each stage.   

 

The implications of these divergences are problematic in practice. For instance, a procedure 

where the allowed toll rate escalations on a infrastructure project such as a toll road or bridge are 

increased as the project approaches completion should lower the threshold for initial stages 

(although raises the threshold for the final stage, allowing for V1 escalation to continue). 

Whether these V1 drifts are exogenous or subject to government policy is also another interesting 

topic.  We emphasise again that the CROM should always favour increases in value drift at all 

stages, especially at the completion stage.  This is an obvious contribution to our understanding 

of growth options.    

Figure 1 

Effect of Drift Differentiation on Thresholds and ROV 
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Stage 1 model 
1V̂  is the solution for equations 7 and 8, ROV1 is the result from equation 3, with 

the base data in Table 1.  Stage 2 model 
2V̂  is the solution using equations 11-17, ROV2 is the 

result from equation 10.  Note 
2 1

0,V V   range from 1% to 4.5%, so these drift differentials 

result in 
1 2
ˆ ˆV V  , and ROV1>ROV2.   

 

V1 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5%

V1* 183.19 197.94 216.76 241.41 274.80 322.16 393.94 514.53

V2* 166.36 134.18 111.87 94.21 79.25 66.12 54.42 43.93

ROV1 4.68 5.75 7.05 8.62 10.52 12.84 15.68 19.20

ROV2 2.68 2.78 3.01 3.42 4.05 5.05 6.65 9.31
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3.2 Real Option Value and Thresholds for V1> V2 

For the single stage investment opportunity model, an increase in volatility is associated with 

increases in the option value and the project value threshold, ceteris paribus. We now set out to 

demonstrate whether this finding extends to the current multi-stage sequential investment model. 

We first consider the impact of project volatility changes. Generally an increase in project 

volatility 
1V  leads to an increase in the overall stage volatility 

J  and this greater uncertainty is 

expected to be manifested in higher option values. When we consider the impact of stage specific 

project value volatility on the project value threshold at each stage, the expected result of a 

positive association is obtained.   

 

In Table 2, Panel B1 all parameter values are as in Table 1 with 
1

.02V  (for comparison with 

Panel A1) while
1V is increased from 20% to 30%, and to 40% in Panel B2.  As a consequence of 

the first volatility increase the threshold that justifies immediate investment increases from 217 

to 287 in stage 1, but decreases from 112 to 75 in stage 2.  With the additional volatility increase 

the threshold increases to 375 in stage 1, but decreases to 57 in stage 2.  The stage 1 ROV1 

increases as the 
1V increases from 20% to 30%, and the stage 2 ROV2 increases.    The stage 1 

ROV1 increases as the 
1V increases from 30% to 40%, and the stage 2 ROV1 increases. The 

greater the V1 volatility, the greater the ROV1, so the V2 threshold to obtain the option for stage 1 

is lower, but the threshold for exercising the stage 1 option is higher.     

 

Figure 2 shows when the final stage value volatility exceeds the previous stage value volatility, 

for instance  
1V =30% while 

2V remains at 20%, the V1 threshold exceeds the V2 threshold, and 
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the ROV1>ROV2. As the final stage value volatility increases, this pattern is maintained, but the 

level of both ROV increase, while the stage 1 and stage 2 threshold differences increase. Note  

1V̂  increases significantly as V1 volatility increases as is logical and the ROV1 increases, and 
2V̂  

declines.  From the value matching condition, 
2V̂  declines due to the ROV1 increase at each 

stage.     

 

Because thresholds that justify investment diverge as the V1 volatility increases, there is a greater 

incentive to make the initial stage investment, but defer the final stage investment.  GOV policy 

may be ambiguous thus on the V1 volatility, if project completion is the objective. A GOV which 

wants to encourage early stage investments might allow the expectation of high value volatility, 

but after that stage investment is completed, encourage final stage investment by offering price 

guarantees for the project value, which would lower the final stage value threshold.  The CROM 

should favour increases in the V1 volatility, since the ROV increases at all levels. But should the 

CROM seek to sell the project for the calculated ROV, there is apparently a greater incentive to 

defer selling the project until the final stage is reached.  It is easy to see that INVEST may want 

to invest in early stage 2 projects if the implied stock market
3
 V1 volatility is 25% (for a 

ROV2=3.56, if 
2V =20%) if they believe the V1 volatility is 40% (for a ROV2=6.24) (and hold 

through stage 1 when the ROV1=15.01). 

 

Figure 2   

                                                 
3
 This assumes there are pure simple sequential investment opportunities in the stock market, not mixed with other 

operations, and that separate parameter values can be implied using a complex model.  Currently accurate 

calibration of these parameter values is a challenge. 
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Effect of V Volatility Differentiation on Thresholds and ROV 

 

V1 20% 25% 30% 35% 40% 45% 50% 55%

V1* 216.76 249.41 286.68 328.66 375.45 427.18 483.96 545.87

V2* 111.87 89.95 75.30 64.75 56.84 50.75 45.96 42.14

ROV1 7.05 9.10 11.14 13.13 15.01 16.78 18.42 19.94

ROV2 3.01 3.56 4.30 5.20 6.24 7.40 8.65 9.97

0

100

200

300

400

500

600

20% 25% 30% 35% 40% 45% 50% 55%

V1

V1 & V2 Thresholds as function of V1 Volatility

V2*

V1*

0

5

10

15

20

25

20% 25% 30% 35% 40% 45% 50% 55%

V1

Stage ROV as function of V1 Volatility

ROV2

ROV1



25 

 

Stage 1 model 
1V̂  is the solution for equations 7 and 8, ROV1 is the result from equation 3, with 

the base data in Table 1.  Stage 2 model 
2V̂  is the solution using equations 11-17, ROV2 is the 

result from equation 10.    Note if 
2V = 20%, while 

1V is higher at 25% to 55%, these volatility 

differentials also result in 
1 2
ˆ ˆV V , and ROV1>ROV2.  

3.3 Correlation 

Changes in the correlation coefficients impact on the solution through the relevant stage 

volatilities, 
J  for 1 2J , , which in turn influence the option values and the project value 

thresholds.  We had conjectured that the relative correlation between V1K1 relative to V2K1 

might be an alternative parameter value difference that could result in increasing thresholds 

nearing the final stage, but the implications for ROV appear to be limited. 

 

For the two stages, Table 2 illustrates the effects of variations in the correlation between the 

project value and the investment cost K1 on the option value and the project value threshold, 

respectively. In Table 2 Panel C1 all parameter values are as in Table 1 with 
1V =.02, 

2 1V K is 

increased from 0 to 50%, and 
1 1V K is decreased from 0 to -50% in Panel C1, and to -75% in 

Panel C2.  As a consequence of the first set of correlation changes the threshold that justifies 

immediate investment increases from 217 to 232 in stage 1, but decreases from 112 to 92 in stage 

2.  In comparison with C1, in C2 with 
1 1V K = -75%, the threshold increases to 239 in stage 1, but 

decreases to 88 in stage 2.  The ROV1 increases with the first set of correlation changes, and the 

ROV2 decreases slightly, and in C2 the ROVs increase slightly.  A wider correlation difference 

between V1K1 and V2K1 has the same effect as an increase in V1 volatility. The greater the 

correlation difference, the greater the ROV1, so the V threshold to obtain the option for stage 1 is 

lower, but the threshold for exercising the stage 1 option is higher.     
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Figure 3 

Effect of Correlation Differentiation on Thresholds and ROV 

   

V1K1 -50% -55% -60% -65% -70% -75% -80% -85%

V1* 231.60 233.05 234.50 235.94 237.38 238.81 240.24 241.66

V2* 91.58 90.83 90.09 89.37 88.67 87.99 87.32 86.67

ROV1 8.01 8.10 8.19 8.28 8.37 8.46 8.55 8.63

ROV2 2.85 2.88 2.91 2.94 2.96 2.99 3.02 3.05
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Stage 1 model 
1V̂  is the solution for equations 7 and 8, ROV1 is the result from equation 3, with 

the base data in Table 1.  Stage 2 model 
2V̂  is the solution using equations 11-17, ROV2 is the 

result from equation 10.  Note that if 
2 1V K = 50%, while 

1 1V K ranges from -50% to -85%, these 

correlation differentials also result in 
1 2
ˆ ˆV V , and ROV1>ROV2.  

 

GOV seeking early stage investment would encourage negative correlations at the final stage, but 

the result would be to slightly discourage investment at that final stage.  The CROM would 

probably seek no correlation differences between V1K1 and V2K1 (indeed 
1 1V K >0 implies that 

the early stage value is somehow positively related to the final stage investment costs).  

Conceivably the V1K1 and V2K1 correlation differentials might be established through contracts 

for basing the final stage investment costs partially on the early stage project value, that is the 

greater the earlier stage value, the greater the final stage investment cost, an “afford to pay” 

scheme.  Could negative correlation between final stage project value and final stage investment 

cost be a feasible type of milestone agreement between an early stage E&D firm and a Big 

Mining firm, that is the investment cost for final production stage would be reduced the higher 

the final stage project value?  

 

Other parameter value changes that might also result in solutions that do not violate the stage 

investment cost boundary conditions, so that threshold increase as the project approaches 

completion, might be changes in stage 2 V volatility, differential investment cost drifts and 

volatilities, and changes in the general level of interest rates, as shown in Appendix 2.  

 

Discussing these sensitivities indicates that changes in all of the parameter values should be 

considered in a package which meets the objectives of the regulator or government, or 

alternatively the project manager. Incentives are not always intuitive. 
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Are differences in V drifts, or correlation differences between V1K1 and V2K1, or volatility for 

V1 higher than for V2 plausible?  Cortazar et al. (2003) divide natural resource investments into 

early and final stages.  The early exploration stage involves primarily geological-technical 

uncertainty following a zero-drift constant volatility Brownian motion process, independent of 

output prices.  The final production stage involves primarily commodity price risk following a 

constant-convenience-yield Brownian motion process.  So  
1 2

0V V   , the correlation with the 

investment cost over the two stages is not specified, and the V1 volatility is greater than the V2 

volatility.  In natural gas fracking in the U.S., there is evidence that the exploration-development 

stage has very limited failure risk or volatility (very few “dry holes”), while the production stage 

is exposed to the highly volatile U.S. natural gas prices, with a distinct convenience yield 

observable from the term structure of gas futures prices.   

 

Conclusion 

We provide an analytical solution for a multi-factor, multi-phase sequential investment process, 

where there is the real option of deferring investments at any stage.  This model is particularly 

appropriate for real sequential E&D investment opportunities, such as infrastructure or  natural 

resources that may have an initial  development and then a final production investment stage.   

 

Decisions relating to the sequential investment opportunity are affected by three distinct sources 

of stage specific uncertainty, arising from a stochastic project value, stochastic investment costs 

and correlations of value and cost.  Amongst the three sources of uncertainty, the most crucial for 

obtaining a meaningful solution with differences in stage 1 and stage 2 thresholds are the relative 
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value drifts and volatilities.  The primary condition in Adkins and Paxson (2014) that the failure 

probabilities for the various stages have to obey the constraint of declining nearing completion is 

not necessary, although sufficient.  However, there is still the constraint that the ratio of 

consecutive investment cost thresholds exceeds the lower bound 
JLB . 

 

The closed-form solution to the multi-stage sequential investment opportunity is formulated on 

American-perpetuity options. It yields an analytical solution that is straightforward conceptually 

and less onerous to evaluate compared with some previous models. However, its solution now 

relies on a package of conditions, with a menu that is rich and varied.  Some real world projects 

may allow for  these conditions, but necessarily not all. For the exceptions, the conditions will 

need to be loosened in some way, possibly by a mixture of European and American options or 

through the presence of an abandonment alternative at each stage. 

 

The American-perpetuity option model applied to the parsimonious design of a sequential 

investment opportunity yields an elegant analytical solution that can be implemented in a simple 

spreadsheet, useful for practical capital budgeting. The solution method may be extendable to 

cases where the realized opportunity has embedded options, where there is a required time to 

build, where there is more than a single project opportunity, where there are several stages, or 

where the value can be partially realized at each stage. The assumption of a monopolist player 

can be loosened by considering the comparative strategies of say two rivals both engaged in the 

same E&D  or infrastructure battle.  
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For future research it will be interesting to show analytically the partial derivatives of the ROV at 

each stage to changes in V, V volatility (real stage specific deltas and vegas) and drift, and 

failure probability, some of which are indicated in Appendix 2.  An investor seeking “bang for 

the buck” expecting increases in stage value volatility might want to select an investment in an 

early stage rather a final stage.  Various  capital funds investing in E&D may indicate a 

preference for early stage participation, others (like Big Mining Companies) in later stages.   

 

Finally, the multi-stage American-perpetuity model could be applied to valuing equity as a 

compound call option on an asset unlikely to disappear or fail completely either partly funded by 

debt or itself with embedded options. 
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Appendix 1      Spreadsheet Solution for a Set of Equations 

For 1J  , the two-factor one-stage investment model is evaluated , assuming 
1K̂ =K1. Then 

according to the sequential order 2J  , the model is evaluated by solving simultaneously five 

equations for five unknowns, assuming that 
1K̂ =K1, 2K̂ =K2and 22=1-2-21.   

 

 This spreadsheet is available from the authors. 
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SSRD BASIC SPREADSHEET
INPUT STAGE ONE STAGE TWO

V 40.00 40.00

K1 90.00 90.00

K2 10.00 10.00
V1 0.20 0.20

V2  0.20

K1 0.05 0.05

K2  0.05
 V1K1 0.00 0.00
 V1K2   
 V2K1  0.00

 V2K2  0.00

 K1K2  0.00

r 0.06 0.06
V1 0.02 0.02
V2  0.00

K1 0.00 0.00

K2  0.00

   

OUTPUT   

^2 0.0425 0.1207 (B31^2)*(C7^2)+((1-B31)^2)*(C8^2)+(C9^2)+2*B31*(1-B31)*C12*C6*C8-2*B31*C13*C6*C9-2*(1-B31)*C14*C8*C9 EQ 17

Q 0.0000 0.0000 0.5*(C22)*C38*(C38-1)+C38*((C15-C19)+B38*(C17-C16)+0.5*B38*(B38-1)*((C7^2-C6^2)-2*(C12*C7*C9-C10*C6*C8)))-(C15-C19) EQ 7 & 16

SP1 0.0000 0.0000 C31*C30*(C33^(C31))*(C35^C32)*(C36^C34)-B31*B30*(C33^(B31))*(C35^(1-B31)) EQ 5 & 12

SP2 0.0000 0.0000 C32*C30*(C33^C31)*(C35^(C32-1))*(C36^C34)-(1-B31)*B30*(C33^B31)*(C35^(-B31)) EQ 6 & 13

VM1/SP3 0.0000 0.0000 C34*C30*(C33^C31)*(C35^C32)*(C36^(C34-1))+1 EQ 14

B23B24/VM2 0.0000 0.0000 C30*(C33^C31)*(C35^C32)*(C36^C34)-B30*(C33^B31)*(C35^(1-B31))+C36 EQ 4 & 11

SOLVER: SET D29=0, CHANGING B30:C33

SOLVER 0.0000 0.0000 0.00000

A2 0.3133 0.1031

2 1.7100 2.2633

21 -0.7100 -0.9397

V1* 216.7596 111.8724

22  -0.3236 1-C31-C32

K1* 90.0000 90.0000

K2*  10.0000

VOLATILITY 0.2062 0.3475

1 2 1.7100 1.3236 C31/B38

ROV1, ROV2 7.0466 3.0136 IF(C3<C33,C30*(C3^C31)*(C4^C32)*(C5^C34),C33-C35) EQ 3 & 10

PDE2, PDE9 0.0000 0.0000 EQ 2 & 9

DV1 0.3012  B31*B30*(B3^(B31-1))*(B4^B32)
DV2 0.1705 C31*C30*(C3^(C31-1))*(C4^C32)*(C5^C34)
DK1 -0.0556 -0.0315 C32*C30*(C3^C31)*(C4^(C32-1))*(C5^C34)
DK2 -0.0975 C34*C30*(C3^C31)*(C4^C32)*(C5^(C34-1))
GV1 0.0053  B31*(B31-1)*B30*(B3^(B31-2))*(B4^B32)
GV2 0.0054 C31*(C31-1)*C30*(C3^(C31-2))*(C4^C32)
GK1 0.0011 0.0007 C32*(C32-1)*C30*(C3^C31)*(C4^(C32-2))*(C5^C34)

GK2 0.0129 C34*(C34-1)*C30*(C3^C31)*(C4^C32)*(C5^(C34-2))

PDE 2 0.5*(B6^2)*(B3^2)*B45+0.5*(B8^2)*(B4^2)*B47+B16*B3*B41+B18*B4*B43-B15*B39

PDE 9 0.5*(C7^2)*(C3^2)*C46+0.5*(C8^2)*(C4^2)*C47+0.5*(C9^2)*(C5^2)*C48+C17*C3*C42+C18*C4*C43+C19*C5*C44-C15*C39
V2* 111.8724 (B38/(B38-1))*(((C38*(B38-1)/(C38-1))^(1/B38))*(C35^((B38-1)/B38)))*((C36^(1/B38))) EQ 22
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Appendix 2    An Easy Quadratic Solution and Some Additional Sensitivities  

The 
1Q   function (7) is a quadratic expressed as: 
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with the solution 
2 4

2

b b ac

a

  
  (A2) 

where a, b and c are    
1 1 1

1 2

21
1

2

2

1, ,V K Kr          (A2A) 

The 
2Q   function (16) is a quadratic expressed as: 
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Now specify: 

 
 
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and                      
2 1 2 1 2 1

2 2 2

21 2V K V K V K           (A4) 

so       
2 1 2 2
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The coefficients for this quadratic are: 

      
2 1 2 2

1 1 1
1 1 1 1

2 2 2

21 21 2 212 2
, 1 ,1V K K Kr             .     (A6) 
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An Alternative Quadratic Solution for Thresholds and ROV  
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Quadratic Solution

INPUT STAGE ONE EQ

V 40.00

K1 90.00

K2  
V1 0.20
V2  

K1 0.05

K2  
 V1K1 0.00
 V2K1  
 V2K2  
 K1K2  

r 0.06
V1 0.02
V2  

K1 0.00

K2  
STAGE TWO

V 40.00

K1 90.00

K2 10.00
V1 0.20
V2 0.20

K1 0.05

K2 0.05
 V1K1 0.00
 V2K1 0.00
 V2K2 0.00
 K1K2 0.00

r 0.06
V1 0.02
V2 0.00

K1 0.00

K2 0.00

OUTPUT  
^2 0.0425 B6^2+B8^2-2*B10*B6*B8 7A

b1 -0.0013 B15-B17-0.5*B37 A2A

1 1.7100 (-B38+SQRT((B38^2)-4*0.5*B37*-(B14-B17)))/(2*0.5*B37) A2

A1 0.3133 (B39^(-B39))*((B39-1)^(B39-1)) 8A

V1* 216.7596 (B39/(B39-1))*B4 8

K1* 90.0000  

K2*   

2

21 -0.7100 1-B39  

ROV1 7.0466 IF(B3<B41,B40*(B3^B39)*(B4^B45),B41-B42) 3

^2 0.1207 (B39^2)*(B24^2)+((1-B39)^2)*(B25^2)+(B26^2)+2*B39*(1-B39)*B28*B24*B25-2*B39*B29*B24*B26-2*(1-B39)*B30*B25*B26 17

21^2 0.0425 B24^2+B25^2-2*B28*B24*B25 A4A

b2 -0.0346 ((-B35)+B39*B33+0.5*B39*(B39-1)*B48-0.5*B47) A6

2 1.3236 (-B49+SQRT((B49^2)-4*0.5*B47*-(B31-B35)))/(2*0.5*B47) A2

A2 0.1031 (((B50-1)^(B50-1))/(B50^B50))*(((B39-1)^(B39-1))/(B39^B39))^B50 19A

V2* 111.8724 (B39/(B39-1))*(((B50*(B39-1)/(B50-1))^(1/B39))*(B53^((B39-1)/B39)))*((B54^(1/B39))) 22

K1* 90.0000  

K2* 10.0000  

2 2.2633 B50*B39

21 -0.9397 (1-B39)*B55/B39

22 -0.3236 1-B55-B56

ROV2 3.0136 IF(B20<B52,B51*(B20^B55)*(B21^B56)*(B22^B57),B52-B54) 10
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A B C D

PDE1 0.0000 0.5*(B6^2)*(B3^2)*B64+0.5*(B8^2)*(B4^2)*B66+B15*B3*B60+B17*B4*B62-B14*B47 2

DV1 0.3012 B39*B40*(B3^(B39-1))*(B4^B45)
DV2

DK1 -0.0556 B45*B40*(B3^B39)*(B4^(B45-1))
DK2

GV1 0.0053 B39*(B39-1)*B40*(B3^(B39-2))*(B4^B45)
GV2

GK1 0.0011 B45*(B45-1)*B40*(B3^B39)*(B4^(B45-2))
GK2

PDE2 0.0000 0.5*(B24^2)*(B20^2)*B74+0.5*(B25^2)*(B21^2)*B75+0.5*(B26^2)*(B22^2)*B76+B33*B20*B70+B34*B21*B71+B35*B22*B72-B31*B58 9

DV1   
DV2 0.1705 B55*B51*(B20^(B55-1))*(B21^B56)*(B22^B57)
DK1 -0.0315 B56*B51*(B20^B55)*(B21^(B56-1))*(B22^B57)
DK2 -0.0975 B57*B51*(B20^B55)*(B21^B56)*(B22^(B57-1))
GV1   
GV2 0.0054 B55*(B55-1)*B51*(B20^(B55-2))*(B21^B56)*(B22^B57)
GK1 0.0007 B56*(B56-1)*B51*(B20^B55)*(B21^(B56-2))*(B22^B57)

GK2 0.0129 B57*(B57-1)*B51*(B20^B55)*(B21^B56)*(B22^(B57-2))
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Figure A1 

  

1 2
ˆ ˆV V  decreases as

2V  increases from 0 to 25% if 
1V  remains at 20%, but beyond that the LB 

no longer holds, based on the Table 1 parameter values.   

 Figure A2 

V2 0% 5% 10% 15% 20% 25%

V1* 216.76 216.76 216.76 216.76 216.76 216.76

V2* 54.89 59.66 70.03 85.82 111.87 166.82

ROV1 7.05 7.05 7.05 7.05 7.05 7.05

ROV2 0.09 0.36 1.02 1.92 3.01 4.38
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1 2
ˆ ˆV V  decreases as r increases from 3% to 10%, but beyond that the LB no longer holds, based 

on the Table 1 parameter values.   

     Figure A3 

r 3% 4% 5% 6% 7% 8% 9% 10%

V1* 502.93 314.04 249.68 216.76 196.56 182.79 172.75 165.07

V2* 60.12 82.99 99.58 111.87 121.17 128.33 133.95 138.41

ROV1 18.91 12.47 9.11 7.05 5.65 4.65 3.90 3.33

ROV2 10.13 5.86 4.03 3.01 2.37 1.93 1.61 1.37
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1 2
ˆ ˆV V  decreases as K1 drift increases from 0 to almost 6%=r, but beyond that the LB no longer 

holds, based on the Table 1 parameter values.   

 Figure A4 

K1 0% 1% 2% 3% 4% 5% 6% 7%

V1* 216.76 199.58 183.72 169.46 157.02 146.49 137.81 130.79

V2* 111.87 116.75 121.79 126.75 131.30 135.14 138.05 139.98

ROV1 7.05 5.87 4.72 3.66 2.72 1.95 1.35 0.91

ROV2 3.01 2.38 1.81 1.32 0.93 0.63 0.42 0.27

LB 2.90 3.39 4.02 4.84 5.92 7.30 9.04 11.19

K1/K2 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
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1 2
ˆ ˆV V  decreases as 

1K  increases from 0 to 35% showing it pays to wait at stage 1if the final 

stage investment cost is increasingly volatile.   

Figure A5 

K1 0% 5% 10% 15% 20% 25% 30% 35%
V1* 212.94 216.76 227.95 245.90 270.00 299.78 334.98 375.45

V2* 112.56 111.87 109.88 106.79 102.92 98.62 94.18 89.83

ROV1 6.79 7.05 7.78 8.89 10.26 11.80 13.40 15.01

ROV2 2.86 3.01 3.46 4.16 5.06 6.11 7.24 8.42
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1 2
ˆ ˆV V  decreases as K2 increases because 

2V̂  increases naturally and ROV2 decreases. 

K2* 5 10 15 20 25 30 35 40

V1* 216.76 216.76 216.76 216.76 216.76 216.76 216.76 216.76

V2* 74.59 111.88 141.83 167.83 191.24 212.77 232.87 251.80

ROV1 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7.05

ROV2 3.77 3.01 2.64 2.41 2.24 2.11 2.01 1.93

LB 2.90 2.90 2.91 2.91 2.91 2.91 2.91 2.91

K1/K2 18.00 9.00 6.00 4.50 3.60 3.00 2.57 2.25
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   Figure A6 

K1* 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

V1* 72.25 96.34 120.42 144.51 168.59 192.68 216.76 240.84

V2* 70.90 79.90 87.66 94.56 100.82 106.58 111.93 116.94

ROV1 15.37 12.53 10.70 9.40 8.42 7.66 7.05 6.54

ROV2 8.46 6.46 5.24 4.41 3.82 3.37 3.02 2.73

LB 2.90 2.90 2.91 2.91 2.91 2.91 2.91 2.91

K1/K2 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
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1 2
ˆ ˆV V  increases as K1 increases because 

1V̂  increases naturally and both ROV decrease. 

Figure A7 

 

ROVs increase and the spread ROV1>ROV2 increases as V increases, following EQ 3 and 10. 

 

 

 

 

 

 

 

 

 

V 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 110.00

ROV1 0.00 0.66 2.15 4.31 7.05 10.32 14.10 18.35 23.05 28.20 33.76 39.74

ROV2 0.00 0.13 0.63 1.57 3.01 4.99 7.54 10.69 14.47 18.89 23.97 29.75

DV1 0.00 0.11 0.18 0.25 0.30 0.35 0.40 0.45 0.49 0.54 0.58 0.62
DV2 0.00 0.03 0.07 0.12 0.17 0.23 0.28 0.35 0.41 0.47 0.54 0.61

PDE1 #DIV/0! 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DV1 0.0000 0.1126 0.1842 0.2456 0.3012 0.3530 0.4017 0.4482 0.4928 0.5358 0.5774 0.6178

DV2

DK1 0.0000 -0.0052 -0.0170 -0.0340 -0.0556 -0.0814 -0.1112 -0.1447 -0.1819 -0.2224 -0.2664 -0.3135
DK2

GV1 #DIV/0! 0.0080 0.0065 0.0058 0.0053 0.0050 0.0048 0.0045 0.0044 0.0042 0.0041 0.0040
GV2

GK1 0.0000 0.0001 0.0003 0.0006 0.0011 0.0015 0.0021 0.0028 0.0035 0.0042 0.0051 0.0060
GK2

PDE2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DV1             
DV2 0.0000 0.0296 0.0710 0.1186 0.1705 0.2260 0.2846 0.3458 0.4093 0.4750 0.5426 0.6120

DK1 0.0000 -0.0014 -0.0066 -0.0164 -0.0315 -0.0521 -0.0788 -0.1117 -0.1511 -0.1972 -0.2503 -0.3106
DK2 0.0000 -0.0042 -0.0203 -0.0508 -0.0975 -0.1616 -0.2441 -0.3460 -0.4682 -0.6112 -0.7758 -0.9625
GV1             
GV2 0.0000 0.0037 0.0045 0.0050 0.0054 0.0057 0.0060 0.0062 0.0065 0.0067 0.0069 0.0070
GK1 0.0000 0.0000 0.0001 0.0004 0.0007 0.0011 0.0017 0.0024 0.0033 0.0043 0.0054 0.0067

GK2 0.0000 0.0006 0.0027 0.0067 0.0129 0.0214 0.0323 0.0458 0.0620 0.0809 0.1027 0.1274
DV1 0.0000 0.1126 0.1842 0.2456 0.3012 0.3530 0.4017 0.4482 0.4928 0.5358 0.5774 0.6178

DV2 0.0000 0.0296 0.0710 0.1186 0.1705 0.2260 0.2846 0.3458 0.4093 0.4750 0.5426 0.6120

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100 110

V

Sensitivity of ROVs to increases in V

ROV1

ROV2



44 

 

Figure A8 

    

 

The ROV deltas increase and the spread DROV1>DROV2  decreases as V1 volatility increases 

past 25% . 
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Figure A9 

 

 

Changes in the correlation of V2 and K1, and K2 and K1 do not significantly affect 2V̂ or ROV2.   

 

 V2K1 0% -10% -20% -30% -40% -50% -60% -70%

V1* 216.76 216.76 216.76 216.76 216.76 216.76 216.76 216.76

V2* 111.87 114.54 117.36 120.35 123.52 126.90 130.51 134.38

ROV1 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7.05

ROV2 3.01 3.10 3.20 3.29 3.39 3.49 3.59 3.69

 K1K2 0% -10% -20% -30% -40% -50% -60% -70%

V1* 216.76 216.76 216.76 216.76 216.76 216.76 216.76 216.76

V2* 111.87 111.78 111.69 111.59 111.50 111.41 111.31 111.22

ROV1 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7.05

ROV2 3.01 3.01 3.01 3.00 3.00 3.00 2.99 2.99
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