This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information.

To see the final version of this work please visit the publisher's website. Access to the published online version may require a subscription.

Link to publisher's version: http://www.eaglehill.us/JONAonline/articles/JONA-Sp-9/12-Armit.shtml (accessed 4 Oct 2016)

Introduction

Severe coastal erosion during the late 1980s exposed the remains of a small complex of Iron Age buildings on Cnip beach, on the west coast of Lewis in the Western Isles (NB 0980 3659; Fig. 1). Subsequent rescue excavations revealed a series of extraordinarily well-preserved drystone buildings set into the sand dunes, dating from around the second century BC to the mid-third century AD (Armit 2006). At the core of the complex was an original pair of conjoined wheelhouses; one of which had apparently remained unfinished (Fig. 2). Like other wheelhouses, the principal original building at Cnip (Structure 1) was a drystone roundhouse with an interior space dominated by a central hearth, and a periphery divided into a series of equally sized bays. The bays were separated by substantial stone piers which in plan resemble the spokes of a wheel. It was also typical in being sunk into a natural sand dune which would have made the site quite inconspicuous within the coastal machair landscape. Indeed, when occupied, Structure 1 would have been visible only as a low thatched roof emerging from the sand, but once inside it would have revealed itself as a

Death and Display in the North Atlantic: The Bronze and Iron Age Human Remains from Cnip, Lewis, Outer Hebrides

Ian Armit¹* and Fiona Shapland²

Abstract - This paper revisits the series of disarticulated human remains discovered during the 1980s excavations of the Cnip wheelhouse complex in Lewis. Four fragments of human bone, including two worked cranial fragments, were originally dated to the 1st centuries BC/AD based on stratigraphic association. Osteoarchaeological reanalysis and AMS dating now provide a broader cultural context for these remains and indicate that at least one adult cranium was brought to the site more than a thousand years after the death of the individual to whom it had belonged.

Figure 1. Location map showing main sites discussed in the text.

¹Archaeological Sciences, University of Bradford, Bradford, UK. ²Department of Archaeology, University of Reading, Reading, UK. *Corresponding author - i.armit@bradford.ac.uk.
monumental and accomplished construction. In this sense, wheelhouses perpetuated the domestic monumentality of the broch towers and other Atlantic roundhouses which characterized the earlier part of the Iron Age in this region (Armit 2003).

The excavations at Cnip provided the opportunity to dissect these Iron Age buildings in considerable detail, and in doing so, a number of unusual objects were found, including several deliberate deposits of animal remains and four isolated pieces of human bone. Aside from a single tibia fragment, the latter were all fragments of human crania, suggesting a special interest in the head. At the time when the full publication of the site was being completed, the human remains had become misplaced and, in the absence of photographs or drawings, could only be published on the basis of earlier verbal descriptions (McSweeney 2006). Since re-appearing, however, as well as being subject to osteological reanalysis, two of the fragments have been re-dated as part of a broader AMS dating program focused on wider treatments of the human body in Iron Age Atlantic Scotland (Tucker and Armit 2010), and a great deal of comparative work has been carried out on the wider context of mortuary practice in the region (e.g., Armit and Ginn 2007, Tucker 2010). This work has shown, inter alia, that the deposition of disarticulated human remains was widespread on domestic sites in Atlantic Scotland throughout the “long Iron Age” (Fig. 3), from around 700 BC–AD 800. The remains also have relevance to wider studies of the social role of human body parts, and especially the head, in prehistoric Europe (e.g., Armit 2012) and beyond (e.g., Chacon and Dye 2007).

This paper revisits the Cnip fragments in the light of recent work, to examine what more they

Figure 2. Simplified plan of the Cnip wheelhouse complex in its secondary phase of occupation (Phase 2). The distinctive wheel-like plan of Structure 1 is still clearly visible. The perforated cranial fragment (HB03) was found in the entrance-way to Structure 4 and the adult human frontal (HB01) was found in a shallow scoop under the floor of Structure 3.
can tell us about treatments of the dead in Iron Age Scotland. The descriptions of the bones themselves and their contextual associations will be kept to a minimum as full details are provided in the initial report (Armit 2006, McSweeney 2006).

Heads in the Sand

Although the assemblage is small, especially when compared with the many thousands of animal bones recovered from the excavations at Cnip, each cranial fragment tells a rather different story about attitudes to the human body, and specifically the head. In this section, each of the three human skull fragments is discussed in turn before returning to a broader consideration of attitudes to the dead and their deposition in domestic spaces.

Curation and Display?

The first fragment is a sub-triangular piece of adult human parietal (HB03) found within deposits which had built up at the entrance to Structure 4, an oval structure of fairly accomplished masonry which formed one of two main foci of the settlement in Phase 2, after the original wheelhouse had become unstable. The fragment is around 7 cm long with a single “hourglass” perforation, drilled from both sides, and thus clearly manufactured after the removal of the head from the corpse. A second “attempted” drill-hole on the internal surface lies very close to the first (Fig. 4). It is possible that the fragment split during drilling (McSweeney 2006:136). The fragment is neatly broken, or perhaps cut, along the line of the perforation. Rodent gnaw marks are also visible on the posterior edge of the exterior surface, suggesting that the fragment (or indeed whole body) lay exposed for a period shortly after death.

The two sigma range of cal. 20–180 AD for this fragment (Table 1) accords with the 1st century AD date suggested for these Phase 2 deposits in the original report (Armit 2006:221). Given the dates for Phase 3 (ca. AD 100–250), it is likely that the

Figure 3. Map showing the distribution of disarticulated human remains from domestic sites in Atlantic Scotland.
true date of this fragment lies in the earlier half of its range.

When initially reported, the only close parallel for this worked human bone was a cranial fragment from the entrance to the complex Atlantic round-house of Hillhead in Caithness (Fig. 5a) which had been drilled with three neat holes of similar size to those on the Cnip fragment (Tress Barry 1902). However, a recently obtained AMS date of cal. 310–440 AD shows that the individual from whom this bone was obtained died long after the deposition of the Cnip example. Within the last few years, two other perforated crania have been recognized (Shapland and Armit 2012, Tucker 2010). The first is another human parietal with a single central perforation from the rock-shelter at Fiskavaig, on Skye (Birch 2009) (Fig. 5b), AMS dated to cal. 70–240 AD, and thus overlapping with the date from Cnip (cal. 20–180 AD). The second is a fragment of frontal bone, again with a single perforation, found in association with Iron Age burials at Lower Dounreay, Caithness (Cruden 1956), although it’s precise context is unclear. In a further parallel with the Cnip fragment, the internal surface of this bone

![Figure 4. Parietal fragment from Cnip (HB03) A) ectocranial/ external view showing rodent gnaw marks B) endocranial/ internal view showing second partially drilled perforation (photographs © Fiona Shapland).](image)

![Table 1. AMS dates for the Cnip cranial fragments obtained during the 2009 dating program and from burials on Cnip Headland (dates for the Cnip Headland burials are recalibrated based on information published in Dunwell et al. [1995:284] and Close-Brooks [1995:263], using Oxcal v3.10 [Bronk Ramsey 2005, Reimer et al. 2004]).](image)

![Figure 5. Perforated cranial fragments from: A. Hillhead, Caithness (parietal bone), B. Fiskavaig, Skye (parietal bone), and C. Lower Dounreay, Caithness (frontal bone) (photographs © Fiona Shapland).](image)
displays four other partly drilled “holes” forming a neat pattern (Fig. 5c). In this case, it seems highly improbable that these represent abortive attempts at drilling through, and their purpose may be either decorative or in some way related to the intended purpose of the object. An AMS date of cal. 660–780 AD, however, shows that this individual died many centuries after the burial of the Cnip fragment. Indeed it’s two sigma range does not even overlap with that of the Hillhead fragment. Finally, there may be one further example from antiquarian excavations at Burghead promontory fort, a major Pictish center in Moray. Here a perforated cranial fragment was apparently found along with other human bones below the rampart (MacDonald 1862:358), and thus probably dated to the early mid-first millennium AD. However, the fragment is lost, and the identification cannot be confirmed.

What we appear to have, therefore, is evidence for an enduring practice involving the curation and modification of the human head which persisted throughout most of the first millennium AD in Atlantic Scotland. Three of the four drilled fragments so far discovered represent parietal bones, and one a frontal bone. These areas of the cranium provide the flattest and most even fragments for perforation; interestingly, parietals and frontals were also the human bones most commonly deposited on settlement sites throughout the long Iron Age in Atlantic Scotland (Tucker 2010:165). Aside from the basic concept of perforating a cranial platelet, the similarities in the size and shape of the drill-holes suggest a fairly standardized approach to the procedure, and the use of similar tools such as bone awls. The presence of “attempted” drill-holes, though their purpose is unknown, forms a further link between fragments at either end of the chronological range. Despite its long duration, however, it would appear that the practice was either infrequently carried out, or else that the modified bones very seldom found their way into contexts where they can be archaeologically recovered. Sites in this region commonly yield substantial bone assemblages, yet only four perforated platelets are definitely attested.

Given the difficulty in accessing the internal surfaces of these skulls in order to produce the characteristically neat drill-holes, it seems highly probable that the platelets had already been detached from the cranium prior to working. It also seems likely that the bone would have been de-fleshed before drilling began, as the working and display of fleshed cranial fragments would have had obvious drawbacks. However, it must have remained sufficiently fresh not simply to shatter as completely dry bone has a tendency to do upon drilling (although this may of course have been precisely the fate of the Cnip example). One possibility, therefore, is that these platelets were taken from the skulls of individuals who had been subject to excarnation, perhaps as part of normative funerary rites (cf. Carr and Knüsel 1997). The gnaw marks present on the Cnip example would seem to be a useful piece of corroborating evidence for this theory.

In this context, it is worth considering the recent reanalysis of Iron Age human remains from MacArthur Cave near Oban (Saville and Hallén 1994, Tucker 2010). A series of Early Iron Age human remains from the cave dated by a series of AMS dates to between cal. 765 and 60 BC (Saville and Hallén 1994:721) appear to represent disarticulated and comingled rather than formal inhumations, and several display gnaw marks suggestive of purposeful or accidental exposure of the corpse (Tucker 2010). Of particular relevance here, however, is the recent observation that a large section of bone appears to have been deliberately removed from one Iron Age cranium soon after death (Fig. 6). The size and shape of the missing fragment is highly reminiscent of the perforated platelets discussed above. Potentially, therefore, the missing MacArthur Cave fragment represents a “blank” taken from an excarnation site for subsequent working and curation. Given the intact nature of this cranium at the time the bone was removed, and the relatively small number of individuals who appear to have been deposited at MacArthur Cave, it seems quite likely that the platelet was taken from a known individual. Even if this is not the case, the MacArthur Cave find may strengthen the suggestion that these perforated platelets represent some form of ancestral relic or memento, forming a tangible link with the recently deceased, rather than trophies taken from the heads of outsiders. This interpretation is particularly interesting in view of the clear evidence for violent human trophy taking elsewhere in the Scottish Iron Age (e.g., Armit and McKenzie 2013).

Parallels for this Atlantic Scottish group of perforated crania have been found in other parts of Britain and northern France during the first millennium BC, and have usually been interpreted as amulets (Cunnington 1923:plate 26, Whimster 1981:185), displayed skulls (Parry 1930:36) or, as with those found recently at Billingborough, as parts of drinking vessels (Chowne et al. 2001:74–77). These latter examples, however, are perforated near the edge of the bone, rather than at its center, and we can exclude this functional suggestion for the Atlantic Scottish series. Further afield, skulls perforated
with large iron nails have been found on a number of Iron Age sites in southern France, where they are generally interpreted as human trophies (e.g., Armit 2010, Mahieu 1998). In general, however, the Atlantic Scottish group (other than the possible “blank” from MacArthur Cave) are a relatively late phenomenon, and remarkably consistent in their form and manufacture.

The purpose of the perforated cranial fragments remains unclear. The existence of the holes suggests that they were either suspended for display, or else sewn into garments or fabrics. The lack of clear wear-patterning does not suggest any routine, day-to-day usage. The occurrence of the Cnip and Hillhead finds amid entrance deposits might suggest suspension above the door-way. Given its funerary context, the Dounreay fragment may have had a particular link (perhaps genealogical) to a specific individual. If we are right in believing that they derive from secondary funerary rites, then the likelihood must be that they played a role in acts of remembrance associated either with deceased individuals or with the generalized community of ancestors.

Tool Use or Trepanation?

The second piece of human bone from Cnip is a roughly triangular cranial fragment (HB02) recovered from behind the sand-revetted wall of Structure 8, a rectilinear structure which formed the last domestic building at Cnip (Phase 3) and which was probably constructed sometime around the beginning of the 2nd century AD (Armit 2006:221). The bone comes from an adult cranium, has a maximum length of 6.5 cm, and was probably part of the left parietal (Fig. 7). Although the surviving portion bears no
sign of perforation, one edge was artificially shaped, having been deliberately bevelled externally and internally, perhaps by scraping with an iron knife, into a smooth convex shape. Along the exterior surface, parallel to the bevelled edge, a series of shallow scoops had been scraped into the bone, and these seem originally to have extended beyond the broken edges of the fragment. There are also numerous shallow cut marks on the external surface such as might be expected in a case of scalping. It seems possible, then, that the head was deliberately defleshed before a portion was detached and modified into some form of scraping implement. An alternative possibility is that the marks derive from an unsuccessful trepanation (there is of course no sign of healing), but the presence of both internal as well as external bevelling of the cut edge would necessarily rule this possibility out. The marks on the exterior surface of this bone bear little resemblance to other known Iron Age European trepanations, which were mostly drilled rather than scraped (Roberts and McKinley 2005:63).

Since it was deposited during the construction of the Structure 8 wall, the bone pre-dates the Phase 3 occupation, and the individual most likely died during the preceding Phase 2 occupation (i.e., before around AD 100). Although its context is a little later than that of HB03 (above), the two belong to the same broad period of activity on the site. Several deliberate deposits had been placed behind the walls of various structures at Cnip during construction, and it is possible that this fragment too was a deliberate deposit. However, there was no specific evidence to confirm this.

Back from the Dead

The final fragment found at Cnip comprised a partial human cranium (HB01) deliberately placed in a shallow scoop in the sand below Structure 3, a small cell attached to the main wheelhouse (Fig. 8). It was almost certainly intended as a foundation deposit for the cell. Like the other fragments, it dates to Phase 2 of occupation, in the 1st century AD. The bones were poorly preserved and consisted of a fragmented frontal bone and a few surrounding cranial fragments from an adult, possibly a male judging by the prominent brow ridges (Bass 2000).

Placed alongside the skull were a number of other objects, comprising two sherds of pottery, one with a zigzag cordon, and a second cranial fragment, which may be human but is more likely to derive from an animal. The latter bone had gnaw-marks suggesting that it had been left exposed and accessible to carnivores when fresh. This rather heterogeneous collection was accompanied by a smooth, rounded stone, which seemed to echo the shape of the skull itself, and which was quite unlike the usual angular building stones found around the site. This collection of objects was not the only special deposit

Figure 7. Worked cranial fragment (HB02) from Cnip: A. with scale bar, and B. closer view (photographs © Fiona Shapland).
associated with Structure 3. Under the slab threshold of the cell, a second pit contained two sheep crania and the butchered bones of one of the sheep accompanied by a bone beater tip. The human skull was thus part of a broader package of ritualized activity associated with the construction and consecration of this small building.

Given the degraded condition of the human cranium, it was suspected that the skull had been curated for some time prior to deposition. Nonetheless, the resulting AMS determination was a considerable surprise. This cranium belonged to someone who had died during the Middle Bronze Age, around 1540–1410 BC; well over a millennium before occupation on the wheelhouse site began. Curation of a skull over this length of time (perhaps around 60 generations) seems inherently improbable, even in a context where corpses and body parts were curated and mummification may have been practiced (Parker Pearson et al. 2005). Instead it seems more likely than that this skull was retrieved from an earlier grave, the most likely origin being a Middle Bronze Age burial ground just a couple of hundred meters away from the wheelhouse complex, across a low headland. Published burials from the cemetery include an individual inhumation in a short cist dated to cal. 1770–1510 BC (Dunwell et al. 1995:284), and an inurned cremation dating to cal. 1890–1530 BC (Close-Brooks 1995:263).

During the last 40 years, burials have eroded periodically from the machair on Cnip Headland (Dunwell et al. 1995), and it is reasonable to think that a similar episode of erosion may very well have occurred during the Iron Age. For Iron Age people, accustomed to careful post-mortem treatments of their own dead, the emergence of human remains from the sands so close to their own home would have been a problematic occurrence which would have demanded some form of interpretation. Explanations for the presence of these ancient bones may have invoked genealogical histories, linking them to named ancestors, or perhaps more likely (since they would presumably have been recognized as having been buried in a quite alien way to current practice) they may have invoked more remote mythological pasts (cf. Goshen and Lock 1998). In either case, for a community used to handling and manipulating human remains, the Bronze Age skull would have been a heavily charged object. We have no
way of knowing whether it remained in circulation for many years prior to reburial, or whether it was deposited as soon as possible to remove it from circulation. Unless building works were fortuitously in operation when the skull was discovered, however, it is likely that it spent at least a few years above ground in the wheelhouse.

Conclusion

The three cranial fragments from Cnip each provide their own insights into treatments of the human body in death during the Atlantic Scottish Iron Age. Placed in their broader context, they provide dramatic illustration of a social world where the dead returned to the realm of the living and played an active role in the life of the community. Special deposits marked the key stages in the construction, modification, and closure of domestic buildings. Where these special deposits contained human remains, it seems likely that they held particular power and represented moments of unusually heightened tension or concern. The two modified fragments from Cnip fit into a much wider set of practices involving the deposition of disarticulated skeletal elements. The Bronze Age skull, however, is unique in its Iron Age context and appears to show an Iron Age community facing up to a problematic encounter with their own past.

Acknowledgments

Both the original excavations at Cnip and the recent AMS dating program were funded by Historic Scotland, and particular thanks are due to Patrick Ashmore, Rod McCullagh, and Dr. Noel Fojut who helped at various stages of the project. The authors would also like to thank Steve Birch for allowing access to the perforated cranium from his excavations at Fiskavaig, and Alison Sheridan from the National Museums of Scotland for facilitating access to and allowing dating of the Hillhead, Cnip, and Lower Dounrey cranial fragments. Original illustrations were prepared by Rachael Kershaw.

Literature Cited

Cunnington, M.E. 1923. The Early Iron Age Inhabited Site at All Cannings Cross Farm. Simpson and Co., Devizes, UK.

