This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information.

To see the final version of this work please visit the publisher's website. Available access to the published online version may require a subscription.

Link to original published version: http://dx.doi.org/10.1680/stbu.2008.161.1.29

Copyright statement: © 2008 ICE. Reproduced in accordance with the publisher's self-archiving policy.
NEURAL NETWORK MODELLING FOR SHEAR STRENGTH OF
REINFORCED CONCRETE DEEP BEAMS

By

Keun-Hyeok Yang*, BSc, MSc, PhD, Archi. Engng, P.E.
Ashraf F. Ashour, BSc, MSc, PhD, CEng, MIStructE
Jin-Kyu Song, BSc, MSc, PhD, Archi. Engng
and Eun-Taik Lee, BSc, MSc, PhD, Archi. Engng.

K. H. Yang is an assistant professor at Mokpo National University, Korea. He received his MSc and PhD degrees from Chungang University, Korea. His research interests include ductility, strengthening, plasticity and shear of reinforced high-strength concrete structures.

A. F. Ashour is currently a senior lecturer at the University of Bradford, UK. He obtained his BSc and MSc degrees from Mansoura University, Egypt and his PhD from Cambridge University, UK. His research interests include shear, plasticity and optimisation of reinforced concrete and masonry structures.

J. K. Song is an associate professor at Chonnam National University, Korea. He received his BSc, MSc and PhD degrees from Seoul National University, Korea. His research interests include shear and moment capacity of slab-column connection.

E. T. Lee is an associate professor at Chungang University, Korea. He obtained his BSc and MSc degrees from Chungang University and his PhD from State University of New York at Buffalo, USA. His recent research interests include structural remodeling, ubiquitous high-rise building, high performance materials, and performance-based structural design.

Keywords: Beams & girders, Concrete structures.

The number of words: 4004

* Corresponding author, Department of Architectural Engineering, Mokpo National University, Muan-gun, Jeonnam, South Korea, Tel: +82 (0)61 450 2456, Fax: +82 (0)61 450 6454, E-mail: yangkh@mokpo.ac.kr
ABSTRACT

A 9×18×1 feed-forward neural network model trained using a resilient back-propagation algorithm and early stopping technique is constructed to predict the shear strength of deep beams. The input layer covering geometrical and material properties of deep beams has nine neurons, and the corresponding output is the shear strength. Training, validation and testing of the developed neural network have been achieved using a comprehensive database compiled from 362 simple and 71 continuous deep beam specimens. The shear strength predictions of deep beams obtained from the developed neural network are in better agreement with test results than those determined from strut-and-tie models. The mean and standard deviation of the ratio between predicted using the neural network and measured shear capacities are 1.028 and 0.154, respectively, for simple deep beams, and 1.0 and 0.122, respectively, for continuous deep beams. In addition, the trends ascertained from parametric study using the developed neural network have a consistent agreement with those observed in other experimental and analytical investigations.

Keywords: neural network, deep beams, shear strength, strut-and-model.

INTRODUCTION

Reinforced concrete deep beams, generally defined as beams having shear span-to-overall depth ratio not exceeding 2.0, are common structural members having useful applications as load distribution elements such as transfer girders, pile caps and foundation walls in tall buildings. They are classified as discontinuity regions (D-regions) having a nonlinear strain distribution over the cross-section depth due to a smaller shear span-to-overall depth ratio (≤ 2.0) and extraordinarily high concentric loads\(^1\). As a result, shear deformations are not negligible. In addition, the coexistence of high shear and high moment within interior shear spans of continuous deep beams
leads to a significant reduction of effective strength of concrete struts directly carrying the applied loads to supports2-4. Therefore, the conventional elastic solution or shear hypotheses developed for slender beams would be inadequate for the evaluation of the structural behaviour of deep beams.

Several investigations on predicting shear strength of deep beams can be classified as empirical formulas based on test results of simply supported deep beams4-9, strut-and-tie models1, 10-13, mechanism analysis14, 15 using upper-bound theorem of plasticity theory, and nonlinear finite element analyses16, 17. Ashour2 and Rogowsky et al.3 showed that empirical formulas, such as ACI 318-999 (unchanged since ACI 318-83) and CIRIA Guide 23, failed to evaluate the shear transfer capacities of horizontal web reinforcement and concrete struts of continuous deep beams tested. The strut-and-tie model is a powerful analytical tool, which can easily represent load transfer mechanism of deep beams, but it is difficult to determine the real dimension of concrete struts and shear transfer mechanism of vertical and horizontal web reinforcement as pointed out by Marti18. Mechanism analysis can provide logical shear transfer mechanism of vertical and horizontal web reinforcement, but shear transfer capacity of concrete is varied according to the effectiveness factor of concrete, which depends on the material characteristics and geometrical dimensions of concrete members18, 19. Nonlinear finite element analyses, which are usually carried out as a complementary tool to verify experimental work, give detailed solutions. According to Wang et al.15 and Ashin16, however, they require a lot of time, input parameters and calibration to be useful in practical design.

Artificial neural network (NN) techniques can be employed as a useful tool to precisely predict structural performance of concrete members if many reliable test results are provided as shown by several researches20-22. Goh20, and Sanad and Saka21 showed that shear strength of deep beams can be better predicted by multi-layered feed-forward NNs than other existing formulas. However, it should be noted that NNs are hardly capable of giving extrapolation for parameters outside the network training set as they can learn and generalise through only previous patterns23, 24. Therefore, it is important to provide NNs with more test data to find acceptable solutions to different situations.
In the present study, multi-layered feed-forward NNs trained with the back-propagation algorithm are developed to model the nonlinear relationship between shear strength of deep beams and different influencing parameters. An extensive database of simple and continuous deep beams tested by different researchers is used to train, generalize and verify the developed NN. Statistical distributions of predictions obtained from the trained NN are compared with those determined from strut-and-tie models proposed by ACI 318-05, Siao, and Tan and Cheng. Also, a parametric study is carried out to ensure whether training and validation subsets in the developed NN were suitably built.

NEURAL NETWORK MODELLING

Network Architecture for Back-propagation

A typical multi-layered feed-forward NN without input delay commonly consists of input layer, one or more hidden layers and output layer as shown in Fig. 1, where \mathbf{P} indicates the input vector, \mathbf{IW} and \mathbf{LW} give the weight matrices for input and hidden layers, respectively, \mathbf{b} represents the bias vector, and \mathbf{n} is the net input passed to the transfer function f to get the neuron’s output vector \mathbf{y}. Input data of input layer given from outside feed into hidden layers connecting input and output layers in forward direction, and then useful characteristics of input data are extracted and remembered in hidden layers to predict the output. Finally NN predictions are produced through the output layer. Each processing element would have many inputs, but it can send out only one output. Among the available techniques to train a network, back-propagation is generally known to be the most powerful and widely used for NN applications. To get some desired outputs, weights, which represent connection strength between neurons, and biases are adjusted using a number of training inputs and the corresponding target values. The network error, difference between calculated and expected target patterns in a multi-layered feed-forward network, is then back propagated from the output layer to the input layer to update the network weights and biases. The
adjusting process of neuron weights and biases is carried out until the network error arrives at a specific level of accuracy.

Generalization

One of the problems that occur during NN training is the so called overfitting\(^{23}\) as the network has memorized the training features, but it has not learned to generalize new patterns. According to Shi\(^{25}\), training data evenly distributed over the entire space enable the NN to successfully achieve the desired behaviour and the network error for new input data can be also small. One of the most effective methods to improve generalization of NNs is early stopping\(^{23, 25}\). In this technique, the available data are divided into three subsets, training, validation and test subsets. The training set is used for computing the gradient and updating the network weights and biases to diminish the training error. When the error on the validation set, which is monitored during the training process, increases for a specified number of iterations, the training is stopped, and then the network weights and biases at the minimum validation error are returned. The test set error is not used during the training, but it is used for verification of the NNs and comparison with different models.

Experimental Database

A total of 362 simple and 71 continuous deep beam specimens failed in shear compiled from different sources in the literature is used to train and generalize the developed NNs. In the database, 74 simple\(^{4, 26}\) and 44 continuous\(^{2, 4, 27}\) deep beams were tested by the authors and the others compiled from published literatures: Paiva and Siess\(^{5}\), Ramakrishna and Ananthanarayana\(^{6}\), Kani\(^{28}\), Kong et al.\(^{29}\), Manuel et al.\(^{30}\), Smith and Vantsiotis\(^{31}\), Furuuchi et al.\(^{32}\), Hayashikawa et al.\(^{33}\), Walraven and Lehwalter\(^{34}\), Sato et al.\(^{35}\), Tan et al.\(^{36-40}\), Lee and Kim\(^{41}\), and Oh and Shin\(^{42}\) for simple deep beams, and Rogowsky et al.\(^{3}\) and Asin\(^{16}\) for continuous deep beams. Some test specimens had no web reinforcement whereas others were reinforced with vertical and horizontal web reinforcement: the number of simple and continuous deep beams in the database is 81 and 15,
respectively, for beams without web reinforcement, 104 and 26, respectively, for beams with only vertical web reinforcement, 45 and 15, respectively, for beams with only horizontal web reinforcement, and 132 and 15, respectively, for beams with orthogonal web reinforcement. Prestressing enhances the shear capacity of deep beams\(^{43}\). However, test results on prestressed concrete beams are scarce; therefore, prestressed concrete deep beams are not included in the database. The database ascertained that the shear strength of deep beams was influenced by geometrical conditions such as section width, \(b_w\), and depth, \(h\), longitudinal top, \(\rho_s' = A_s'/b_w d\), and bottom, \(\rho_s = A_s/b_w d\) reinforcement ratios, vertical, \(\rho_v = A_v/b_w s_v\), and horizontal \(\rho_h = A_h/b_w s_h\) web reinforcement ratios, and shear span-to-overall depth ratio, \(a/h\), and material properties such as concrete compressive strength, \(f'_c\), and yield strength, \(f_y\), of reinforcing bars, where \(A_s'\) and \(A_s\) = area of longitudinal top and bottom reinforcement, respectively, \(d\) = effective section depth, \(A_v\) and \(s_v\) = area and spacing of vertical web reinforcement, respectively, \(A_h\) and \(s_h\) = area and spacing of horizontal web reinforcement, respectively, and \(a\) = shear span as shown in Fig. 2 for continuous deep beams.

The main variables above were rearranged in the database to improve efficiency of NN training. As the influence of the amount and yield strength of longitudinal and web reinforcing bars on the shear strength of deep beams depends on concrete strength\(^{10}\), longitudinal top \(\phi_t = \rho_s'f'_y/f'_c\) and bottom \(\phi_b = \rho_s f_y/f'_c\) reinforcement indices, and vertical \(\phi_v = \rho_v f_{vy}/f'_c\) and horizontal \(\phi_h = \rho_h f_{yh}/f'_c\) web reinforcement indices were used as inputs in NNs, together with \(b_w, h, f'_c, a/h\), and supporting system as shown in Table 1, where \(f'_y, f_y, f_{vy}\) and \(f_{yh}\) = yield strength of longitudinal top and bottom reinforcement, and vertical and horizontal web reinforcement, respectively. The number of spans of deep beams (ie simple or continuous deep beam) was also represented in the input layer by
a neuron having a numerical value of either 1 or 2 for simple and two-span deep beams, respectively. Shear strength, V_n, at failed shear span, was the only output of the NNs developed.

In the database, the shear span-to-overall depth ratio of simple and continuous deep beams ranged from 0.25 to 2.0 and from 0.5 to 2.0, respectively, overall section depth is between 300 and 1750 mm for simple deep beams and between 400 and 1000 mm for continuous deep beams, and longitudinal bottom reinforcement index ranged between 0.04 and 0.53 for simple deep beams and between 0.0498 and 0.19 for continuous deep beams. The test specimens in the database were made of concrete having a low compressive strength of 18.0 MPa and 25.0 MPa for simple and continuous deep beams, respectively, and a high compressive strength of 89.4 MPa and 68.2 MPa for simple and continuous deep beams, respectively. Test specimens having smaller concrete strength, width and depth than the lower limits stated above were excluded from the database used in the current investigation for practicality purposes.

It is recommended when using back-propagation algorithm in MATLAB version 6.046 that the data set is divided into three sets: training, validation and testing sets to overcome the overfitting problem as explained above. The training data set comprises a half of all data entries, and the remaining data entries are equally divided between the validation and testing sets. Little research has been conducted on the training data selection for neural networks using back propagation. Jenkins,44,45 successfully used the hypercube concept for selecting training patterns of four design parameters for reinforced concrete deep beams. However, it is not possible to adopt this technique in the current analysis as the database was collected from different sources where intervals between discrete values are not uniform and may constitute clusters. In addition, as the number of design variables considered is nine, it would require a very high number of training data; even if the cube corners are only selected. Therefore, the technique below is followed to partition the database for training, validation and testing purposes. The test specimens in the database were arranged in an ascending order with respect to the shear span to depth ratio as one of the most influential
parameters on shear strength of deep beams. In every four specimens, the first and the third deep beams were then chosen for training subset, and the second and fourth specimens were selected for validation and test subsets, respectively. The distribution of each parameter across its range in the training subset is manually examined to ensure that it covers the range of input parameters. If the range of input in the training subset fails to cover the entire distribution of the database, the rows in the database were rearranged until input of training subset could cover the entire distribution of the database range as shown in Table 1 and Fig. 3.

Building of Neural Network

The NN toolbox available in MATLAB Version 6.0 was used for building of the current NN model. Ashour and Alqedra showed that NN algorithms in MATLAB Version 6.0 can be conveniently implemented and used to model large-scale problems. In a multi-layered NN having a back-propagation algorithm, the combination of nonlinear and linear transform functions can be trained to approximate any function arbitrarily well. In the present NNS, tan-sigmoid transform function was employed in the hidden layers as it is generally known to be more suitable for multilayer networks developed for non-linear applications than log-sig function that generates outputs between 0 and 1, and linear transform function was adopted in the output layer. As upper and lower bounds of the tan-sigmoid function output are +1 and -1, respectively, input and target in database were normalized using Eq. (1) below so that they fall in the interval [-1, 1]. NNs can also have better efficiency with the normalization of original data.

\[
(p_i)_n = \frac{2(p_i - (p)_{\text{min}})}{(p)_{\text{max}} - (p)_{\text{min}}} - 1
\]

where \((p_i)_n\) and \(p_i\) = normalized and original values of data set, and \((p)_{\text{min}}\) and \((p)_{\text{max}}\) = minimum and maximum values of the parameter under normalization, respectively. Also, after training and
simulation, outputs having the same units as the original database can be obtained by rearranging Eq. (1) as follows:

\[p_i = \frac{[(p_i)_n + 1][p_i]_{\text{max}} - (p_i)_{\text{min}}]}{2} + (p)_{\text{min}} \] \hspace{1cm} (2)

Overfittings in training and outputs of NNs are commonly influenced by the number of hidden layers and neurons in each hidden layer. Therefore, trial and error approach was carried out to choose an adequate number of hidden layers and number of neurons in each hidden layer as given in Table 2. In addition, NN performance is significantly dependent on initial conditions23 such as initial weights and biases, back-propagation algorithms, and learning rate. In NNs presented in Table 2, the following features were applied:

- Initial weights and biases were randomly assigned by MATLAB Version 6.0;
- Resilient back-propagation algorithm was used for back-propagation as a slower convergence is more effective in early stopping to generalize NN24;
- The learning rate and momentum factor were 0.4 and 0.2, respectively as proved to achieve more successful training of NN21;
- Mean square error (MSE) was used to monitor the network performance, where MSE

\[\text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (T_i - A_i)^2, \quad N = \text{total number of training set}, \quad T_i \text{ and } A_i = \text{target and actual output of specimen } i, \text{ respectively;} \]

- The maximum number of iterations (epochs) was 300.

In the training process of the multilayer feed-forward NNs developed, the error between the prediction of the output layer and expected shear strength of deep beams output was then back-propagated from the output layer to the input layer in which the connection weights and biases were modified. The training process was repeated until the maximum epochs was reached, the performance was minimized to the required target, MSE was less than 0.0001, the performance
gradient falls below a minimum value, or the validation set error starts to rise for a number of iterations.

Statistical comparisons between outputs and targets for total points of database according to the number of hidden layers and the number of neurons in each hidden layer are given in Table 2. Each statistical value in Table 2 is an average calculated from 30 different trials, as different random initial weights and biases are employed in each trial. Although the mean and standard deviation of the ratio of predicted and measured shear capacities of deep beams presented in Table 2 by different NN architectures were similar, the 9×18×1 network is the most successful, achieving the closest predictions (the mean of the ratio between the prediction to experimental shear strengths is 1.01) and the least standard deviation of 0.193. In addition, overfitting seldom occurred in the 9×18×1 network. Therefore, the 9×18×1 neural network shown in Fig. 1 with initial weights and biases achieved the highest coefficient of determination of all 30 trials was finally selected for predicting shear strength of deep beams.

COMPARISONS WITH STRUT-AND-TIE MODELS

Several researchers10,12 showed that strut-and-tie models can be effectively used to predict shear strength of reinforced concrete deep beams. ACI 318-051 and EC 213 also recommend the use of strut-and-tie models for designing deep beams. Fig. 4 shows schematic strut-and-tie models of simple and continuous deep beams based on ACI 318-05 and Tan and Cheng12. Also, formulas, suggested by ACI 318-051, Siao10, and Tan and Cheng12, to predict shear strength of deep beams using strut-and-tie models are summarized in Table 3. These formulas showed that shear strength predicted by strut-and-tie models are greatly dependent on the width and inclination of compressive struts, the effective strength of concrete, and amount of web reinforcement. No shear transfer mechanism of web reinforcement was specified in ACI 318-05, whereas shear transfer capacity of web reinforcement in Siao’s and Tan and Cheng’s models is influenced by the inclination of struts.
In addition, effectiveness factor of concrete in ACI 318-05 is 0.6 or 0.75, depending on the amount of web reinforcement and independent on concrete strength and shear span-to-overall depth ratio, whereas no effectiveness factor is used in the other two models as shear transfer capacity of concrete in Siao’s model was determined from regression analysis of test results and Tan and Cheng’s model used the modified Mohr-Coulomb failure criterion at the bottom nodal zone. Among the three models, size effect was only considered in Tan and Cheng’s model, represented by the factor ψ as given in Table 3.

Table 4 gives the mean and standard deviation of the ratio between predicted and measured shear capacities, $\gamma_{cs} = (V_{n})_{pre} / (V_{n})_{Exp}$, of simple and continuous deep beams with different web reinforcement arrangement. Also, the distributions of γ_{cs} for all specimens in the database against shear span-to-overall depth ratio are shown in Fig. 5; Fig. 5 (a) for strut-and-tie model of ACI 318-05, Fig. 5 (b) for Siao’s formula, Fig. 5 (c) for Tan and Cheng’s model, and Fig. 5 (d) for 9x18x1 NN. For ACI 318-05’s model, a better mean and standard deviation is shown in beams without or with orthogonal web reinforcement than those with only vertical or horizontal web reinforcement as given in Table 4. The largest standard deviation of all four models is demonstrated by Siao’s formula. Predictions obtained from Tan and Cheng’s model overestimate the shear strength of continuous deep beams with only horizontal web reinforcement; namely, the mean γ_{cs} for continuous deep beams with only horizontal web reinforcement is 1.121. For all three strut-and-tie models, predictions become highly unconservative with the increase of shear span-to-overall depth ratio and higher $\gamma_{cs,m}$ and $\gamma_{cs,s}$ are observed in continuous deep beams than in simple deep beams as shown in Table 4 and Fig. 5. On the other hand, predictions obtained from the 9x18x1 NN are in better agreement with test results regardless of shear span-to-overall depth ratio and configuration of web reinforcement, even in continuous deep beams; $\gamma_{cs,m}$ and $\gamma_{cs,s}$ are 1.028 and 0.154, respectively, for simple deep beams, and 1.0 and 0.122, respectively, for continuous deep beams.
PARAMETRIC STUDY

The developed 9×18×1 NN was utilized to examine the effect of different influencing parameters on shear strength of simple deep beams, namely, the effect of longitudinal bottom reinforcement, size effect, relative effectiveness of vertical and horizontal web reinforcement, and shear span-to-overall depth ratio on the shear strength of deep beams. The trend of continuous deep beam shear strength predicted by the developed NN for different parameters was not as smooth as that for simply supported deep beams as the test results in the database for continuous deep beams were relatively small; therefore not presented here. The trends predicted from this parametric study can also ensure that training and validation subsets in the developed NN were suitably built.

Effect of Longitudinal Reinforcement Ratio

The influence of longitudinal bottom reinforcement index, \(\phi_b = (\rho_b f_y / f'_c) \), on the normalized shear strength, \(\lambda_n = V_n / (b_n h_n \sqrt{f_c}) \), of simple deep beams without web reinforcement for three different shear span-to-overall depth ratios is shown in Fig. 6. The normalized shear strength obtained from the NN increases with the increase of \(\phi_b \) up to a certain limit beyond which \(\lambda_n \) remains constant. This limit of \(\phi_b \) decreases with the decrease of shear span-to-overall depth ratio. This trend was experimentally observed by Tan et al.\(^{40}\), and analytically proved by Ashour\(^{14}\).

Relative Effectiveness of Vertical and Horizontal Web Reinforcement

Fig. 7 shows the variation of \(\lambda_n \) of simple deep beams with only vertical or horizontal web reinforcement against shear span-to-overall depth ratio. Vertical, \(\phi_v \), and horizontal, \(\phi_h \), web reinforcement indices are changed from 0.0 to 0.09 with interval of 0.03. Shear strength \(\lambda_n \) of deep beams decreases with the increase of shear span-to-overall depth ratio \(a/h \) up to a certain limit (\(a/h = 1.5 \)), beyond which the variation of \(\lambda_n \) would be negligible as observed by other experimental investigations\(^{31, 36}\). Also, the influence of vertical web reinforcement on the shear
strength of deep beams is dependent on the shear span-to-overall depth ratio as pointed out by several researchers3,4,36. The larger the shear span-to-overall depth ratio, the higher the influence of ϕ_v on the shear strength of deep beams; namely, when shear span-to-overall depth ratio is more than 0.75, shear strength of deep beams increases with the increase of ϕ_v, but that of deep beams having a smaller shear span-to-overall depth ratio is nearly independent on ϕ_v. On the other hand, the influence of ϕ_h on the shear strength enhancement of deep beams is independent on shear span-to-overall depth ratio. It is also observed that the critical shear span-to-overall depth ratio, where both vertical and horizontal web reinforcements are equally effective, is around 0.65, indicating that a higher shear strength exhibited by beams with only horizontal web reinforcement than beams with only vertical web reinforcement when shear span-to-overall depth ratio is less than this critical threshold.

Effect of Overall Depth of Deep Beams

The influence of section overall depth, h, on the λ_n is presented in Fig. 8. It is clearly observed that the normalized shear strength of simple deep beams decreases with the increase of h, but no meaningful size effect appears in deep beams having h above 1000 mm. The decreasing rate of λ_n against the increase of h is more notable in beams having a smaller shear span-to-overall depth ratio a/h as the transverse tensile strain in concrete struts increases with the decrease of a/h. It is also pointed out by Tan and Cheng12 that the smaller a/h, the higher the size effect as it is greatly influenced by strut action carrying very high compressive forces as predicted by the trained NN in Fig. 8.

CONCLUSIONS

An optimum multi-layered feed-forward neural network model, comprised of an input layer of nine neurons, a hidden layer of eighteen neurons and an output layer of one neuron, was constructed to
predict the shear strength of deep beams. The developed neural network employed a resilient back-
propagation algorithm and early stopping technique to improve generalization of neural network.
Training, validation and test subsets of the neural network had 50%, 25%, and 25%, respectively, of
the database with a total of 362 simple and 71 continuous deep beam specimens. Based on the
statistical comparisons and parametric study, the following conclusions may be drawn:

1. The predictions obtained from the neural network are in much better agreement with test
results than those determined from strut-and-tie models proposed by ACI 318-05, Siao, and
Tan and Cheng. The mean and standard deviation of the ratio between predicted using the
neural network and experimentally measured shear capacities are 1.028 and 0.154,
respectively, for simple deep beams, and 1.0 and 0.122, respectively, for continuous deep
beams. However, the developed neural network should be used for predicting shear strength
of deep beams within the range of different parameters in the database.

2. The normalized shear strength obtained from the neural network increases with the increase
of longitudinal bottom reinforcement index up to a certain limit beyond which it remains
constant. The limiting point decreases with the decrease of shear span-to-overall depth ratio.

3. Shear strength of deep beams decreases with the increase of shear span-to-overall depth ratio
up to shear span-to-overall depth ratio of 1.5, beyond which the variation of normalized
shear strength would be negligible.

4. The critical shear span-to-overall depth ratio, where both vertical and horizontal web
reinforcements are equally effective, is around 0.65; namely, a higher shear strength
developed in beams with only horizontal web reinforcement than beams with only vertical
web reinforcement when shear span-to-overall depth ratio is less than this critical threshold.

5. The normalized shear strength of deep beams decreases with the increase of overall section
depth, but no meaningful size effect appears in deep beams having overall section depth
above 1000 mm.
ACKNOWLEDGMENTS

This work was supported by the Regional Research Centers Program (Bio-housing Research Institute), granted by the Korean Ministry of Education & Human Resources Development. The authors wish to express their gratitude for financial support.
NOTATION

\(A_c \) = beam section area

\(A_h \) = area of horizontal web reinforcement

\(A_s \) = area of longitudinal bottom reinforcement

\(A_s' \) = area of longitudinal top reinforcement

\(A_{str} \) = section area of concrete strut

\(A_v \) = area of vertical web reinforcement

\(A_{wj} \) = area of the \(j \)-th layer of reinforcement crossing a strut

\(a \) = shear span

\(b_w \) = width of beam section

\(c \) = cover of longitudinal bottom reinforcement

\(c' \) = cover of longitudinal top reinforcement

\(d \) = effective depth of beam section

\(d_s \) = diameter of longitudinal reinforcement

\(d_w \) = distance from top surface of beam to intersectin of web reinforcement with the centreline of strut

\(h \) = overall depth of beam section

\(f'_c \) = concrete compressive strength

\(f_y \) = yield strength of longitudinal bottom reinforcement

\(f_y' \) = yield strength of longitudinal top reinforcement

\(f_{yh} \) = yield strength of horizontal web reinforcement

\(f_{yv} \) = yield strength of vertical web reinforcement
f_{yw} = yield strength of web reinforcement crossing a strut

jd = distance between the center of top and bottom nodes

L_o = maximum spacing of web reinforcement for beams with web reinforcement and strut

length for beams without web reinforcement

L_p = width of loading or support plate

L_s = strut length

N = total number of training subset

n = modular ratio of steel reinforcement to concrete

p_i = original values of data set

$(p_i)_n$ = normalized values of data set

$(p_i)_{\text{max}}$ = maximum value of the parameter under normalization

$(p_i)_{\text{min}}$ = minimum value of the parameter under normalization

s_h = spacing of horizontal web reinforcement

s_v = spacing of vertical web reinforcement

s_{wj} = spacing of the j-th layer of reinforcement crossing a strut

T_i = target output of the data i

V_s = shear strength

w_s = width of concrete strut

w_i = depth of bottom node

w_i' = depth of top node

β = the ratio of the end support reaction to the applied load in continuous deep beams

γ_{cs} = ratio of predicted and measured shear capacities
\(\gamma_{cs,m} \) = average of \(\gamma_{cs} \)

\(\gamma_{cs,s} \) = standard deviation of \(\gamma_{cs} \)

\((\theta_j) \) = angle between reinforcing bar \(j \) and the axis of concrete strut

\(\theta_s \) = angle between concrete strut and longitudinal axis of beam

\(\theta_w \) = angle of web reinforcement to longitudinal axis of beam

\(\lambda_n \) = normalized shear strength \(\left(\frac{V_n}{b_n h \sqrt{f_c'}} \right) \)

\(\rho_h \) = horizontal web reinforcement ratio \(\left(\frac{A_h}{b_n s_h} \right) \)

\(\rho_s \) = longitudinal bottom reinforcement ratio \(\left(\frac{A_s}{b_n d} \right) \)

\(\rho'_s \) = longitudinal top reinforcement ratio \(\left(\frac{A'_s}{b_n d} \right) \)

\(\rho_v \) = vertical web reinforcement ratio \(\left(\frac{A_v}{b_v s_v} \right) \)

\(\nu_e \) = effectiveness factor of concrete

\(\phi_b \) = longitudinal bottom reinforcement index \(\left(\frac{\rho_s f_y}{f_c'} \right) \)

\(\phi_h \) = horizontal web reinforcement index \(\left(\frac{\rho_h f_{yh}}{f_c'} \right) \)

\(\phi_t \) = longitudinal top reinforcement index \(\left(\frac{\rho_t f_y}{f_c'} \right) \)

\(\phi_v \) = vertical web reinforcement index \(\left(\frac{\rho_v f_{ys}}{f_c'} \right) \)
REFERENCES

1. American Concrete Institute (ACI). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). *ACI 318-05*, Detroit, 2005.

List of Tables:

Table 1 – Range of input variables in the database used to generalize the neural network.

Table 2 – Comparison of outputs and targets according to different network structures.

Table 3 – Summary of shear strength prediction formulas using strut-and-tie model.

Table 4 – Statistical comparisons of predictions by different methods.
TABLE 1-Range of input variables in the database used to generalize the neural network.

<table>
<thead>
<tr>
<th>Input variables</th>
<th>Total data</th>
<th>Training subset</th>
<th>Validation subset</th>
<th>Test subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>b_w mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>100</td>
<td>300</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>continuous</td>
<td>120</td>
<td>200</td>
<td>120</td>
<td>200</td>
</tr>
<tr>
<td>h mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>300</td>
<td>1750</td>
<td>300</td>
<td>1750</td>
</tr>
<tr>
<td>continuous</td>
<td>400</td>
<td>1000</td>
<td>400</td>
<td>1000</td>
</tr>
<tr>
<td>f_c MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>18.0</td>
<td>89.4</td>
<td>18.0</td>
<td>89.4</td>
</tr>
<tr>
<td>continuous</td>
<td>25.0</td>
<td>68.2</td>
<td>25.0</td>
<td>68.2</td>
</tr>
<tr>
<td>a/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>0.25</td>
<td>2.0</td>
<td>0.25</td>
<td>2.0</td>
</tr>
<tr>
<td>continuous</td>
<td>0.5</td>
<td>2.0</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>ϕ_b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>0.04</td>
<td>0.53</td>
<td>0.04</td>
<td>0.53</td>
</tr>
<tr>
<td>continuous</td>
<td>0.05</td>
<td>0.19</td>
<td>0.05</td>
<td>0.19</td>
</tr>
<tr>
<td>ϕ_l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>continuous</td>
<td>0.05</td>
<td>0.19</td>
<td>0.05</td>
<td>0.19</td>
</tr>
<tr>
<td>ϕ_v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>0.0</td>
<td>0.298</td>
<td>0.0</td>
<td>0.298</td>
</tr>
<tr>
<td>continuous</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>ϕ_h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>0.0</td>
<td>1.836</td>
<td>0.0</td>
<td>1.836</td>
</tr>
<tr>
<td>continuous</td>
<td>0.0</td>
<td>0.118</td>
<td>0.0</td>
<td>0.118</td>
</tr>
</tbody>
</table>

Note: * Simple and continuous deep beams were identified in the input layer as a numeral 1 and 2, respectively.
TABLE 2-Comparison of outputs and targets according to different network structures.

<table>
<thead>
<tr>
<th>Network structures*</th>
<th>Mean ($\gamma_{c,\text{in}}$)</th>
<th>Standard deviation($\gamma_{c,\text{out}}$)</th>
<th>Coefficient of determination (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9×9×1</td>
<td>1.020</td>
<td>0.210</td>
<td>0.910</td>
</tr>
<tr>
<td>9×18×1</td>
<td>1.010</td>
<td>0.193</td>
<td>0.937</td>
</tr>
<tr>
<td>9×27×1</td>
<td>1.019</td>
<td>0.205</td>
<td>0.925</td>
</tr>
<tr>
<td>9×18×9×1</td>
<td>1.030</td>
<td>0.220</td>
<td>0.904</td>
</tr>
<tr>
<td>9×18×9×9×1</td>
<td>1.023</td>
<td>0.210</td>
<td>0.904</td>
</tr>
</tbody>
</table>

* The first and the last numbers indicate the numbers of neurons in input and output layers, respectively, and the others refer to the number of neurons in hidden layers.
Table 3–Summary of shear strength prediction formulas using strut-and-tie model.

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Shear capacity of deep beams (V_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI 318–05(^{10})</td>
<td>$V_n = v_e f_c b_n w_s \sin \theta_s$;</td>
</tr>
<tr>
<td></td>
<td>where $v_e = 0.75$ for beams having orthogonal web reinforcement ratio with $\sum \frac{A_w}{b_n s_w} \sin(\theta_i) \geq 0.003$ and otherwise 0.6;</td>
</tr>
<tr>
<td></td>
<td>$\tan \theta_s = jd / a$;</td>
</tr>
<tr>
<td></td>
<td>$jd = h - c - w_i / 2$ for simple beams;</td>
</tr>
<tr>
<td></td>
<td>$jd = h - c' - c_e$ for continuous beams;</td>
</tr>
<tr>
<td></td>
<td>$w_s = \frac{2.25 w_i \cos \theta_s + \left(l_p \right)_E + \left(l_p \right)_p}{2} \sin \theta_s$ for simple beams;</td>
</tr>
<tr>
<td></td>
<td>$w_s = \frac{(w_i + 2c') \cos \theta_s + \left[0.5(l_p)_1 + (1 - \beta)(l_p)_p \right] \sin \theta_s}{2}$ for continuous beams.</td>
</tr>
<tr>
<td>Siao(^{14})</td>
<td>$V_n = 1.05 \sqrt{f_c \left[1 + n(\rho_h \sin^2 \theta + \rho_v \cos^2 \theta) \right]} b_n d$</td>
</tr>
<tr>
<td></td>
<td>where $\tan \theta = h / a$.</td>
</tr>
<tr>
<td>Tan and Cheng(^{15})</td>
<td>$V_n = \frac{1}{\sin 2\theta_s} + \frac{1}{f_c A_c} + \frac{1}{\psi f_c A_{sw} \sin \theta_s}$</td>
</tr>
<tr>
<td></td>
<td>where $f_s = \frac{2 A_s f_s \sin \theta_s}{A_s / \sin \theta_s} + \sum \frac{2 A_w f_{sw} \sin(\theta_s + \theta_w)}{A_w / \sin \theta_s} \cdot \frac{d_w}{d} + 0.5 \sqrt{f_c}$;</td>
</tr>
<tr>
<td></td>
<td>$\psi = \xi \cdot \zeta$; $\xi = 0.8 + \frac{0.4}{\sqrt{1 + (l_s - w_s) / 50}}$;</td>
</tr>
<tr>
<td></td>
<td>$\zeta = 0.5 + \frac{\sqrt{kd_i}}{l_0} \leq 1.2$; $k = \frac{\sqrt{\pi}}{2} \sqrt{0.5f_c}$.</td>
</tr>
</tbody>
</table>

Note: Definitions of different parameters used in the above formulas are given in the list of notation section.
TABLE 4-Statistical comparisons of predictions by different methods.

<table>
<thead>
<tr>
<th>Statistical values</th>
<th>Deep beam</th>
<th>Models</th>
<th>W/O</th>
<th>W/V</th>
<th>W/H</th>
<th>W/VH</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Neural network</td>
<td>1.042</td>
<td>1.007</td>
<td>1.045</td>
<td>1.044</td>
<td>1.028</td>
</tr>
<tr>
<td>$\gamma_{cs,m}$</td>
<td>simple</td>
<td>ACI 318-05</td>
<td>0.971</td>
<td>0.821</td>
<td>0.835</td>
<td>0.980</td>
<td>0.914</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siao</td>
<td>1.460</td>
<td>1.169</td>
<td>1.318</td>
<td>1.228</td>
<td>1.274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tan and Cheng</td>
<td>0.925</td>
<td>0.864</td>
<td>0.902</td>
<td>0.852</td>
<td>0.878</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neural network</td>
<td>1.028</td>
<td>1.030</td>
<td>0.970</td>
<td>0.988</td>
<td>1.000</td>
</tr>
<tr>
<td>$\gamma_{cs,s}$</td>
<td>continuous</td>
<td>ACI 318-05</td>
<td>1.244</td>
<td>0.817</td>
<td>1.118</td>
<td>0.984</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siao</td>
<td>1.813</td>
<td>1.555</td>
<td>1.926</td>
<td>1.496</td>
<td>1.675</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tan and Cheng</td>
<td>1.034</td>
<td>0.813</td>
<td>1.121</td>
<td>0.843</td>
<td>0.931</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neural network</td>
<td>0.193</td>
<td>0.155</td>
<td>0.136</td>
<td>0.142</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>simple</td>
<td>ACI 318-05</td>
<td>0.405</td>
<td>0.385</td>
<td>0.346</td>
<td>0.311</td>
<td>0.366</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siao</td>
<td>0.672</td>
<td>0.499</td>
<td>0.495</td>
<td>0.384</td>
<td>0.516</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tan and Cheng</td>
<td>0.272</td>
<td>0.309</td>
<td>0.253</td>
<td>0.151</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neural network</td>
<td>0.098</td>
<td>0.100</td>
<td>0.182</td>
<td>0.105</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>continuous</td>
<td>ACI 318-05</td>
<td>0.399</td>
<td>0.216</td>
<td>0.422</td>
<td>0.207</td>
<td>0.348</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siao</td>
<td>0.793</td>
<td>0.372</td>
<td>0.748</td>
<td>0.426</td>
<td>0.594</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tan and Cheng</td>
<td>0.235</td>
<td>0.158</td>
<td>0.354</td>
<td>0.124</td>
<td>0.255</td>
</tr>
</tbody>
</table>

Note: $\gamma_{cs,m}$ and $\gamma_{cs,s}$ indicate the mean and standard deviation for the factor γ_{cs}, respectively.

W/O, W/V, W/H, and W/VH refer to deep beams without, with only vertical, with only horizontal and with orthogonal web reinforcement, respectively.
List of Figures:

Fig. 1 – Architecture of 9×18×1 network.

Fig. 2 – Symbolic identification deep beams in the neural network model.

Fig. 3 – Distribution of different parameters in data base and training subset.

Fig. 4 – Schematic strut-and-tie model for deep beams.

Fig. 5 – Comparisons of predicted and measured shear strengths.

Fig. 6 – Effect of ϕ_b on normalized shear strength of deep beams.

Fig. 7 – Relative effectiveness of vertical and horizontal web reinforcement against a/h.

Fig. 8 – Effect of h on normalized shear strength of deep beams.
Fig. 1- Architecture of $9 \times 18 \times 1$ network.

$p_1 = b_w; \quad p_2 = h; \quad p_3 = f_c';
\quad p_4 = a/h; \quad p_5 = \phi_b';
\quad p_6 = \phi_i; \quad p_7 = \phi_s; \quad p_8 = \phi_h;
\quad p_9 = \text{number of span (simple or continuous)};
\quad T = V_n$
Fig. 2- Symbolic identification for continuous deep beams in the neural network model.
Fig. 3- Distribution of different parameters in the total database and training subset
Fig. 4- Schematic strut-and-tie model for deep beams. (Definition of different parameters is given in the list of notation section.)
Shear span-to-overall depth ratio, a/h

\[\frac{(V_n)_{\text{pre}}}{(V_n)_{\text{exp}}} \]

- None
- Only vertical web reinforcement
- Only horizontal web reinforcement
- Orthogonal web reinforcement

(a) ACI 318-05

(b) Siao
Shear span-to-overall depth ratio, a/h

$\frac{(V_n)_{\text{Pre.}}}{(V_n)_{\text{Exp.}}}$

- None
- Only vertical web reinforcement
- Only horizontal web reinforcement
- Orthogonal web reinforcement

(c) Tan and Cheng

(d) Neural network

Fig. 5 - Comparisons of predicted and measured shear strengths.
(White and black symbols indicate simple and continuous deep beams, respectively)
Fig. 6-Effect of ϕ_b on normalized shear strength of deep beams.

Longitudinal bottom reinforcement index, ϕ_b

$\lambda_n = \frac{V_n}{(bwh\sqrt{f'c})}$

- $b_w = 160$ mm
- $h = 600$ mm
- $f'c = 50$ MPa
- $\phi_v = \phi_h = 0$
Shear span-to-overall depth ratio, \(a/h \)

\[
\lambda_n = \frac{V_n}{(bwh\sqrt{f'_c})}
\]

Fig. 7-Relative effectiveness of vertical and horizontal web reinforcement against \(a/h \).
Fig. 8- Effect of h on normalized shear strength of deep beams.