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Abstract

This thesis is concerned with developing methodologies that enable exist-
ing models to be effectively reused. Results of this thesis are presented in
the framework of Quantitative Structural-Activity Relationship (QSAR)
models, but their application is much more general. QSAR models re-
late chemical structures with their biological, chemical or environmental
activity. There are many applications that offer an environment to build
and store predictive models. Unfortunately, they do not provide advanced
functionalities that allow for efficient model selection and for interpreta-
tion of model predictions for new data. This thesis aims to address these
issues and proposes methodologies for dealing with three research prob-
lems: model governance (management), model identification (selection),
and interpretation of model predictions. The combination of these method-
ologies can be employed to build more efficient systems for model reuse
in QSAR modelling and other areas.

The first part of this study investigates toxicity data and model formats
and reviews some of the existing toxicity systems in the context of model
development and reuse. Based on the findings of this review and the prin-
ciples of data governance, a novel concept of model governance is defined.
Model governance comprises model representation and model governance
processes. These processes are designed and presented in the context of
model management. As an application, minimum information require-
ments and an XML representation for QSAR models are proposed.
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Once a collection of validated, accepted and well annotated models is
available within a model governance framework, they can be applied for
new data. It may happen that there is more than one model available for
the same endpoint. Which one to chose? The second part of this thesis
proposes a theoretical framework and algorithms that enable automated
identification of the most reliable model for new data from the collection
of existing models. The main idea is based on partitioning of the search
space into groups and assigning a single model to each group. The con-
struction of this partitioning is difficult because it is a bi-criteria problem.
The main contribution in this part is the application of Pareto points for
the search space partition. The proposed methodology is applied to three
endpoints in chemoinformatics and predictive toxicology.

After having identified a model for the new data, we would like to know
how the model obtained its prediction and how trustworthy it is. An inter-
pretation of model predictions is straightforward for linear models thanks
to the availability of model parameters and their statistical significance.
For non linear models this information can be hidden inside the model
structure. This thesis proposes an approach for interpretation of a random
forest classification model. This approach allows for the determination of
the influence (called feature contribution) of each variable on the model
prediction for an individual data. In this part, there are three methods pro-
posed that allow analysis of feature contributions. Such analysis might
lead to the discovery of new patterns that represent a standard behaviour
of the model and allow additional assessment of the model reliability for
new data. The application of these methods to two standard benchmark
datasets from the UCI machine learning repository shows a great potential
of this methodology. The algorithm for calculating feature contributions
has been implemented and is available as an R package called rfFC.

This work has been funded by BBSRC and Syngenta (International Re-
search Centre at Jealott’s Hill, Bracknell, UK).
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“...essentially, all models are wrong,

but some are useful...”

– George E. P. Box



Chapter 1
Introduction

This thesis is concerned with methodological problems arising in model identification,
interpretation and reuse. Proposed solutions are applied in QSAR modelling frame-
work in predictive toxicology.

1.1 Background and Motivation

A phenomenon of fast growing data has been observed in the last decade. Data rep-
resentation, integration and storage have turned out to be big challenges and attracted
great interest in order to reuse existing information. Garzotto et al. [31] defined the
term “reuse” as usage of existing data objects in different contexts and for different
purposes. According to the authors, reuse is also a technology that proposes new
methods for optimizing data representation, develops strategies and algorithms for ap-
plying integration approaches in novel domains, and develops models that can be used
for decision-making processes in various application domains.

This thesis focuses on the third aspect of information reuse, that is models. To-
gether with the rapidly increasing amount of data, the number and variety of models
has increased dramatically thanks to user-friendly machine learning and data mining
tools. This has happened especially in domains such as: medicine, life sciences, agri-
culture, etc., where models are built based on existing experimental data and are used
to make predictions for new data. There is a need to build a framework for efficient
model management. This thesis is concerned with developing methodologies that en-
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able existing models to be effectively reused. Results of this thesis are presented in the
framework of Quantitative Structural-Activity Relationship (QSAR) models, but their
application is much more general.

Predictive toxicology is concerned with the development of models that are able to
predict the toxicity of chemicals [41]. A large number of publicly available databases,
development of computational chemistry and biology, and rapidly increasing number
of in-vitro assays have contributed to the development of more accurate predictive
models. These models are important for many governmental, academic and business
organisations because they enable:

• fast evaluation of chemical toxicity,

• earlier rejection of chemicals that may fail at the chemical development phase,

• reduction in the number of animal tests,

• reduction in the cost of development of new chemical compounds.

The increasing interest in model reuse have also been driven by current requirements
of Registration, Evaluation, Authorisation & Restriction of CHemicals (REACH) [94]
legislation. This regulatory body accepts chemicals that were tested using inter alia
in silico modelling (predictive models or virtual screening techniques) when models
were properly validated and documented. Models must also be statistically significant
and robust and have their application boundary defined.

One of the most known and accepted in-silico methods, which are used in this the-
sis, are Quantitative Structure–Activity Relationship (QSAR) models. They are math-
ematical models which relate a biological activity of chemicals to their structural, and
physiochemical properties. According to REACH Regulation Annex XI [93], results
of QSAR modelling may be used instead of animal testing when: QSAR model was
scientifically validated, substance falls within its applicability domain, results are ade-
quate for the purpose of classification and labelling and/or risk assessment, and finally,
a documentation of the applied method is provided.

The fact that models have become considered as an alternative to animal testing
caused a rapid development of in silico methods for screening chemical compounds
and a development of model validation techniques in order to prove model reliability
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and predictivity. Existing solutions focus on the toxicity data integration and the devel-
opment of platforms/systems that provide methods/tools to build high quality models.
Gramatica [34] proposed methods for QSAR model validation which have become fun-
damentals for the current Organisation for Economic Co-operation and Development
(OECD) QSAR validation principles [77]. Tropsha [113] described a workflow for
QSAR model development that includes these principles. For example, following the
good practice of model development and model validation principles, Hardy et al. [39]
introduced interoperable, standard-based framework (OpenTox) for the support of pre-
dictive toxicology data management, algorithms, modelling, validation and reporting.
Sushko at al. [105] proposed the Online Chemical Modeling Environment (OCHEM)
– a web-based platform that aims to automate and simplify typical steps required for
QSAR modeling. Both platforms (OpenTox and OCHEM) consist of two major sub-
systems: the database of experimental measurements and the modeling frameworks.

The above examples show an interest in QSAR model development, aggregation
and utilisation. Whilst the above mentioned platforms provide excellent modelling
frameworks and are hosts of models that were generated within such frameworks,
model reuse and results validation is left to users. For a collection of models for the
same endpoint, a user is required to analyse and compare models with respect to their
input variables, applicability domain and accuracy, to identify the most suitable one for
new data. This is a manual process and requires a lot of effort and knowledge. Model
selection can be aided by studying distances between models [49, 73, 111] and their
applicability domains [53]. The decision if new data fall inside the applicability do-
main is based on the average distance of query data to the data from the applicability
domain. For models, where new data fall into their applicability domains, the decision
which one should be used is again difficult. For example, there is also no informa-
tion about model predictivity in various areas of the applicability domain. This is why
there is a need to develop methods that combine: model predictivity and applicability
domain in order to provide a framework for automated model identification.

The second element of model reuse is an interpretation of model predictions for a
given data record and each variable used by the model. This interpretation can help to
understand how the model makes its prediction and how reliable the prediction is for
new data. It might increase the trust in the model. Such interpretation is straightfor-
ward for models where there is access to the model variables and parameters. For non-
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linear or ”black box“ models such information is hidden within the model structure.
The extraction of this information is a challenging problem that has recently begun
attracting attention of researchers. For example, see Carlsson et al. [12] who develop
a method for local interpretation of Support Vector Machine (SVM) and Random For-
est models, and Kiz’min et al. [67] who show how to extract feature contributions in
random forest regression models. Interpretation of model prediction is considered par-
ticularly valuable in such domains as chemoinformatics, bioinformatics or predictive
toxicology [95]. The knowledge of a chemical fragment or chemical properties that
contribute to the adverse effect of that chemical compound can support drug design
processes.

1.2 Problem Description

The previous section provides examples of toxicity systems that support development
of good quality models. Current studies focus on providing user-friendly environments
for model building, model validation and reporting. Models are collected in databases
for further reuse. Due to an increasing amount of experimental data, we may find more
than one model for the same endpoint. In this case a decision which one should be used
is not straightforward. The lack of automated methods that allow analysis of models
and their selection may discourage potential users. They may prefer to generate a new
model, which they will trust, instead of using an existing one. This situation is mostly,
but not only, limited to local models that can not become global tools because they
were developed for a particular group of chemicals. Such models, even if they can
contribute to the fast evaluation of new chemicals, may be forgotten or lost. To address
this problem, our main research question is:

How can existing models be efficiently reused?

This thesis aims to answer the above question. The answer comprises three research
directions.

The first one, which we call model governance, covers the area of model object
representation and model management. Developed models must be properly anno-
tated and validated prior to their further usage. There should be defined processes that
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allow continuous model evaluation (validation and reporting regarding to the organi-
zational and authorities requirements). These processes should ensure model quality
and security in their future reuse. Model representation should be as much as possible
transparent which may allow model exchange initiatives across various organizations.

The second research direction, which we call model identification, covers an area
of problems related to model selection from a collection of existing models. In cases
when there is a number of models for the same endpoint, with overlapping or dis-
joint applicability domains, such selection is not trivial. Models must be compared
and standard techniques for model selection can not be applied (especially for mod-
els with different applicability domains). Incorporating applicability domains in the
model comparison can also be difficult because some parameters may not be available.

The last research direction, model interpretation, covers the analysis of model pre-
dictions. This includes a discovery of mechanisms that lead a model to make a particu-
lar decision. This is straightforward for linear models, where there is an easy access to
model parameters and their statistical significance. For non-linear and so called ”black-
box“ models, this information is hidden inside the model structure and, hence, it is not
directly available. Special methods must be designed to enable model interpretation.

1.2.1 Thesis Aims

This thesis addresses the above discussed issues and proposes a theoretical framework
and algorithms for each of above presented research directions. This includes defini-
tion of the framework for data and model storage, methodology for automated model
identification and methods for model interpretation. In respect to each of research
directions, this thesis:

1. investigates toxicity data and model formats, and reviews some of the existing
toxicity systems in the context of model reuse,

2. defines a new concept of model governance, model governance processes and
proposes a theoretical framework for data and model management. This also
includes a proposition of a model object representation format,

3. proposes a theory and original algorithms for the model identification problem
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and applies them to real toxicity data and models for various endpoints to demon-
strate their advantage and potential in predictive toxicology,

4. introduces an algorithm for interpreting random forest models which is an ex-
tension of feature contributions method of Kuz’min et al. [67] and implements
it into an R package,

5. proposes original methods for the analysis of feature contributions and tests them
using classification benchmark datasets.

Although this research mostly focuses on the application of novel approaches in predic-
tive toxicology, the methodological aspect of this work provides theory and algorithms
that can be implemented in any domain that accepts data-driven modelling.

1.2.2 Methodology and Data

This thesis is concerned with methodological problems arising in model reuse. To
achieve the research aims, the following existing methodologies were used:

• principles of data governance [20] to inform the design of model governance
processes,

• Pareto optimality approach [23] to solve the bi-criteria problem of model identi-
fication. The decision on which model can be the most suitable for new data is a
trade-off between the similarity of this data to a group of elements in the search
space and the accuracy of the model for these elements,

• the random forest method proposed by Breiman [6] as a basis to develop model
interpretation algorithm,

• the clustering algorithm k-means [40] that is used in analysis of feature con-
tributions.

This research was mainly motivated by the need of model reuse in predictive toxicol-
ogy and the solutions were presented in the area for QSAR modelling. In this thesis
the following endpoints and models were used:
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• IGC50 for Tetrahymena poriformism (TETRATOX data [99]) downloaded from
[45], with two QSAR mode of action models (polar narcosis and non polar nar-
cosis) reported in the JRC QSAR Model Database [54],

• Measured LogP Syngenta’s in-house dataset, with Syngenta’s in-house model
for CLogP. Two existing tools were also used to calculate LogP: KOWWIN from
EPI Suite [28] and MLogP from Dragon software [109],

• Chemical persistence in soil, which was prepared in collaboration with Syn-
genta, and a number of models that were obtained during the competition pub-
lished and run by Syngenta at IDEACONNECTION [42],

• Two datasets: Breast Cancer Wisconsin and Iris downloaded from UCI Ma-
chine Learning Repository [115, 116] and models developed using random forest
method.

1.3 Thesis Structure

This thesis is arranged into six chapters and one appendix:

• Chapter 2 – presents a literature review. It includes a review of toxicity data
formats, practices in QSAR model development process, a review of current
validation techniques and a critical review of some toxicity platforms. Elements
of the review presented in this chapter can be found in:

– Anna Palczewska, Xin Fu, Paul Trundle, Longzhi Yang, Daniel Neagu,
Mick Ridley, Kim Travis. Towards model governance in predictive toxi-
cology. International Journal of Information Management, vol. 33. no. 3,
pp. 567–582, 2013

– Xin Fu, Anna Wojak (Palczewska), Daniel Neagu, Mick Ridley, Kim Travis.
Data governance in predictive toxicology: A review. Journal of Chemin-

formatics, vol. 3, no.1, p. 24, 2011

• Chapter 3 – introduces a novel concept of model governance. In this chapter, the
term of model governance is formulated and three model governance processes
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are defined: model evaluation, model validation, and model control. A concep-
tual framework for data and model governance is established and introduced.
To represent a model as an object, six rules were introduced to define mini-
mum information about QSAR model representation that are required for model
governance. An XML schema based on the proposed rules was defined. The
Model and Data Farm (MADFARM) platform was developed in collaboration
with Syngenta as a proof of concept of the proposed theoretical framework of
model governance. The model governance framework presented in this chapter
was published in

– Anna Palczewska, Xin Fu, Paul Trundle, Longzhi Yang, Daniel Neagu,
Mick Ridley, Kim Travis. Towards model governance in predictive toxi-
cology. International Journal of Information Management, vol. 33. no. 3,
pp. 567–582, 2013

• Chapter 4 – proposes the framework for automated model identification for new
data. This is a theoretical framework that defines a search space (chemical space)
and its partitioning model. This model divides a search space into disjoint groups
and assigns the most predictive model to each group. To construct such a parti-
tion, three approaches were proposed here. One based on the nearest neighbour-
hood called the Double Min Score algorithm (DMS) and two based on Pareto
optimality which was used to define the Pareto Neighbourhood: Average Pareto
Model Identification (APMI) and Centroid Pareto Model Identification (CPMI)
algorithms. This is a new approach in model management and mining. This
theoretical framework together with proposed algorithms were published in:

– Anna Wojak (Palczewska), Daniel Neagu, Mick Ridley. Double min-score
(DMS) algorithm for automated model selection in predictive toxicology.
In United Kingdom Workshop in Computational Intelligence (UKCI 2011),
pp.150–156, 2011

– Anna Palczewska, Daniel Neagu, Mick Ridley. Using Pareto points for
model identification in predictive toxicology. Journal of Cheminformatics,
vol. 5, no.1, p.16, 2013

Three endpoints are used to validate the proposed methodology: IGC50 for
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Tetrahymena pyriformis, LogP for Syngenta dataset, and chemical persistence
in soil. Models for prediction of the last endpoint were collected from a compe-
tition organised by Syngenta.

• Chapter 5 – extends to classification problems the feature contribution method,
originally proposed for the interpretation of random forest regression models
[67]. Feature contributions explain how a model makes decisions for a given
instance. This approach uses a probabilistic interpretation of the random for-
est prediction. In this chapter, three novel methods for analysing feature con-
tributions: median, clustering and log-likelihood were also introduced. These
methods have been tested using general classification benchmark datasets. The
results were published in:

– Anna Palczewska, Jan Palczewski, Richard M. Robinson, Daniel Neagu.
Interpreting random forest models using a feature contribution method.
In Information Reuse and Integration (IRI), 2013 IEEE 14th International

Conference, pp.112–119, 2013.

– Anna Palczewska, Jan Palczewski, Richard Marchese Robinson, Daniel
Neagu. Interpreting random forest classification models using a feature
contribution method. in Integration of Reusable Systems, ser. Advances
in Intelligent and Soft Computing, T. Bouabana-Tebibel and S. H. Rubin,
Eds. Springer International Publishing, 2014, vol. 263, pp. 193–218

• Chapter 6 – presents conclusions drawn from the work presented in preceding
chapters and offers suggestions for future research.

• Appendix A – includes documentation for the random forest Feature Contri-
butions (rfFC) package developed in the project. It implements the method
presented in Chapter 5.
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Chapter 2
Data and Models in Predictive
Toxicology

Reuse of toxicity information facilitates the reduction in the number of animal testing
in domains such as: pharmacology, cosmetics or agriculture. This is why data curation
and integration have become recent challenges and enjoy a lot of scientific interest.
High quality toxicity information is required to build accurate predictive models for
toxicity values. This chapter presents various toxicity data representations; data cura-
tion and data integration techniques; a role and process of predicting modelling; and
a brief review of existing integrated toxicity platforms. Parts of this review were pub-
lished in [30] and [83].

2.1 Predictive Toxicology

Toxicology is defined as the study of adverse effects of chemicals on biological systems
such as a cell, tissue, organ or an entire organism [41]. It is the study of symptoms,
mechanisms, treatments and detection of chemical toxicity. A large number of in-

vivo – in-vitro tests is required in order to explain these toxic effects. The analysis of
changes in molecular expression, toxicological parameters, and integrating response
data are used to describing functioning organisms [119]. This knowledge is applied in
safety evaluation and risk assessment to protect human and environmental health.

Predictive toxicology provides various computational methods to predict the po-
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tential impact of a chemical compound on human or environmental health. Various
chemical, biological and toxicological data is combined into sets and used to build
predictive models. These models identify parameters that are relevant for a particular
toxic effect [41]. When biochemical mechanisms are known, the set of parameters
can be pre-defined, reducing the complexity of the model development process. Un-
fortunately, biochemical mechanisms are often unknown. In such case, methods for
parameter selection should be used to limit the number of suitable parameters that
explain a given toxic effect.

Expert systems (often known as rule-driven) and data-driven methods are two main
strategies in building predictive models. The expert systems are computer systems
that mimic the decision-making ability of a human expert [50]. The most popular
rule-based system for the prediction of toxicity (genotoxicity, carcinogenicity or skin
sensitization) is DEREK [70]. This system has been developed by LHASA [69] -
a not-for-profit company based in Leeds. The rules are being developed by the ex-
pert toxicologists who work for Lhasa or various other experts that use this system.
Data-driven methods based on the development of predictive models from experimen-
tal toxicity data. There are various methods available (statistical and machine learning
methods) and the decision as to which method should be used depends on the ap-
plication and complexity of a problem. These methods offer the potential for a fast,
rigorous and reliable evaluation of untested chemical toxicity. They are also used in
the prioritization of chemical compounds [41] for physical toxicity assays.

A main challenge in predictive toxicology is information reuse. This includes: data
integration and model aggregation to provide an interoperable, flexible and transparent
framework for automated modelling and testing. The development of good predictive
models depends on quality of experimental data [59]. Not complete or not relevant
data lead to the generation of inaccurate models. Due to the presence of various tox-
icity data representations distributed across many organisations, data integration is a
difficult problem. It involves data curation and a data quality assessment to ensure
the accuracy of collected information. In literature, one can find ongoing projects
aiming to provide integrated platforms for toxicity data exchange across several insti-
tutions such as research, business or governmental laboratories. It is an important step
to propose standards in toxicity data representation. This will increase the reuse of
collected information and facilitate collaboration between various institutions. Model

11



2.2 Toxicity Data Representation

Figure 2.1: Toxicity data classification.

aggregation has become a valuable technique in toxicity estimation since models have
begun to be considered as an alternative for animal testing. The standardisation of the
model representation and management policies will lead to an increase in the number
of model repositories.

2.2 Toxicity Data Representation

Toxicity data is a combination of chemical, biological and toxicological information
(see Figure 2.1). It is used as an input to data-driven approaches to build predictive
methods, and to validate these methods by comparing results of predictions with the
real measurements. The knowledge of data type and representation leads to a choice
of adequate modelling techniques which results in development of fast and efficient
predictive methods. In this section, various standards used to represent a chemical
compound and biological response are discussed.

2.2.1 Chemical Information

A two-dimensional structural representation of a chemical compound and its semantic
nomenclature had been established before the end of the nineteenth century [32]. In the
first half of the twentieth century fragment-coding systems were developed to identify
sets of sub-structural fragments presented in a molecule. The development of computer
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systems and computational chemistry required the presence of more sophisticated and
machine-readable representations of a chemical compound.

There are many ways to represent a chemical compound including: names, for-
mula, line-symbol notation, molecular representation, physical and chemical proper-
ties and fingerprint. Names and indexes like the CAS number are used to identify a
query chemical compound and enable fast information (chemical properties) retrieval
from large databases. The CAS number is assigned by Chemical Abstract Service [14]
to all publicly available chemicals. It does not relate any chemical properties to struc-
tures. Its numerical value is assigned in sequential, increasing order when a substance
is added into the CAS REGISTRY database. It is a unique numerical identifier with
the following format: XXXXXXX-XX-X. The first group may contain up to seven
digits, the second group contains only two digits and the last consists of one digit
called checksum. This number allow for a quick check if a query chemical compound
identifier is correct.

The second group of chemical representations uses their molecular structure. Cur-
rently, 1-D, 2-D and 3-D molecular representations are known and there is still a strong
interest in deriving new molecular representations [41].

• 1-D representation is a linear string notation of a chemical compound formula
(see Figure 2.2). The most popular formats are:

– SMILES language (Simplified Molecular Input Line Entry Specification),

– WLN (Wiswesser Line Notation),

– InChI (IUPAC International Chemical Identifier),

– ROSDAL (Representation Of Structure Diagram Arranged Linearly).

Over last few years SMILES and InChI have become the most used line nota-
tions. SMILES are string notations decoding the molecular structure. They are
obtained by printing the symbol nodes encountered in a depth-first tree traversal
of a chemical graph [32]. Often, SMILES are not unique. A chemical compound
can have a few SMILES notation caused by using different starting points in the
traversal procedure. InChI keys describe chemical substances using information
layers including: atoms and their bond connectivity, tautomeric information, iso-
tope information, stereochemistry, and electronic charge information [74]. In
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Figure 2.2: Names and line notations for a tyrosine structure diagram [32].

contrast to widely used CAS registry numbers, SMILES and InChI are com-
puted from the structural information and they are readable by experts. They are
also are well suited for chemical compound searching and retrieval from large
chemical databases.

• 2-D representation includes connection tables (see Figure 2.3). It is a graph rep-
resentation G = (V,E) where molecular atoms define a set of graph nodes V
and bonds represent a set of edges E. The connection table consists of three
parts. The first line in the table, called the header block, contains: molecule
name and file origin counts of atoms and bonds. The second part, called the
atoms block, includes: one line per atom and specifies 2D coordinates, atom
symbol, isotope, charge and stereo code. And the last part, called the bonds
block, contains: one line per bond (each bond shown once) specifies row num-
bers for atoms, and codes for bond type, bond stereochemistry. The molecular
graph representation is used for queries in similarity searching and especially in
sub-structure searching.

• 3-D representation contains the graph representation extended by 3D coordi-
nates, molecular surface or conformations information. This representation is
used in searching pharmacophoric patterns [41].
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Figure 2.3: A fragment of tyrosine - connection table representation [88].

Another representation format of a chemical compound is a fragment-based code
(index) of its molecule structure. Presence or absence of a certain structural fragment
is encoded in a binary vector called a fingerprint [32]. This representation is widely
used in substructure searching. There are many similarity metrics such as Hamming
distance, Dice coefficient, Euclidean distance to compare two binary vectors to test
their similarity. Various measures have been studied by the Sheffield research group
in the context of chemical similarity, and the results are presented in [121]. The most
common similarity measure between two molecules A and B is Tanimoto coefficient
defined as follows:

TAB =
c

a+ b− c (2.1)

where a and b are numbers of bits set on in the molecules A and B, respectively, and c is
the number of bits set on in both molecules. Comparing with atom-by-atom searching
(for a molecular representation), the advantage of using fingerprints is the faster search
time for large databases. Unfortunately, the fragment code is not unique. Several struc-
tures can have the same fingerprint representation. This is why, the circular fingerprint

has become very popular. It can be used to generate patterns of various diameter for
a molecule. The diameter represents the size of the fragment used to be encoded. By
increasing the diameter, one can enrich the information about the molecules. However,
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this will also increase the overhead of balancing the fingerprint size and reducing the
bit clashes. Nevertheless, fingerprint is a very useful tool to filter a large dataset to find
frequently repeated structural patterns.

The last group of chemical representation is called descriptors. There are var-
ious physical and chemical properties of a chemical compound calculated from its
molecular representation. There are four types of descriptors: topological, geometri-
cal, electronic and hybrid. Topological descriptors are derived from connection tables
and include information about a number of atoms, bonds and substructures. They
includes also topological indices, such as connectivity or kappa indices. From 3D
molecular representation, the geometrical descriptors are calculated. They include in-
formation such as principal moments of inertia, molecular volume or cross-sectional
areas. Electronic descriptors include LUMO and HOMO energies, bond orders or par-
tial atomic charges. Various combinations of the above described descriptor types are
called hybrid descriptors and they are mostly used in the modelling of quantitative
structure-activity relationships. The most comprehensive collection of molecular de-
scriptors with detailed review is presented by Todeschini et al. [112]. All descriptors
are listed with their definition, symbols and labels, formulas, some numerical exam-
ples, data and molecular graphs, while numerous figures and tables aid comprehension
of the definitions

2.2.2 Biological Information

Biological information is derived from in-vitro and in-vivo assays. In-vivo data refers
to information collected from experiments or studies done on living organisms. This
involves animal testing and clinical trials. The development of molecular biology con-
tributed to an increasing number of in-vitro tests. It is focused on organs, tissues, cells,
cellular components, proteins, and biomolecules. In-vitro research is more suitable for
the deduction of biological changes in the organism (mechanisms of action) and due
to its relatively low cost, it is competitive to in-vivo study [61]. Unfortunately, direct
extrapolation from in-vitro to in-vivo systems can give misleading results. It is related
to the various conditions which are presented during experiments. Successful in-vitro

tests should usually be followed by in-vivo studies.
Biological data is derived from transcriptomics, proteomics and metabonomics
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Figure 2.4: Microarray example of biological data representation [127].

studies. They are often used to study mechanisms of genotoxicity and carcinogenicity.
Various technologies such as cDNA, mRNA microarrays, protein chips and NMR are
used in discovery of toxicant pathways and mode of action that may cause a toxic ef-
fect [119]. The example of the microarray technique for gene profiling is presented in
Figure 2.4. DNA chips are used to hybridize two DNA strands. The results are scanned
and stored as images. Further, these images are normalised and analysed in order to
explain molecular changes.

To provide standards in experiment reporting, the Minimum Information About
Microarray Experiment (MIAME) format, was proposed in [5, 25]. It provides a set
of rules that contribute to a standardisation of biological experiments. An efficient
description of experiments allows for its sufficient interpretation, replication and com-
parison with other similar experiments. This process involves: automated data mining
techniques and data analysis, standards in experiment descriptions and development of
query structures (see Figure 2.5).

According to MIAME 2.0 [5], the six following elements must be provided to
support microarray publications:
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Figure 2.5: Microarray data processing workflow [47].

• experimental design - includes: author, contact information, URL, citations, ex-
periment title, type of experiment, experimental variable, quality indicators, re-
lationships between the array and sample entities,

• array design - includes: information about array manufacturing given by provider
(platform type, provider, surface type), description of elements or spots used on
a surface (e.g. DNA clones), description of specific properties of each element
(e.g. DNA sequence),

• samples - include labelled nucleic acids that represent a transcript in a sample for
which the gene expression profile was established (source of the original sample
with any biological in-vivo or in-vitro treatments applied, technical extraction of
nucleic acids or their subsequent labelling),

• hybridization - includes: laboratory conditions under which the hybridization
were carried out (procedures and parameters),

• measurements - includes: raw data (scans of array), quantification matrices based
on image analysis; specification (gene expression matrix),

• normalization - includes: analysis of multiple samples to identify relative changes
in expression level, different express genes, discovery of gene classes or samples
having similar patterns.
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2.2.3 Toxic Effect

A chemical substance that causes an adverse effect (toxicant) is recorded together with
a dose and its exposure time on a living organism. There are two types of doses:
internal and delivered. The first type, often called absorbed dose, describes the total
volume of substance that is absorbed and distributed throughout the organism, often
expressed in terms of the concentration in plasma/blood or in an organ. The delivered
dose is the total dose given to the organism irrespective of what fraction of this is
absorbed. This is often expressed in units of mg/kg (amount of chemical/body weight).
In short and long term experiments we consider the following types of the exposure
times: less then 24 hours, one day up to one month, up to three months and longer
than three months. These exposure times are called: acute, subacute, subchronic and
chronic exposure, respectively. According to the type of exposure and dose, there are
various defined responses of a live organism [52]:

• acute toxicity - an adverse or undesirable effect occurred in a short period of
time (24 hours) that results either from a single or multiple exposures,

• chronic toxicity - an adverse or undesirable effect after long-term exposure (months,
years), usually repeated and lower level exposures,

• local toxicity - an adverse or undesirable effect occurred during contact with
toxicant (e.g. skin burns),

• reversible toxicity - an adverse or undesirable effect than can be reversed after
the exposure stopped,

• systematic toxicity - an adverse or undesirable effect can be seen in some part of
a live organism resulting from distribution of the chemical around the body,

• delayed/latent toxicity - an adverse or undesirable effect that occurred long after
exposure,

• allergic reaction - reaction to a toxicant caused by an altered state of the normal
immune response (never seen for the first exposure but seen with subsequent
exposures).
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Figure 2.6: Dose-response relationship.

Toxic effects on an organism are related to the amount of exposure often called dose.
The dose-response relationships describe the change in the effect caused by different
levels of doses after a certain exposure time. Toxicological studies are focused on
measurements of dose-responses parameters to define safe and hazardous levels and
dosages for various chemicals. The dose-response curve illustrate this relation the
X-axis correspond to the concentration of the chemical usually given in milligrams,
micrograms, or grams per kilogram of body-weight for oral exposures or milligrams
per cubic meter for inhalation exposures. The Y-axis corresponds to the biological
response (see Figure 2.6). The are many various concentration measures. All of them
depend to the exposure time and exposure route (e.g inhalation, dietary). The most
common concentration measures are:

• LD50 – lethal dose required to kill half the members of a tested population after
a specified test duration,

• EC50 – half maximal effective concentration of a chemicals which induces a
response halfway between the baseline and maximum after a specified exposure
time. It is used to measure drug potency,

• IC50 – half maximal inhibitory concentration is a measure that describes how
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much of a particular chemical (inhibitor) is needed to inhibit a given biological
process by half,

• TD – toxic dose that will produce signs of toxicity in a certain percentage of
organisms,

• NOEL – no-observable-effect-level dose is the highest dose or exposure level of
a chemical that produces no noticeable toxic effect on the organism.

2.3 Data Integration

In-vivo and in-vitro data are distributed across various resources such as scientific arti-
cles, company internal reports, governmental organisation documents and many insti-
tutional services. Together with chemical information in-vitro data are used to predict
in-vivo toxicity and to prioritise animal testing. Integrating this information in pub-
licly available datasets by sufficient extraction, curation and pre-procession is both
challenging and extremely valuable.

Data integration is concerned with providing tools for unified access to data from
different sources [68]. The data format is defined by the global schema to represent
all information which can be query by a user (see Figure 2.7). It is a significant
approach for both the enterprise and scientific information integration. Especially, it is
also important for the rapid developing life sciences where information exchange is a
one of the main challenges to multi-organisation collaboration.

The additional aspect of data integration is to ensure the high quality of combined
information that is provided to the user. There are many data quality dimensions such
as:

• specification - measures data standards, data models, meta data, and reference
data in terms of existence, completeness, quality, and documentation,

• completeness - measures data attributes according to existence, validity, struc-
ture or content,

• accuracy - measures correctness of database content,

• consistency (synchronisation) - measures data equivalence across enterprise,
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Figure 2.7: Simple schema for data integration.

• timeliness (availability) - measures data validity and availability in a given frame-
work of time,

• security - measures the level of the information security.

Systems which deal with data integration, provide internal rules to ensure data qual-
ity and its correctness. Unfortunately, recent studies show lack of consistency in struc-
tural representation and systematic chemical identifiers within and between databases
[1]. This has an impact for data merging, especially when systematic identifiers are
used as a key index for structure integration or cross-querying several databases. This
enhances a need for a definition of chemistry standardisation rules and their implemen-
tation in order to increase information consistency.

In predictive toxicology the quality of individual data must be assessed according to
the correctness of the chemical/biological information and toxicity values. The current
standard is to use the Klimisch schema proposed in [63]. This schema provides a set
of criteria required to assess data quality:

• reliability – data must be reliable, they must accurately represent the toxic end-
point,

• consistent – experimental results must be repeatable with small statistical error,
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• reproducible – experiment procedures should be independent from the environ-
ment and repeated tests in various laboratories should give similar results

This schema considers only four categories of data reliability: reliable without re-
striction, reliable with restriction, not reliable, not assignable. Unfortunately, the Klim-
isch schema is very general and it is difficult to distinguish between these categories.
To address this gap the reliability assessment tool (ToxRTool) [98] was developed. The
transparency of the categories is increased by an extended list of evaluation criteria for
scoring toxicity information. Both methods are designed as a set of questions and re-
quire a human expert to provide an answer. Thus, the assessment of the data quality is
biased by an expert’s experiences and preferences. To reduce this bias and to provide
more automated way of quality assessment a fuzzy expert system has been proposed
in [126]. This system uses rules from ToxRTool, and is able to evaluate reliabilities of
toxicological data based on the currently available metadata.

The process of data integration combined with the information quality assessment
is called data curation. This process does not stop, the data should be constantly vali-
dated, integrated and maintained when there are new experimental results available. It
is also an important step in modelling while high quality data is required to build accu-
rate predictive models. Poor quality toxicity data with errors and a lack of information
contributes to poor predictive performance and low statistical fit. The following sec-
tions introduced the processes of model development and their validation in predictive
toxicology, as well as discuss the importance of the usage of in-silico methods in order
to reduce the number of animal tests.

2.4 Models in Predictive Toxicology

Integration of in-vivo and in-vitro data, development of statistical, cheminformatics
and bioinformatics algorithms, and data mining tools have led to an enormous increase
in the number of models for predictive toxicology. Assessment and application of com-
putational methods (often called in-silico) can be used to reduce animal testing. There
are two main contemporary approaches: Quantitative Structure-Activity Relationships
(QSAR) which seek to predict the toxicological effects of compounds solely from their
molecular structure, and Physiologically Based Pharmacokinetic (PBPK) modelling
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which can be used to extrapolate between in-vitro and in-vivo exposure conditions.
In subsequent chapters of this thesis all presented work is exclusively concerned with
QSAR models.

2.4.1 Quantitative Structure-Activity Relationships

Quantitative structure-activity relationships (QSAR) correlate a chemical structure and
properties with biological, chemical or environmental activity [75] whereas SAR asso-
ciate the molecular features with its activity [3, 41]. Recently, many QSAR modelling
tools have been developed using the following techniques: Partial Least Squares Re-
gression (PLS) [123], Decision Tree [96], K-Nearest Neighbours (KNN) [60], Support
Vector Machine SVM [58], Artificial Neural Network (ANN) [3, 41] and Random
Forest [6, 106]. There is also a lot of interest aiming to support automated QSAR
modelling [39, 46, 113] and to build consensus models [128].

QSAR models play the crucial role in virtual screening and in-silico modelling.
They are considered to be an alternative to expensive animal testing due to their rela-
tively low cost. In the European Union the Registration, Evaluation and Authorisation
of Chemicals (REACH) [94] legislation allows for a registration of chemicals which
were tested using, inter alia, virtual screening tools. The usage of such modelling tools
requires a proof of their reliability and predictivity by a well documented validation
process. To make a reliable prediction, a model should be statistically significant and
robust, have its application boundaries defined and be validated by an external dataset
[33, 114]. Based on this assumption, the first validation principles were assessed in
2002 and then extended in 2004. Currently, they are known as the OECD Principles
for QSAR Validation [77]. According to these principles, QSAR models should be
associated with the following information:

• Defined Endpoint (Principle 1): The intent of this principle is to ensure clarity in
the endpoint being predicted by a given model, since a given endpoint could be
determined by different experimental protocols and under different experimental
conditions.

• Unambiguous Algorithm (Principle 2): The intent of this principle is to ensure
transparency in the model algorithm that generates predictions of an endpoint
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from information on chemical structure and/or physiochemical properties. It is
recognized that, in the case of commercially-developed models, this information
is not always made publicly available. However, without this information, the
performance of a model cannot be independently established, which is likely to
represent a barrier for regulatory acceptance.

• Defined Domain of Applicability (Principle 3): The need to define an applicabil-
ity domain expresses the fact that QSARs are reductionist models which are in-
evitably associated with limitations in terms of the types of chemical structures,
physiochemical properties and mechanisms of action for which the models can
generate reliable predictions.

• Appropriate Measures of Goodness-of-Fit, Robustness and Predictivity (Princi-
ple 4): The wording of the principle is intended to simplify the overall set of
principles, but not to lose the distinction between the internal performance of a
model (as represented by goodness-of-fit and robustness) and the predictivity of
a model (as determined by external validation).

• Mechanistic Interpretation (Principle 5): It is recognised that it is not always
possible, from a scientific viewpoint, to provide a mechanistic interpretation of
a given QSAR, or there even be multiple mechanistic interpretations of a given
model. The absence of a mechanistic interpretation for a model does not mean
that a model is not potentially useful in the regulatory context. The intention
of this principle is not to reject models that have no apparent mechanistic basis,
but to ensure that some consideration is given to the possibility of a mechanis-
tic association between the descriptors used in a model and the endpoint being
predicted, and also to ensure that this association is documented.

In general the QSAR model development process is divided into three steps: data
preparation, model generation and validation. These steps together with the above
principles require more detailed analysis in the model development process (see Fig-
ure 2.8). In the following sections, the description of good practices to provide accurate
models is presented.
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Figure 2.8: QSAR development workflow [113].

2.4.2 Data Preparation

Data quality inherently affects the quality of models [29]. Thus, data curation is a cru-
cial step in the data preprocessing phase. This is also a first step in model development
process. The processed quality data is further split into two sub-subsets: modelling and
external validation sets. There is a big discussion of the best method for the partition
percentage. This operation relies on the size of the entire dataset and it is subjectively
based on the modeller decision. The best partition should guarantee that these two sub-
sets are spread far apart over a wide area of the chemical space and are well balanced
[113]. The validation dataset should be distributed across this space to ensure diversity
of selected chemicals. Random splitting is the most naive method and unfortunately it
does not satisfy the above assumption. There are more efficient partitioning techniques
which are based on similarity analysis [34]. The modelling dataset is further split into
training and testing datasets. Both these sets are used in model generation and more
detailed description is presented in the next section.

Another issue of data preparation is the size of a dataset. The number of chemical
compounds included in a dataset should not be either too small or too large. Large
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datasets can produce an inefficiency of generated models whereas small datasets may
result in inaccurate models. Such inefficiency is related to a selected approach or
method processing the large dataset. Each method is limited by an available space and
computation time needed to build a model. The dataset should be properly balanced
[113, 114]. This means that the number of elements (chemical compounds) from dif-
ferent classes or categories (based on their activity) should be equalized. Unbalanced
datasets cause higher errors of a correct prediction for the smaller number of elements
within a class.

The last step in data preparation is outlier and activity cliff detection [72]. The main
hypothesis in QSAR modelling is that similar chemicals have similar properties [51].
Based on this definition, activity cliffs are defined by areas in the chemical descriptors
space where the similarity hypothesis does not hold. There are two types of outliers:
leverage and activity. They represent either the real values or errors in the structure
representation as well as in their activities. There are many methods for outlier de-
tection: similarity distance measures, Hotelling’s test, or Cook’s distance [11, 75]. In
QSAR modelling, the common practice is to remove outliers before model generation.
Their presence in the training dataset will lead to model instability. Nerveless, taking
outliers into account to develop models and to provide the analysis of their mechanistic
interpretation can open a new perspective in building QSAR models.

2.4.3 Model Development

For model generation, the preprocessed modelling dataset is used. This dataset is again
partitioned many times using the well known cross-validation (CV) technique. Cross
validation involves round estimations of a model. One round of the cross-validation
method splits a dataset into training and testing sets. The training dataset is used to
generate a model whereas the testing dataset is used to assess its predictivity. Many
rounds of CV are applied and validation statistics are collected. A model with the best
predictive ability is selected for further external validation tests (see Figure 2.8). The
most common CV methods for predictive toxicology are presented in [101, 113, 114,
123, 128] and they involve:

• LMO CV (leave-many-out cross-validation) - is generalisation of LOO CV (leave-
one-out). In the literature it is also known as k-fold cross-validation. The mod-
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elling dataset is divided onto k separate subsets of equal size. k − 1 subsets
are used in model generation and the one remaining subset is used for model
validation.

• Bootstrapping - re-sampling dataset on k groups, each of size N . Elements from
the modelling dataset are selected randomly, thus, some elements may be placed
several times or never selected into the training dataset. Models generated on
these N elements are validated using other elements from the modelling dataset.
To generate the best model, this procedure is repeated k times.

• Y-randomisation test - the modelling dataset is partitioned into training and test-
ing datasets. The dependent variable vector of the training dataset is shuffled
randomly before a model is generated. The testing dataset is used for model
validation.

The number of available molecular descriptors which can be calculated based on
the chemical molecular structure is in the thousands. This makes QSAR modelling a
difficult task according to the dimensionality of the data. To reduce descriptor space
feature selection techniques are required. There are three common methods: filters,
wrappers and embedded. Wrappers select the possible sets of descriptors and run
the model on each set. They are very time consuming and not efficient according
to the size of input data. The filter method selects a subset of the best descriptors
according to some filter criteria to find the most relevant variables. The embedded
methods are embedded in the model generation process. Features are added or removed
while building the model, depending on the changes in model accuracy [37, 66].

2.4.3.1 Internal Validation

The best model is selected based on internal validation. Before diagnostic statistics
for the internal validation are presented, the following information has to be recalled.
Consider the input dataset (T) described as follow:

T =


x11 x12 · · · xik y1

x21 x22 · · · x2k y2
...

...
...

...
...

xn1 xn2 · · · xnk yk
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where chemicals are defined by tuples (xi, yi) ∈ X × Y for i = 1, . . . , n. The set
X = {X1, · · · , Xk} defines molecular, chemical or physical descriptors whereas Y is
a set of observed activity values. The QSAR model M maps the descriptor space into
activity domain:

M : X → Y. (2.2)

The model M can use regression methods for continuous data or classification
techniques for discrete values. For regression models we consider two correlation
coefficients: squared correlation coefficient r2 and predictive squared correlation co-
efficient q2. A square correlation coefficient r2 of fitting model has become a very
popular measure of the model goodness-of-fit and it is defined as follow:

r2 = 1−
∑TR

i=1 (yi − yifit)2∑TR
i=1 (yi − ȳ)2

= 1− RSS

SS
(2.3)

where yi is the observed chemical activity, yfiti is its fitted value by a model M .
The average of the observed value ȳ over the training dataset (TR) is given by

formula:

ȳ =
1

n

n∑
i=0

yi n = |TR|. (2.4)

In formula (2.3), RSS is called the residual sum of squares and SS the sum of squares.
The r2 statistic describes the ability of a model to reproduce data within the training
dataset but it is not enough to describe the robustness and predictivity of this model
[11, 34, 101]. These characteristics are defined by the predictive squared correlation
coefficient q2. Internal validation is performed to calculate this coefficient. A modelM
is applied for the testing dataset (TS) to predict the activity value ŷi for all chemicals
in this set. The predictive squared correlation coefficient q2 is defined as follows:

q2 = 1−
∑TS

i=1 (yi − ŷi)2∑TS
i=1 (yi − ȳ)2

= 1− PRESS

SS
(2.5)

where ȳ is defined by formula (2.4) and PRESS is known as the predictive residual sum
of squares. The average of the observed activities for the training data set in equation
(2.5) is used because it leads to the reduction of noise caused by variation of the testing
dataset mean.
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Figure 2.9: Diagnostic test: sensitivity and specificity.

For cross-validation and automated QSAR modelling, models with higher q2 val-
ues are used for further external validation. Many authors consider their models highly
predictive in the case when q2 > 0.5 [33]. The low value of q2 indicates a low pre-
dictive power of the model whereas high q2 does not prove its high predictivity. Thus,
external validation is required.

For QSAR classification models, misclassification statistics are used including:
specificity, sensitivity, accuracy and precision (see Figure 2.9). The confusion ma-
trix is used to display predictions made by the model. It contains a number of correct
classifications and two types of errors. The error of a type I called false positive rejects
the hypothesis when it is true. The error of type II (false negative) does not reject the
hypothesis at the moment when it should be rejected. The correct classification are
called true positive and true negative. Together with the errors, they are used in the
diagnostic test to define model predictivity [35, 37].

The accuracy is a true value of the model predictivity. The precision is a measure
of the accuracy that defines the number of elements a specific class has predicted. It is
defined by:

Precision =
TP

TP + FP
where TP is the number of true positive and FP is the number of false positive pre-
dictions for the considered class. The sensitivity measure (called recall) is the ability
of a predictive model to select instances of a certain class from a dataset. It often
corresponds to the true positive rate and it is defined by the formula:

Sensitivity =
TP

TP + FN
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where true positive (TP) and false negative (FN) predictions are related to the con-
sidered class. The specificity corresponds to the true-negative rate and is defined as
follows:

Specificity =
TN

TN + FP
where TN is the number of true negative and FP is the number of false positive predic-
tions. Sensitivity and specificity define model robustness. There are various methods
for prediction error calculation. Mean absolute error, root mean squared error, relative
absolute error and root relative squared error are all used in QSAR modelling.

2.4.3.2 Applicability Domain

The last step of the model development process is its applicability domain estima-
tion. The applicability domain (AD) (see Figure 2.10) is defined as “the response and

chemical structure space in which the model makes predictions with a given reliability”

[75]. The chemical space is a multidimensional space, where each dimension repre-
sents: structural, physical, chemical or biological property of a chemical compound.
Applicability domain determines the boundary of chemical sub-space where models
are reliable and it also supports the controlled extrapolation of these models into entire
chemical space. This fact ensures that the QSAR model can be used for chemicals
which fall into its applicability domain and at the same time it does not guarantee a
high model predictivity. Applying these models for chemicals from outside of their
applicability domains increases the likelihood of inaccurate prediction.

The process of AD estimation is model-dependent and based on a training set do-
main, moreover, there is a relation between the AD estimation and variable selection
techniques [128]. Thus, there is no universal method for AD estimation. As shown
in [53] the different approaches produce different applicability domains. The choice
of the particular AD estimation methods depends on a requirement for the data distri-
bution in a training set and the dimensionality of the model. Currently, there are four
main techniques and there is still ongoing research to find efficient methods.

The most common technique for the applicability domain estimation uses range-
based methods [75]. Chemical descriptors are defined as ranges of their values and
generate a hyper-rectangle. The applicability domain is defined by this hyper-rectangle.
Unfortunately, this method does not detect the intersection of the hyper-planes and
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Figure 2.10: Example of applicability domain estimation for model predicting logKow

using the acceptor delocalisability descriptor [75].

does not take into account the correlation between descriptors. An another common
technique to assess the model applicability domain is Principal Component Analysis
(PCA) [57]. It is based on the rotation of dependent variablesX (descriptors) to correct
the correlation between them.

The convex hull calculation is another example of applicability domain estimation.
This method estimates the coverage of the n-dimensional set of variables. In two-
dimensional space, it is represented as a polygonal figure whose interior defines the
model applicability space. This approach is well known in computational geometry
[17]. There are a few efficient algorithms for two and three dimensional problems.
Unfortunately, with the increase of a number of descriptors used to generate model,
the complexity of the convex hull calculation also increases. Additionally, this method
does not detect empty regions in the descriptor space. As it is shown in Figure 2.10 the
data covers evenly a space for logKow < 5 and acceptor < 0.110. The other regions
in the convex hull does not contains many data (triangle point) or are empty.

One of the most efficient approaches to estimate the applicability domain are dis-
tance based techniques. These methods calculate the distance from a searching point
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to the training dataset. There are many approaches: distance to the mean of the dataset,
average of all distances between query point and the dataset or maximum distance. The
Euclidean distance is the most frequently used technique, however, the Mahalanobis
and city-block are used as well [53, 75]. Together, they are the most common methods
for finding similarity of chemical compounds. For a given model the applicability do-
main threshold is defined. For all chemicals where the average distance to the training
dataset is greater then this threshold, the model can give an inaccurate prediction.

The last method to estimate the applicability domain is based on density estima-
tion. This method involves the determination of the high density region. There are two
approaches: parametric and non parametric. Parametric methods ensure the the data
distribution is close to standard normal distribution (Gaussian Process). Non paramet-
ric methods do not make any assumption about data distribution (kernel density esti-
mation). The calculation of the highest density regions is a complex process according
to the dimensionality of the chemical space, thus, there is a challenge to provide a fast
and efficient algorithm. Recent studies [9] show that the random forest classifier is
comparable with the well know Gaussian Process regression [91] for applicability do-
main estimation. The authors provided a generic machine schema for class probability
estimators.

The applicability domain can be in two types: global and local. Global applicabil-
ity domain defines a broad chemical space using all pre-calculated chemical compound
descriptors, whereas local applicability domain is defined by selected descriptors in the
model generation process. The breadth of the applicability domain has influence on the
model predictivity. The narrower the applicability domain, the higher the predictivity
of the model. The applicability domain is often used to validate a predictive model.
The elements that are within the boundary of applicability domain as well as elements
from the outside the applicability domain are used for quantitative assessment of the
model robustness and its predictive power [114]. The next section discusses the exter-
nal validation methods.

2.4.4 External Model Validation

In Section 2.4.3.1, the internal validation for the model development process was dis-
cussed. Two measurements of model reliability r2 and predictivity q2 for regression
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model were introduced. In [33, 114] authors showed that the cross-validation corre-
lation coefficient q2 is an insufficient factor to ensure the predictive power of QSAR
models. According to the workflow presented in Figure 2.8 (see Section 2.4.3), a model
should be tested on an external dataset using model applicability domain [113]. This
step is called the external model validation process.

The feature selection and model generation techniques impact on model predic-
tivity power. Applying one model on many subsets of selected features or applying
various algorithms using the same features set leads to different results. Despite this
fact, in many QSAR studies, an automated modelling technique is recommended. Mul-
tiple models are built at the same time and internal validation is used to select the most
accurate model. Such model is further validated using an external validation dataset
(TE). For classification models the same techniques for assessing model accuracy are
used as in internal validation. For regression models the predictive squared coefficient
correlation q2ext is defined as follows:

q2ext = 1−
∑TE

i=1 (yi − ŷi)2∑TE
i=1 (yi − ȳ)2

, (2.6)

where ȳ is defined by formula (2.4). The coefficients q2 (see formula (2.5)) and q2ext are
equivalent. The first is calculated for internal model validation over the testing dataset
and the second for the external dataset. Both refer to the same mean of the observed
values for the training dataset. Additionally, the coefficient of determination r2ext is
calculated as follows:

r2ext = 1−
∑TE

i=1 (yi − ŷi)2∑TE
i=1 (yi − ȳTE)2

, (2.7)

where the ȳTE is a mean of observed values in the validation dataset.
The analysis of the squared correlation coefficients defined by formulas (2.3) and

(2.7) shows that r2 ∈ [0, 1]. For the most naive model where the expected prediction
is close to the mean of observed values (ŷ ≈ ȳ), then r2 is equal to zero. In this case,
parameters of a regression model are independent from observations and do not explain
them. Such a model does not explain any variations of the activity and we can assume
it does not predict better than the mean of the dataset. We consider a predictor to be
better than using a mean when RSS − SS ≤ 0 (see formula (2.3)). In a case, when
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RSS → O then r2 −→ 1. This means that a model has an ability to reproduce data
from the training dataset. When r2 ≡ 1 the model can be consider as ideal or be over-
fitted. Over-fitting occurs when a model is very complex, such as having too many
parameters relative to the number of observations. The over-fitted model generally has
poor predictive performance, as it can exaggerate minor fluctuations in the data.

To detect over-fitting the construction of the ideal model is used. To construct the
ideal model we map the observed values versus predicted. The regression line can be
defined as y = aŷ + b where the slope a is a correlation coefficient:

a =

∑n
i (yi − ȳ)(ŷi − ¯̂y)∑n

i (ŷi − ¯̂y)2
(2.8)

and the intercept is defined:
b = ȳ − a¯̂y, (2.9)

where ȳ and ¯̂y are the average values of the observed and predicted values [33]. For
the ideal model, the slope a = 1 and the intercept b = 0. To calculate the squared
correlation coefficients r20 and r′20 between the actual and observed values we build two
regressions of y versus ŷ and ŷ versus y, i.e. yr0 = kŷ and ŷr0 = k′y, where

k =

∑n
i yiŷi∑n
i ŷi

2 and k′ =

∑n
i yiŷi∑n
i yi

2
, (2.10)

and are the slopes of ideal QSAR models. Then the correlations of determination are
defined as follows:

r20 =

∑n
i (ŷi − yr0i )2∑n
i (ŷi − ¯̂y)2

, (2.11)

r
′2
0 =

∑n
i (yi − ŷir0)2∑n
i (yi − ȳ)2

(2.12)

In other words, the calculation of the correlation between observed and predicted ac-
tivities is performed. The new regression models are created and we can check how
close they are to the ideal model. In this case, slopes k and k′ should be close to 1.

There are five conditions introduced by authors in [33] to assess the predictive
power of QSAR models. They are widely applied in the model validation platforms
such as [44, 46, 80]. To consider the QSAR model predictive, the following condition
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must be satisfied [113, 114]:

r2 > 0.6

q2 > 0.5

r2−r20
r2

< 0.1 or
r2−r′20

r2
< 0.1

k ∈ [0.85, 1.15] or k
′ ∈ [0.85, 1.15]

|r20 − r
′2
0 | < 0.

(2.13)

where r2 is a correlation coefficient between the predicted and observed values, r20
and r′20 (defined by formulas (2.11) and (2.12)) are coefficients of determinations [97]
predicted vs. observed and observed vs. predicted, respectively. The values k and k′ ,
defined by formula (2.10) represent slopes of regression line through the origin [33].

The q2 value describes the benefit of using the generated model (predictor). In
contrast to r2, q2 ∈ (−∞, 1]. If PRESS → ∞ then in the validation set there is
the high variation of observed activities according to the expected mean. In this case
q2 → −∞ and the mean of observed values ȳ is the better estimator than the predictor.
In a case when q2 = 0 there is no difference between using the mean and predictor.
Otherwise, a generated model gives better predictions.

Another most common statistics used to compare models is the root mean square
error of prediction (RMSE):

RMSE =

√∑n
i (ŷi − ȳi)2

n
, (2.14)

and mean absolute error (MAE):

MAE =

∑n
i |ŷi − ȳi|
n

, (2.15)

We can use both RMSE and r2 to compare regression models that use the same depen-
dent variable. The higher r2, the lower RMSE. RMSE could be a good indicator for
model quality if it could be trusted. However, the uncertainty of RMSE may be intro-
duced by model misspecification in the stage of model evaluation or over-fitting during
the model development stage. Thus, it is important to provide the goodness-of-fit and
predictivity statistics to assess model quality.
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2.4.5 Predictive Toxicology Systems

Mastering high quality models and data has become an important task for predictive
toxicology. Various organisations and institutions are interested in collections of high
quality data and models. The number of toxicological data and available models has
increased dramatically in recent time. This is why data and model collections within
the predictive toxicology information management system can help in knowledge ex-
change and information utilisation processes. Despite this observation, there is a need
to develop a flexible and interoperable framework for predictive toxicology which aims
to address the following challenges: data integration, data quality assessment, auto-
mated model development, model validation reporting, model aggregation. In this
section the most important existing predictive toxicology applications are discussed
according to data integration and exchange, model development, collection, validation
and reporting.

2.4.5.1 Ambit

Ambit, developed by IdeaConsult Ltd. [43, 44], is an open-source chemoinformatics
data management system. It was designed to store a large amount of data and to pro-
vide tools for data mining and analysis. The main goal for the Ambit designers was
to develop the extensible QSAR decision support system. Interoperability, flexibility
and transparency are its three design principles. The XML representation of chemical
compounds is used to exchange data within various organisations. Modular database
design supports the flexibility and possibility for the future extension of the system
functionality. Publicly available sources support the transparency principle. Ambit
stores more than 450,000 chemical structures together with their various identifiers
like: names, CAS number, InChI.

The Ambit data management system includes the Ambit relational database and
several libraries of chemoinformatics applications. The database stores: different
chemical compound structures and their chemical and physical properties which are
collected from different resources, including information about toxicity endpoints, ex-
periments and literature references.

Ambit Discovery provides statistics and data mining techniques for the chemi-
cal grouping and applicability domain estimation. The CDK library [103] is used
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for chemical compound descriptors calculations. The QMRF Repository supports the
model reporting according to the OECD validation principles [77]. Collected models
can be easily searchable within the Ambit framework.

Ambit XT, a set of applications, consists of a number of modules which lead users
to achieve their goals and plans for predictive analysis. The workflow architecture is
used to support data provenance. It includes chemical compound updates history and
user actions recording; storage of toxicity data for different endpoints. Data quality
assessment is achieved by comparison across different resources.

The ToxMatch and the ToxTree libraries, also developed by IdeaConsult, are built
into the Ambit system. ToxTree is a decision making application for a toxic hazard
assessment. For toxicity estimation, decision tree techniques are used with a set of
built-in rules for classification schemes such as Cramer rules [18], Verhaar scheme
[117], Skin irritation prediction [118], Eye irritation prediction, Benigni and Bossa
rules for mutagenicity and carcinogenicity [4]. Moreover, ToxTree supports a devel-
opment of new rules. Using java environment, user can easily build his own model
within the Ambit workflow framework.

ToxMatch is an open-source application which provides statistical and data mining
methods for grouping chemicals based on their similarities, prediction and assessment
of physiochemical properties, toxicity, environmental fate and ecotoxicity [44, 56, 86].
the new compound toxicity is assessed from reading across different datasets. Tox-
Match supports pair-wise similarity search between compounds, similarity estimation
between a single compound and a group of chemicals. The ToxMatch similarity assess-
ment is based on the well known similarity measures [121]. Additionally, ToxMatch
supports various structure representations of a chemical compound, including: descrip-
tors, fingerprint, atom environment and the descriptors generation. This software was
developed in collaboration with European Commission Joint Research Centre (JRC).

The Ambit system meets most of the requirements for recent predictive toxicology.
It is a host for data and models. It provides a lot of predictive toxicology applications
which build components for the decision support system. The Ambit system is focused
on data integration, applicability domain estimation, similarity assessment and chemi-
cal compound structure conversion. Moreover, the Ambit workflow architecture is an
excellent environment for toxicity assessment and new rules development. Currently,
the QMRF format is widely used for model reporting.
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2.4.5.2 OCHEM

The Online Chemical Modelling Environment (OCHEM) [78] is a web-based platform
to support QSAR modelling. There is a back-end database (which contains quality-
controlled chemical and experimental data) integrated into the modelling framework,
with an aim to support a series of steps of building QSAR models. These steps
range from dataset search and construction, descriptor calculation, descriptor selec-
tion, through model building, simple search, validation, to model storage and report-
ing [105]. OCHEM allows users to select descriptor calculation, data pre-processing
and modelling building methods from pre-defined lists. The training datasets and de-
veloped models are easily accessed, manipulated, combined and reused within the
OCHEM framework. However, apart from some configuration parameters, there are
no representation schemas available that would allow users to export the built models
to external formats. In addition, some intermediate results (e.g. the calculated descrip-
tor values) are not available and transparent to users. Practically speaking, it is quite
difficult to include all possible methods/tools in one single platform, especially some
in-house developed methods. Therefore, the current approach limits the freedom of
users to (re-)build the models in other platforms and using different tools. In terms of
model management, OCHEM enables users to perform model combination, such as
using the output of a certain model as the input of another one. However, this process
is purely user-oriented; users have to make their own decisions. Currently, there is
no (semi-)automated decision support available to users to identify the most suitable
models when given the problem at hand.

2.4.5.3 JRC QSAR Database

For regulatory purposes, the OECD has developed a standardised QSAR Model Report
Format (QMRF) [54] which aims to capture required information to meet the OECD
principles [77] for the validation of QSAR models. Besides this, representing and
managing QSAR models has attracted increasing attention in recent years. In order to
support the identification and retrieval of suitable QSAR models, the Joint Research
Center (JRC) has developed a publicly available web-based model database that stores
high-quality documentation for QSAR models. The model information is captured us-
ing QMRF and only the approved QMRF documents are included in the JRC QSAR
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model database [54]. To facilitate the use of QMRF, a stand alone application, named
QMRF Editor, was developed to support the preparation of QMRF documents. It has
also been employed to document QSAR models in other systems (e.g. AMBIT [44],
OpenTox [80] and CAESAR [48]). The main content of QMRF is carefully designed
to reflect the five OECD principles. In addition, some general information about the
model, such as training and validation dataset files, is included in the QMRF document.
The web-based inventory allows users to search QMRF documents and structures from
the database, submit new (generated from scratch via the on-line QMRF editor) or ex-
isting QMRF documents, and review submitted documents. The stored QMRFs can
be searched via QMRF number, free text, predefined lists of endpoints, algorithms,
software and authors, by using either AND or OR operators. The retrieved documents
can be downloaded in various formats, including PDF, MS Excel, XML and HTML.
Furthermore, the JRC model inventory enables users to search all included substances
based on either exact or similarity modes, by using CAS numbers, formulas, chemical
names, aliases, SMILES codes. When searching for a substance from the database, the
associated QMRF documents and their relations (e.g. presence of the substance in the
training/validation dataset) will also be displayed. QMRF was designed to summarise
information about QSAR models, with the particular purpose of regulatory report use.
It is useful to retrieve QSAR model documents, however it does not include the exe-
cutable model files. In addition, only the model performance is recorded rather than
the model predictions. This makes it difficult to re-produce a model of interest.

2.4.5.4 QSARDB

QSAR DataBank (QSARDB) is a web-based system which aims to store QSAR mod-
els and their associated information [54], and is currently still under development.
A web-based Graphical User Interface (GUI) is provided to visually represent model
information and its prediction results. Six domain objects, namely compound, prop-

erty, descriptor, model, prediction and workflow are defined in QSARDB and each
domain object is associated with a corresponding XML representation file. Currently,
QSARDB contains over 100 QSAR models (mainly classification and regression mod-
els) which are categorised by properties, species and endpoints. This enables users
to effectively retrieve models by browsing through different categories. In contrast to
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other existing QSAR model representation schemas, QSARDB employs the Predic-
tive Model Markup Language (PMML) standard [21] to represent the actual predictive
models rather than just the model metadata. Additionally, PMML files are embed-
ded in their corresponding model web pages and XML files. In terms of prediction,
one model can have many predictions, including using different validation methods on
training, internal/external validation datasets. The predicted values are stored in sepa-
rate plain text files and embedded as attachments in a single prediction registry XML
file. QSARDB intends to include all necessary data to build QSAR models and allows
users to download the whole data repository in ZIP files. However, some actual data
(e.g. training/testing datasets, descriptor values, PMML model files and predicted val-
ues) are included as Cargos (attachment files in QSARDB) in the corresponding object
domain folders. By doing this, it requires users to have a clear understanding of how
the system organises data, if they would like to make use of such information in other
platforms. In addition, apart from allowing users to browse all available models based
on different categories, there is no functionality provided to support more complex
model management tasks, such as model identification and model ranking.

2.4.5.5 OpenTox

OpenTox is an open framework which integrates a wide range of techniques to support
toxicity prediction [80]. It currently provides two applications for model development
and toxicity estimation. There are two methods, namely lazar (Lazy Structure–Activity
Relationships) classification and lazar regression [41], available in ToxCreate to gen-
erate and validate new QSAR modelling from given experimental data. ToxPredict

allows users to predict a toxicity endpoint for a given chemical compound. Being
supported by other OpenTox concepts, including dataset, feature, algorithm and re-

port, a RDF/XML model representation schema is proposed to store QSAR models in
the OpenTox framework. The model representation mainly contains model metadata
(e.g. model ID, name, timestamp, algorithm, training dataset, parameters, dependen-
t/independent variables). However, the actual model is not included in the RDF/XML
representations. For prediction, OpenTox uses a separate validation schema to report
model performance results by using up to four different validation methods. Only the
performance matrix results are stored, the actual simulated values are omitted from the
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current representation. Similar to other QSAR frameworks, there is no decision sup-
port information (e.g. applicability domain verification or model rating mechanism)
available for users to choose the most appropriate model for a given task.

2.4.5.6 Inkspot

Inkspot [46] is a cloud-based system, which hosts data, models and documents, and
allows for a collaboration between various organisations and institutions. Inkspot pro-
vides data management system to store data and tools for its analysis. It provides
also a workflow architecture to help users in easy implementation of new predictive
toxicology applications within the framework. To support collaboration and grouping
users in specialised communities, InkSpot developed the social network architecture.
Every user has his own user space where he can store his data and share information
with other members in the same community. It is worth noting that the Inkspot archi-
tecture does not support data integration and data curation. In addition, information
stored within the InkSpot service can be multiplied in different user spaces and this
may cause data inconsistency.

Inkspot includes the Discovery Bus component for automated QSAR modelling
[13]. Discovery Bus is a multi-agents management software for automated QSAR
model development without expert intervention. An agent or a class of agents are a
piece of software being able to respond to a particular query. The idea of multi-agent
systems is to split a given request into small sub-tasks across many agents. There are
two main groups of agents: workers and controllers. Controllers are responsible for
the planning, scheduling and controlling of a given task. The central agent (planner)
assigns tasks to worker agents. Every time, a worker agent responds to a sub-query, its
reply is stored in a discovery database. Installers and reapers support worker agents.
Installers are responsible for installing and activating new agents whereas reapers take
care of the agents which failed during their performance. Controller and scheduler
agents are responsible for setting the execution priority and scheduling tasks. Pathways
of the problem solving strategy are stored in a plan database by the central planner
agent. They can be retrieved any time the similar query is submitted.

In the context of QSAR modelling, classes of agents include calculation of the
molecular descriptors, feature selections, data preparation and machine learning tech-
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niques for accessing the toxicity. Each descriptor agent calculates a different set of
chemical compound descriptors. Later, sets can be combined across all descriptor
agents. The dataset is divided into training and testing sets. The training dataset is
separated in 10 cross-validation sets. The testing set is used for the further model
validation. Different strategies are used for feature selection by feature agents. Each
selected features subset is available for the model building agent. Statistical and ma-
chine learning techniques are used to build models. For every feature selection the best
model is chosen across different agents based on the cross-validation statistics. Then,
external validation is performed to assess the quality of the predictive model. External
validation statistics [33, 34, 114] are used to calculate model performance metrics. It
is done by the Open-QSAR component built-in the Dictionary Bus [79]. This matrix
can be used in the model comparison and model selection approach to choose the best
methods to predict required values.

2.5 Model Reuse

The process of product development, such as drug design, cosmetics or plant/crop pro-
tection, takes usually up to ten years and companies spend hundreds of millions of
dollars on developing a new product. This process is divided into four phases: dis-
covery, profile, evaluation and support. In the first phase, from millions of chemical
compounds, thousands are selected according to their biological, chemical or physi-
cal properties. This chemical compounds group is profiled against various targets (e.g
biochemical and physiological targets related to metabolism, growth, development,
nervous communication) and tens of them pass to the evaluation phase. After the eval-
uation phase usually only very limited number of chemicals are selected as a product
that can be introduced into the market. Sometimes, the final product does not meet the
safety regulation and a company can only register and not sell it. In this situation, the
product must to be return to the development or evaluation phase for further develop-
ment or rejected. The identification of chemicals that may fail in the evaluation phase
become crucial for many companies. Thus, many organisations focus on better infor-
mation organisation and reuse in order to reduce the cost of testing and manufacturing
in the product development phase.

The usage of predictive models for new chemicals evaluation process has become
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a key strategy in various organisations. In [113] the authors demonstrated that QSAR
models can be used as virtual screening tools if they are robust and properly validated.
According to Annex XI of the REACH legislation [93], results of QSAR modelling
may be used instead of testing when QSAR model was:

• scientifically validated,

• substance falls within its applicability domain,

• results are adequate for the purpose of classification and labelling and/or risk
assessment,

• documentation of the applied method is provided.

Having such a wealth of previously developed models at our disposal can bring a
number of benefits if we are able to make effective reuse of them. Trained models usu-
ally represent a significant investment of time, and may contain high-impact insights
into the relationships between particular chemical attributes and specific toxicological
effects. In the past, published models in the literature were often unused and unseen
within communities because they were not publicly available or not annotated to be
suitable for reuse. They are often difficult to restore to a useful form as the published
details are either incomplete or the supporting information is missing. Lack of a stan-
dard description format for model representation, and the lack of stringent reviewing
and authors’ carelessness have been identified as the main causes for incomplete model
descriptions [71, 76]. Reproducing work to reach the same conclusions is obviously
an inefficient use of time in the best case, and in the worst case a different and pos-
sibly incorrect conclusion may be reached. In such situations the knowledge that was
previously discovered and encapsulated within a predictive model may be lost. To
avoid this, the knowledge should be captured together with the human experience of
knowledge itself and its use, and the proper management of such knowledge is required
[100].

In the previous section, a number of various toxicological system have been dis-
cussed in an attempt to address the aforementioned problems. To make models more
reusable sources of information, various model representations and ontologies have
been implemented for each toxicology system. This allows users to build models or
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workflows and reuse them only within a particular system To make use of existing
models, users are required to register with the system and also submit data that they
use for predicting a given endpoint. This discourages modellers form using such pre-
dictive toxicology systems to some extent. Often, the data in use is confidential and
modellers do not fully trust the existing systems. Additionally, model exchange across
different platforms is challenging, due to the various model representation formats.

Models that are stored in model databases can be reused to predict toxicity of new
chemical compounds. Unfortunately, this involves a manual process of model iden-
tification. A potential user is required to make a comparison of model applicability
domains and their predictivity for a given activity in order to decide if the model can
make reliable predictions for a given chemical compound. Model comparison is a
difficult task since models are generated using various subsets or various chemical
compound descriptors. Consequently, models can be trained and validated on differ-
ent datasets. For regression models, the model performance can be described by the
predictive squared correlation coefficient q2. Since the sizes and contents of modelling
and validation datasets may differ for various models, the value of q2 is not sufficient
for model comparison [33]. Several model performance matrices were analysed in
the context of model validation and model selection [114]. They are applied in au-
tomated model development process where models are validated by the same dataset.
In the case where two models come from different sources, model comparison be-
comes challenging. This requires predictive models to be validated across the entire
chemical space, which is very difficult as the list of available chemicals and assays
is limited. Based on this observation there is a need to develop a framework for au-
tomated model identification for new chemicals. Such a framework should include a
comparison model performances as well as their applicability domains.

The last element related to the efficient model reuse is model mechanistic inter-
pretation. Understanding why models makes particular decisions and knowing the
mechanism that leads towards the predicted outcome, increase a trust in the model pre-
diction. It is also the fifth requirement in OECD principles for QSAR model validation.
Unfortunately, not all models can be easily interpreted. It is possible for linear mod-
els, thanks to the availability of the model parameters and their statistical significance.
For non linear models this information is hidden within the model structure and often
it is difficult to extract it. Thus, model reuse does not only include the identification
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which model would be the most suitable for a new chemical compound but also the
interpretation of the model decision and analysis of this interpretation. The framework
reviewed in the previous section do not include such functionality.

2.6 Summary

Accurate and appropriately shared models can bring a number of benefits if we are
able to make effective use of the existing expertise. This chapter presented the predic-
tive toxicology domain and discussed main challenges related to the data and model
integration and quality assessment. This chapter also reviewed current practices and
methods for model development, validation and model reuse. This review included a
OECD principles for QSAR model validation, the REACH regulation for model reuse
as an alternative to animal testing. The lesson that has been learnt is that once a model
has been built, it can be effectively reused for new chemicals evaluation. Global mod-
els can be officially approved and built within predictive toxicology systems. Local
models can be used for new chemicals only if they are properly annotated, stored and
validated.

A number of existing predictive toxicology systems has been reviewed with regard
to model representation format and functionality that allow efficient model reuse. All
of them efficiently support only the model development process. Clearly, there is a
need for automated techniques for mining model repositories such us model quality
control, data and model integration, model comparison, model identification and in-
terpretation. The main question here is: How can we reuse existing models for new
data? This is why this thesis focuses on model governance, model identification and
interpretation to build theoretical framework and methods that allow for better model
management and reuse. The following chapters open a new domain of research and
raise questions about model reuse in predictive toxicology.
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Chapter 3
Model Governance

Effective data governance can enhance quality, availability and integrity of organisa-
tional data through cross-organisational collaboration, and implementation of struc-
tured policy-making. Currently, models are also recognised as important information
assets which can support decision-making and business strategies. This is so in do-
mains such as pharmacy, cosmetics or agriculture where there is a need to reduce costs
of a new product development and to increase the safety of the product introduced to
the market. Implementation of the data governance principles to model management
can help to balance factional silos with organisational interest by lowering costs, re-
ducing risks and increasing data confidence. This chapter extends the data governance
principle to define a framework for model governance. Six rules for defining mini-
mum information about QSAR model and the XML schema are proposed. Parts of
this chapter were published in [83].

3.1 Introduction

In the literature, governance is defined as a set of processes and strategies that address
the problem of formal management of important information assets. The terminology
of data governance was firstly established for the IT sector where governance was
focused on information technology systems, their performance and risk management
[107]. The well known Weill and Ross [120] governance framework for IT assets
provides the following decision domains: IT principles, IT infrastructure strategies,
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Figure 3.1: Decision domains for data governance [62].

IT architecture, Business application needs and IT investments to define the IT scope.
This domain defines the role that IT plays in the organisation and decisions for the IT
architecture to meet business application needs.

Constantly increasing amount of available information and the growth of digital
data made many organisation aware of the importance of their data [22]. There was a
need to develop a framework for governance of data assets. The framework for data
governance was proposed in [62] where the authors differentiated between IT assets
and information assets. They also proposed a set of five data decision domains such
as data principles, data quality, metadata, data access and data life-cycle, and defined
what governance type is needed for each domain (see Figure 3.1). According to the
authors, data principles establish the extent to which data is an enterprise wide asset,
and thus what specific policies, standards and guidelines are appropriate. Data quality
refers to its ability to satisfy data usage requirements. Quality has multiple dimensions
which were discussed in the previous chapter (see Section 2.3). Metadata, defined
as data about data, describes what the data is about and provides a mechanism for a
consistent description of data representation, thereby helping interpret the meaning or
semantics of data. Data access is premised on the ability of data beneficiaries to assign
a value to different categories of data. The data access standards can be based on the
definition of unacceptable uses of data and external requirements for the ability to track
who/what has accessed/modified data. Understanding how data is used, and how long
it must be retained allows organisations to develop approaches that map usage patterns
to the optimal storage media, thereby minimizing the total cost of storing data over its
life cycle.
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Data governance includes also the human aspect of data: who owns data, who
stewards it, who defines, produces and uses data across organisations. A good un-
derstanding of it can increase an efficient implementation of regulatory and business
requirements in order to reduce the cost of information management across organisa-
tions. This improves information quality and security, supports decision making pro-
cesses, and helps to bring organisations into regulatory compliance [10]. These actions
are supported by compliance monitoring, standards in information representation and
inventories, information management, information risk management and valuation.

3.2 Definition of Model Governance

Predictive models have become business intelligence tools that allow the prediction
of specific outcome to support business decisions in various domains. They should
be properly validated, reviewed and accepted by regulatory bodies or management
boards before it can be used within an organisation. Such acceptance increases trust
in model correctness and allows its safe usage. In the real world, there are many
good models that can support local decisions and they should be properly captured
and managed. According to the authors in [65] a model can now be considered as a
valuable informational asset, and its proper usage and application is a candidate subject
for governance.

Models can also represent a new source of risk of incorrect decisions. For exam-
ple, let consider a model that was used to predict a toxic effect of chemicals from a
given chemical space. If this model was used incorrectly or has huge error bias then
it can cause incorrect decisions on moving some chemicals to the development phase,
which causes financial loss related with a cost of their manufacturing and laboratory
testing. Another example can represent the situation when a product, discovered us-
ing in-silico methods, was registered but can not be put into market, because it does
not meet human or environmental safety requirements. This can be caused by insuf-
ficient documentation or lack of reported validation procedures for used methods in
the discovery process. To minimize such situations, governance procedures for mod-
els should be strengthened through: assurance that the model is properly used; model
improvements to validate and maintain its effectiveness, and understanding the model
weaknesses (e.g where the model can be applied safety, how reliable it is). These
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Figure 3.2: Decision domains for model governance.

observations allow us to define the following principles for model governance:

Definition 1. Model governance is a set of strategies that:

• help to ensure models achieve their purposes,

• establish model reliance and its importance for organisational use,

• establish levels of controls and validation.

The decision domains for model governance are built extending the framework
presented in [62]. They include: model principles, model quality, metadata of a model,
access to a model, model life-cycle (see Figure 3.2). Model principles includes polices,
standards and guidelines that help to establish which models can become the valuable
information assets. Model quality defines the boundary of chemical space where a
model gives reliable prediction. It does not include only the assessment of applicability
domain and model predictivity, but also an estimation of model reliability for new data.
The rules on the assessment of applicability domain as well as model accuracy were
extensively discussed in Section 2.4.3. Meta-data about a model provides additional
information about model authors, development stages, reviewers, supporting literature,
where and how the model has been used. Access to the model defines who and in
which situations has access to the model in terms of model development, validation or
revision. The life-cycle domain defines the model valuation and verification in order
to establish the boundary of the model applicability and its correctness.
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Figure 3.3: Model governance processes within a data and model governance frame-
work.

3.3 Model Governance Processes

Organisations design and implement policies according to internal business goals and
regulatory compliance, which follow data governance [20] and model governance
(Definition 1) principles. These policies standardise the meaning of model representa-
tion and model evaluation. As discussed in the previous section, a model can become
a new source of risk of incorrect decisions. This is why the evaluation of a model us-
age and its proper governance is crucial to increase the reliance on the model and its
organisational reuse. These three above mentioned strategies of model governance can
be seen as counterparts to the key data governance principles: management, quality
and security for the model information context.

The model governance processes are built within a data and model governance
framework. Figure 3.3 presents such a framework and described flows of data and
model objects and their stewardship within the organisation. The collection of data
is standardised and organized according to the internal implementation of data gov-
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ernance processes (1). A management board defines the focus areas for model de-
velopment. Models are developed on high quality data (2). Then model governance
processes must be applied to reviewed models within life-cycle management for model
development (3). Once reviewed model is accepted by the management board or regu-
latory body, it is stored in the model repository (4). Stored models in model inventories
are the subjects of the continuous verification and validation (5) to maintain their ef-
fectiveness in reuse.

For each model object there are three model governance processes: model eval-

uation, model control, and model validation (see Table 3.1). Model evaluation is a
process to determine: 1) if the policies for model representation and levels of model
controls and validation are suitable for the organisational level of model reuse and
control, 2) if validation procedures used for an individual model development process
comply with established policies, 3) if the internal model inventories comply with data
quality principles. Polices are reviewed according to: model object definition, proce-
dures for model development and validation processes. Inventories are reviewed with
respect to: model representation schemas and their consistency, accuracy and com-
pleteness among object stored in model inventories.

Model control is a process to determine: 1) if model documentation adequately
complies with the established polices, 2) if the model is easily accessed for organisa-
tional reuse and it is operating, 3) if security and change control procedures comply
with the established polices. During model control processes an unauthorised user
access or model reuse is controlled. This is important to verify if model was used
within its applicability domain. In situation where the model was not applicable, the
alert message should be sent to user or management board. In a case of any updates
to the model, the model should be flagged as not validated, and passed again to the
model evaluation phase. The documentation from model validation procedures should
be checked according to the established policies and regulatory bodies requirements.

Model validation is a process to determine: 1) if methods used in model develop-
ment phase have mechanistic interpretation, 2) if the implemented methods are accu-
rate and reliable, 3) if model inputs and results are integrated, and 4) how effectively
the model is operating. The validation phase provides mechanisms for the verifica-
tion of model development processes, as well as a data used to generate a model. The
review of model results determines how effectively a model is operating.
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Table 3.1: Model Governance Processes.

Processes Rules Action

Model Evaluation

Policies

1) review model definition
2) review model reuse
3) review model control
4) review model validation

Inventories

1) review model inventories
2) review representation schemas
3) review model availability
4) review authorisation schemas

Model Control

Changes and Security

1) control access for authorized users
2) control unsafe model reuse
3) control model updates
4) prevent unauthorised access

Documentation

1) review documentation according to
the established policies
2) analyse model limitations and po-
tential weaknesses

Model Validation Verification

1) review model mechanistic interpre-
tation
2) review model results to determine
how effectively a model is operating
3) test model integrity

3.4 Information Management System for Data and Model
Governance

Information management system for data and model governance framework is pro-
posed in Figure 3.4. It defines a number of actions for each model governance process.
To provide an efficient oversight throughout an organisation, the management board
defines policies and strategies that implement current guidelines and regulations estab-
lished by the regulatory bodies (e.g. REACH). Line management provides adequate
controls over data and models and tests model control practices and model validation
procedures to ensure compliance with established policies and procedures [10]. Staff
and external parties (collaborators) are involved in order to validate that the model is
working as intended.
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Figure 3.4: Information Management System (IMS) for Model Governance.

3.4.1 Policies

Policies are principles or rules which are defined by regulatory bodies and/or driven by
internal business needs in order to: 1) ensure data and models deposited in the database
are able to serve their intended purposes, 2) to provide guidelines for user-level con-
trol and information management and 3) to deliver proportional oversight throughout
the organisation. Multiple sub-domains are considered in terms of policies, including
scope & sources, representation schemas, storage policy, quality policy, availability
policy and authorisation schemas.

Scope and Sources define what data should and can be held by the database and
where the data comes from. This is closely related to the purposes of the database and
the availability of resources. Representation Schemas provide standards for informa-
tion context (metadata) and information records representation. This will help to build
the databases and interpretable frameworks for information exchange within an organi-
sation. Storage Policy gives the procedures that help to decide when the data or models
become valuable assets to the organisation. For example, in bio-science laboratories,
large quantity of chemicals are profiled on a daily basis and a huge number of them
are profiled against the same endpoint in various projects. Often, there is no connec-
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tion between these projects, so identification of interesting chemicals or their activity
is limited and valuable information can be lost. Quality Policy offers several levels
of quality filters in order to guarantee the stored data meets its required data needs
with respect to different applications requirements. Due to its importance, quality pol-
icy is particularly discussed in the next subsection in detail. Information Availability

concerns how users can access organisational information while maintaining the data
integrity. It includes in what way and on what device the data can be accessed, and the
possible export formats of data. Authorisation Schemas control user access to private
and sensitive data based on user privileges. The data might have multi-level user access
supported by the pre-defined authorisation policies. The authorisation policy indicates
what parts of the data can be accessed/manipulated by whom [30].

3.4.2 Implementation

The implementation aspects of a governance framework for models and data are dif-
ficult to define and specify due to their highly individual nature. Each organisation
that implements the governance principles will require a unique implementation that
is based upon their hardware, software and practices. Specific framework implemen-
tations have a significant impact upon the verification of data and model usage, in light
of policies, and ensuring data integrity. These policies provide a means for adequate
control over data and models objects and their use. Particularly, they allow the evalu-
ation of security and change control procedures, as well as a centralized, systematized
method for data and model quality control.

Access control systems implement the availability policies and the authorisation
schemas specific to a particular organisation. The detection of unauthorized activity
is a powerful tool in protecting the system. This allows system monitoring in order
to provide a multi-level defensive capability for the system. Implementation of appro-
priate limits on users, applications, hardware sources that support operational controls
that affect information reliability, accessibility, and timeliness are necessary and im-
portant aspects of a complete and usable system. Change control is a process used to
ensure that changes in data or models are introduced in a controlled and coordinated
manner. The new versions of models are reported and monitored by the version con-
trol modules and, together with the change control system, they reduce the possibility
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of unnecessary changes. Storage control implements the information representation
schemas and ensures completeness of the stored information according to the quality
definitions. The information context should be encoded for the datasets from the ex-
perimental protocol and the original data should be stored in the record format. For
the models, the information context represents the annotations of the steps in model
development and validation. The implementation controls systems together with the
documentation framework are components of the quality control system.

3.4.3 Management

Management can be generally defined as making use of information within a gover-
nance framework, and ensuring such use is effective, efficient and in line with specified
objectives. Figure 3.4 highlights the five main aspects of a information management
approach: storage, retrieval, manipulation, ranking and validation. These functional
aspects form the core interactive elements for an end user interacting with data and
model repositories under a governance framework and subsequently are the key to an
effective and useful framework. Storage functionality allows users to store or cre-
ate new information, structured and defined by the organisational polices, using an
organisation-wide standardised format. Retrieval supports chemical compound identi-
fication across various projects or model identification for new chemicals. Model iden-
tification involves model selection from existing model collections. This discovered
information (data or model) can become a new source for a future business strategies.
Manipulation supports the result reproduction, maintaining information content by au-
thorized users, reporting information weaknesses (where model provides inaccurate
prediction or incorrect content definition for data and models) by end users. Ranking

functionalities support information comparison (models or data) to support the deci-
sion on the various organisational levels. These comparison methods and matrices are
defined in quality policies and allow descriptive information comparison (based on the
metadata content), and usage information comparison (based on data or model quality
measures). Validation supports the model governance polices to validate the model
representation, quality, usage and storage policies with the business aims and scopes.
This also include a validation of the model development processes according to the
regulatory body guidances.
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3.5 Model Governance in Predictive Toxicology

Data governance is identified as a new challenge in predictive toxicology. There are
already existing rules related to scientific experiments, data harvesting or data qual-
ity metrics provided by the regulatory bodies. These rules can be implemented in the
organisational procedures. Moreover, data governance principles require the develop-
ment of interoperable and transparent framework that allow the standardisation of the
data representation. This become an advantage in data exchange and data integration
across various organisations. In [30], the authors discussed gaps in the development
of current management frameworks according to data governance principles. They re-
viewed seven widely used predictive toxicology data sources and applications, with a
particular focus on their data governance aspects, including: data accuracy, data com-
pleteness, data integrity, metadata and its management, data availability and data au-
thorisation. The authors reveals the current problems and desirable needs of predictive
toxicology. Models in predictive toxicology have been considered as an alternative for
animal testing. They have become business intelligence tools that allow the prediction
of a toxic effect of chemicals on living organisms. This means that a model has to
be validated and accepted by regulatory bodies or management boards before it can
be used within an organisation (e.g. models in the environmental regulatory decision
process [16]).

In Chapter 2 the five OECD principles for QSAR model validation were intro-
duced. These principles are accepted by regulatory bodies and widely implemented
in the predictive toxicology domain. They become a base for defining processes for
model governance. They also should be incorporated within the information manage-
ment system for data and model governance framework. One can notice that informa-
tion access and manipulation is obviously heavily dependent on the underlying data
and model representations, and shortcomings in terms of their quality. This will have
a significant impact on the ability of a user to effectively reuse of this stored infor-
mations. Therefore, the first step towards effective model governance is to create a
sufficiently flexible and accessible data and model warehouse. The main aim of such
a model inventory is to make original information (such as data and models) available
for further data mining usage, analytical processing and decision support. This infor-
mation is cleaned, transformed and catalogued into data inventories. The content of
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the stored information is extracted into metadata representations and loaded into in-
formation repositories. It is a crucial step in information integration and information
exchange processes for predictive toxicology. Additionally, model governance ensures
the quality of collected information. The quality management system embedded within
an implementation of a model governance framework is responsible for storing, query-
ing, updating and managing reliable information in efficient ways. It implements a set
of structures, processes and strategies which support information quality assurance
and quality control. This involves implementation of various quality measurements to
define a level of information accuracy, consistency, availability and provenance.

3.6 QSAR Model Representation

The standards of QSAR model exchange format have been studied in [34, 39, 77] and
there is not an efficient QSAR model representation. This is caused by the variety of
software that allows users the calculation of chemical compound properties and a lack
of an uniform descriptor representation [102]. In this section we review the common
QSAR model formats existing in the literature and we propose six rules that define
minimum necessary information about QSAR model representation.

3.6.1 Exchanged Model Representation Formats

To represent any predictive model the Predictive Model Markup Language (PMML)
can be used. It is an XML-based language which provides a way for applications
to define statistical and data mining models, to exchange and share models between
PMML compliant applications [21]. This format consists of the following elements:
header, data dictionary, data transformations, model and mining schema. Header con-
tains general information about the PMML document including: copyright information
for the model, software name and version, time-stamp which can be used to specify
the date of model creation. Data Dictionary includes definitions for all the possible
fields used by the model. This allows the definition of data types and values. Data
Transformations consists of transformations that allow for the mapping of user data
into a more desirable form which can be used by the mining model. PMML defines
several kinds of data transformations. Model contains the definition of the data mining
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model. Mining Schema lists all fields used in the model. This can be a subset of the
fields defined in the data dictionary. The list may include: attribute name, type of the
attribute, outliers treatment, missing values replacement and treatment. Targets allow
for post-processing of the predicted value in the format of scaling if the output of the
model is continuous.

Another example of the exchange model representation format is QSAR Model
Reporting Format (QMRF) [55]. QMRF was released in 2007 and became a standard
for the model information representation. It is also used by Ambit and OpenTox. It
consists of a set of information about the model development and validation processes
in accordance with the OECD QSAR validation principles [77]. This information is
encoded also in XML format and includes:

• Model: model title and its identification, pointers to the other relevant models,
software used for model development,

• Report: date and authors reporting the model, date of model development, refer-
ence to the relevant papers,

• Endpoint: species, target, measurements units, experiment protocol, dependent
variable, data quality measurements,

• Algorithm: type of the model, the algorithm description, descriptors used to
build a model, feature selection techniques, algorithms and descriptors genera-
tion together, software details,

• Applicability domain - model descriptors and their ranges, methods and software
used to assess the applicability domain and its threshold,

• Internal validation: dataset descriptions, statistics of “model goodness-of-fit”
and model robustness,

• External validation: data set description, statistics of model predictivity.

The QMRF, based on the XML DTD (Document Type Definition) Schema, defines the
elements that may be included in the model report document, which attributes these
elements have, and the ordering and nesting of the elements. This format does not
represent the relation between data used for the model generation and validation and
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Figure 3.5: The QSAR ML structure.

the model itself. This is meta-data representation of a model, that can be further used
in the provenance analysis.

The latest model representation format QSAR-ML was proposed in [102]. It is an
exchange format for QSAR that includes chemical structures, descriptors, software im-
plementations and response values. The framework allows the user to easy set up new
QSAR analysis, add molecules, select descriptors and implementations with optional
parameters, import and add response values. The structure is illustrated in Figure 3.5
and is build by the following components: Structures - define the chemical structure
(this includes InChI to provide the data integrity). Resource - a file referenced by path
or URL (it contains a checksum to verify the integrity of the files). StructureList - a
list of structure references. Descriptors - define chemical descriptors. DescriptorList
- a list of model descriptors. Parameters - a list of model parameters/settings. De-
scriptorProvider - a version of the software used to calculate descriptors. Responses -
define are the measured QSAR endpoints (response variable). ResponseUnit - defines
the measured unit like IC50 or LD50. ResponseList - defines a list of measured QSAR
points. DescriptorResults - are the results of a descriptor calculation on a structure, and
links a DescriptorValue to a Descriptor-Structure. DescriptorResultList - a list of De-
scriptorResults. Metadata - includes information about authors, license, description,
and also contains optional References.

The above discussed formats were designed to provide transparent, interoperable
model representation that facilitate the model exchange procedure between the various
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toxicity platforms. The PMML model format is the most standard one, but this does
not cover the meta information about model provenance and the modelling endpoint.
QMRF focuses on the OECD principles without annotating information about model
itself. In this case, the unambiguous algorithm must be provided but there no meta
information about model structure. And finally QSAR-ML is defining the data used to
generate or validate model with the list of the model descriptors and the model predic-
tions. In the next section a model representation format is provided that combines the
core elements from the above discussed model formats.

3.6.2 Minimum Information About a QSAR Model Representa-
tion (MIAQMR)

Minimum Information about a QSAR Model Representation (MIAQMR), proposed
in this section, is a set of rules, that helps to define a model representation satisfy-
ing model governance framework requirements as discussed in Section 3.4. These
rules encode the minimum necessary information required to define model objects in
the governance framework including: model provenance, model description, dataset
provenance, model development, model reliability and predictivity. All these rules
comply with the current OECD requirements [77] for in-silico modelling and are in-
spired by these principles. They also form the basis for the XML model representation
development called MIAQMR-ML. The general schema including the conceptual and
data layer is presented in Figure 3.6. The data layer is a simplified diagram of the
model representations. Each element corresponds to a rule that defines the minimum
required information. There are in total six rules discussed below.

RULE I: Model Provenance
A model must comply with the following standards: authors must be clearly de-
fined; timestamp of model creation, submission and updates must be provided; one
or more referenced sources that describe the model development process should
be included.

Model provenance defines in a very general way when and by whom the model
was created or developed. Listing 3.1 defines the XML schema for the provenance
element. The model representation must include an author list, contact information
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Figure 3.6: MIAQMR-ML schema.
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and the submission date. This assists with model maintenance and validation, as other
users may report errors or unexpected model behaviour directly to the authors. The
model version and timestamp must be included to support users who wish to know
about the model provenance. Model development and last modification timestamps
help users to monitor any changes that may be made by authors. Too many changes in
a short time may impact on the degree of trust in model predictivity. Additionally, a
model should not be available to users before a stable version is released. The quality
and version control system will monitor the updates and error reports and mark models
for an external review. A model must include corresponding references for model
quality evaluation. These references should include the data collections and the model
development procedures written as an organisational documentation, white or scientific
papers.

Listing 3.1: Model provenance element of the MIAQMR-ML.xsd
<complexType name="ProvenanceType">

<sequence>

<element name="Reference" ></element>

</sequence>

<attribute name="Authors"/>

<attribute name="ContactDetails"/>

<attribute name="SubmissionDate" />

<attribute name="Version" />

<attribute name="LastModifycationDate"/>

<attribute name="CreateDate"/>

</complexType>

RULE II: Model Description
A model must comply with the 1st OECD QSAR model validation principle and
have a clearly defined endpoint name and type.

According to Rule II, model representation must include at least minimal assay in-
formation such as: endpoint, units and species (see Listing 3.2). The endpoint and
species should be standardised to avoid inconsistency in data representation. The
model description does not include the full experiment protocol description only the
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exposure time should be recorded. Such information is required to report the model to
the regulatory bodies but in the governance framework this information can be recov-
ered from the dataset or assays descriptions. The model representation must include
type and name. The name of the model should be standardised over the systems. Two
models for the same endpoint should have the same endpoint name. This allows for
unique models identification for a given endpoint. The model representation must in-
clude the dependent variable. This is because the dependent variable being modelled
can be different from the measured endpoint. The model type annotation and a clear
definition of the dependent variables will be used in the model selection and compari-
son process.

Listing 3.2: Model description element of MIAQMR-ML.xsd
<complexType name="DescriptionType">

<attribute name="ModelName"/>

<attribute name="Species"/>

<attribute name="Endpoint"/>

<attribute name="Unit"/>

<attribute name="ExposureTime"/>

<attribute name="ModelType">

<attribute name="DependentVariable"/>

</complexType>

RULE III: Data Reference
A model must have references provided for datasets used in model development
and validation phases, supporting compliance with the 3rd OECD QSAR model
validation principle.

According to Rule III, model representation must have associated training and val-
idation datasets (see Listing 3.3). In the case when cross-validation methods such as
LOO, LMO, K-fold etc. are used, the validation dataset can be empty. This, however,
can cause a reduction in model quality. Conversely, a model may have more than one
validation dataset. Both datasets must include dataset provenance (including authors,
timestamp and references) and number of chemicals. The dataset reference is nec-
essary to recover information about the assay and the experimental protocol and the
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number of chemicals used for statistical model comparison. Together with the infor-
mation about applicability domain, this may provide information about how well the
model can be applied across a wide chemical sub-space. These datasets should be sub-
mitted in file format, together with the model, or be accessible via a provided link. The
simulation results must be included for model submission. This is required in order
to facilitate model identification and toxicity assessment without applying a model for
new chemicals. To clarify, the predicted toxicity measurements are only stored in the
files and used for the model performance analysis. The chemicals are related to the
models via datasets.

Listing 3.3: Model datasets element of MIAQMR-ML.xsd
<complexType name="DatasetType">

<sequence>

<element name="TrainingDataset"> </element>

<element name="ValidationDataset"> </element>

</sequence>

</complexType>

<complexType name="DatasetProvenanceType">

<sequence>

<element name="SimulationResult"></element>

</sequence>

<attribute name="DatasetAuthors" />

<attribute name="DatasetLastModifyDate" />

<attribute name="DatasetURL" />

<attribute name="NumberOfChemicals" />

</complexType>

<complexType name="ResultType">

<attribute name="FileName"/>

<attribute name="FileURL" />

</complexType>

RULE IV: Model Development
A model must refer to the model development process to comply with the 2nd and
3rd OECD QSAR model validation principles, and to support compliance with the
5th OECD QSAR model validation principle.
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Rule IV ensures transparency in the model algorithm within the model governance
framework. This information has to be available for the quality control system to
establish model performance according to the quality policies. This also allows the re-
production of predictions as it includes information about data pre-processing, the al-
gorithm, attributes/features used in the model development process and their provider,
the access to the model executable file or to the tools that may be used for the further
predictions and the applicability domain. Often, model supporting information pub-
lished in the literature is not sufficient to reproduce model results. Thus the model
must provide information about whether the dataset has been pre-processed or not.
If the dataset has been pre-processed, the feature selection algorithm that was used
should be included (see Listing 3.4). The method name must be defined. The name of
the software and its version must be specified. The method description must be pro-
vided including a list of parameters. Such information will help users to reproduce the
model using the same or different modelling tools.

Listing 3.4: Model preprocessing element of MIAQMR-ML.xsd
<complexType name="PreprocessingType">

<sequence>

<element name="PreprocessingStep"> </element>

</sequence>

</complexType>

<complexType name="PreprocessingStepType">

<attribute name="Name"/>

<attribute name="Description"/>

</complexType>

The model representation must define model features (descriptors). This imposes
a requirement to provide the descriptor list used in the model development process.
Descriptors can be calculated from molecular structure, e.g. molecular weight, or
measured such as logP. In this case, when descriptors values were calculated from
a structure, the software (including version and parameters) from which the descrip-
tor values are derived is required (see Listing 3.5). Such captured information allows
users to reproduce results or to find a collection of models for a given endpoint. These
models may be based on different feature sets and their combination can improve a
future prediction for new chemical compounds.
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Listing 3.5: Model descriptor type element of MIAQMR-ML.xsd
<complexType name="DescriptorListType">

<sequence> <element name="Descriptor"> </element>

</sequence>

<attribute name="Name"/>

<attribute name="Description"/>

</complexType>

<complexType name="DescriptorType">

<sequence> <element name="Parameter"> </element>

</sequence>

<attribute name="Name"/>

<attribute name="Type">

<attribute name="Provider" />

<attribute name="Description"/>

</complexType>

<complexType name="ParameterType">

<attribute name="Key"/>

<attribute name="Value"/>

</complexType>

<complexType name="DescriptorProviderType">

<attribute name="URL"/>

<attribute name="Name" />

<attribute name="Vendor"/>

<attribute name="Version"/>

</complexType>

<complexType name="DescriptorResultListsType">

<sequence> <element name="DescriptorResult"> </element>

</sequence>

</complexType>

<complexType name="DescriptorResultType">

<sequence> <element name="DescriptorValue"> </element>

</sequence>

<attribute name="SubstanceID"/>

<attribute name="DescriptorID"/>

</complexType>

<complexType name="DescriptorValueType">

<attribute name="Index"/>

<attribute name="Label" />

<attribute name="Value" />

</complexType>

67



3.6 QSAR Model Representation

The model representation must have defined an applicability domain, where the
model produces reliable predictions. This includes information about the applicability
domain estimation process and representation of applicability domain (see Listing 3.6).
The model has to be represented in a machine readable format such as files for MS
Excel, PMML, ARFF, R, Java, C etc. It is required to submit actual model files when
submitting a model to the system.

Listing 3.6: Model applicability domain element of MIAQMR-ML.xsd
<complexType name="ApplicabilityDomainType">

<sequence>

<element name="ADelement" </element>

</sequence>

<attribute name="Process"/>

</complexType>

<complexType name="ADelementType">

<attribute name="Label"/>

<attribute name="LowerBound" />

<attribute name="UpperBound" />

</complexType>

RULE V: Model Reliability
The model reliability must define the model ability to make predictions from the
training dataset. Models must have a defined type, the model performance matri-
ces, and a list of outlier chemicals clearly defined.

According to Rule V, the internal validation method must be specified, such as
cross validation, LOO, LMO, boosting etc (see Listing 3.7). For classification models,
the following performance matrices are required: confusion matrix, precision/recall,
overall accuracy, sensitivity, specificity and errors. For regression models, the fol-
lowing performance matrices are required: R-squared (r2), Q-squared (q2) [114] and
errors. The model must provide a list of outliers. While the simulation results can be
stored, these values do not have to be provided by authors. Nevertheless, they can be
calculated from the model and stored in the model representation format.
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Listing 3.7: Model reliability element of MIAQMR-ML.xsd
<complexType name="ReliabilityType">

<sequence>

<element name="Performance"> </element>

<element name="InternalValidation" > </element>

<element name="OutlierList" ></element>

</sequence>

</complexType>

<complexType name="InternalValidationType">

<sequence>

<element name="Parameter"></element>

</sequence>

<attribute name="ValidationType">

<simpleType>

<restriction base="string">

<enumeration value="CrossValidation"/>

<enumeration value="LOO"/>

<enumeration value="LMO"/>

<enumeration value="Boosting"/>

<enumeration value="Other"/>

</restriction>

</simpleType>

</attribute>

</complexType>

<complexType name="OutlierListType">

<sequence>

<element name="Outlier" ></element>

</sequence>

<attribute name="NomberOfOoutlier"/>

</complexType>

<complexType name="OutlierType">

<attribute name="SubstanceID" type="string"/>

</complexType>

<complexType name="PerformanceType">

<choice>

<element name="ClassificationPerformance"> </element>

<element name="RegressionPerformance"> </element>

</choice>

</complexType>
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RULE VI: Model Predictivity
The model predictivity must define the model ability to make predictions from
outside the training data. Models must have a defined type, model performance
statistics, and a list of the chemicals defined as outliers.

According to RULE VI and similar to the reliability rule, the model representation
should include information about the model performance for the validation dataset
(see Listing 3.8). For classification models, the following performance matrices are re-
quired: confusion matrix, precision/recall, overall accuracy, sensitivity, and specificity.
For regression models, the following performance matrices are required: R-squared
(r2), Q-squared (q2) and errors such as mean squared error, etc. The model must also
provide a list of outliers. If a model has been validated on multiple validation datasets,
each should have their own performance matrices. These values can be calculated from
the simulation result, but it is important to encode it in a model representation to ensure
the model representation consistency.

Listing 3.8: Model predictivity element of the MIAQMR-ML schema
<complexType name="PredictivityType">

<sequence>

<element name="Performance"> </element>

<element name="Outlierlist"> </element>

</sequence>

<attribute name="ADextrapolationComment" type="string"/>

</complexType>

3.7 Model and Data Farm (MADFARM) Prototype

To provide a proof-of-concept for model governance framework, the Model and Data
Farm (MADFARM) prototype has been developed. MADFARM is a web application
to access models and datasets for predictive toxicology. This application has been
implemented for internal use in Syngenta [83] and is still under development to provide
the whole functionality that was discussed in this chapter. As of 2013, it includes an
implementation of the MIAQMR-ML format for model representation.

70



3.7 Model and Data Farm (MADFARM) Prototype

3.7.1 MADFARM Design Principles

The design for the MADFARM pilot platform carefully considers the OECD principles
for QSAR acceptance in predictive toxicology. As an information system, the design
steps were: data representation, database design based on the data implementation,
and user interface creation. Additionally, the proposed framework is built upon the
following key design principles which guide both the design and implementation:

• Flexibility - employs a multi-level user access mechanism which allows for a
variety of user scenarios, use cases and requirements. In addition, the system
is delivered in a web application format, the users can easily access the system
within the organisation. This also provides the flexibility to make changes or
updates to the system, no extra efforts is required from the users.

• Extensibility - the design is guided by an object-oriented approach, so that it is
easy to add new components/objects into the existing framework.

• Transparency - proposes a detailed metadata representation schema which is
based on the OCED principles. This helps to increase the transparency and in-
terpretability of such framework.

• Reliability - there is a quality check mechanism to ensure the stored datasets and
models are of high quality. Any included model has to go through the model
evaluation - model control - model validation process. The metadata of dataset
and model are well captured and stored. Multi-level user access and authorisa-
tion is implemented to protect sensitive data to make the framework more reli-
able and trustful. Version control and change control also ensures that the users
can only access the permitted information.

• Reusability - users can rebuild a model by using the stored metadata and pa-
rameters. The representation schema is represented in XML format which can
easily be exchanged over the Internet. Most existing frameworks enable users
to re-build stored models within their own frameworks, but not using external
tools. The MADFARM framework not only stores model metadata, but also the
executable model files. In addition, the training/validation datasets are available.
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Figure 3.7: MADFARM - Browse Assay Interface.

3.7.2 MADFARM Web Interface

Currently, 3486 substances, 5482 assays, 5571 assay components, 9104 species and
71 endpoints are stored in MADFARM. Data comes from various databases such as:
ToxRefDB, DSSTOX, TETRATOX, CAESAR and Syngenta’s internal databases. The
system allows users to browse information and search for chemical compounds, assays
and datasets. Users can submit new assays and substances but, before data is integrated
quality procedures are applied to ensure their consistency and correctness. Figure 3.7
presents the search engine for an assay.

From the collection of assays, users can create their own datasets for further anal-
ysis or modelling. Once the dataset is created, it can be stored in MADFARM (see
Figure 3.8). During submission, the metadata about a dataset are captured according
to RULE III (see above section). MADFARM provides a specially designed entry
tool, where all required information about a dataset has to be provided. The dataset
should be submitted as supporting information for a model if users wish to submit the
model into the system. Currently, there are two models for polar/nonpolar narcosis for
TETRATOX taken from JRC QSAR DB and two models for BCF and developmental
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Figure 3.8: MADFARM - Browse Dataset Interface.

toxicity from the CAESAR system. Additionally in MADFARM there are 31 models
developed in Syngenta for the ToxCast dataset. Figure 3.9 presents the model search
engine. The user can browse existing models in MADFARM and use them to predict
toxicity for new chemical compounds.

The model submission page has been built according to the rules discussed in the
previous section. There is a specially designed template where the user is required
to provide all information about authors, models, datasets and simulation results. To
ensure the completeness of provided information, the user is asked to follow the sub-
mission protocol. Once the model is submitted, it has to be reviewed according to
the model quality policies to ensure completeness of information before it becomes
available to other users.
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3.8 Summary

Figure 3.9: MADFARM - Browse Model Interface.

3.8 Summary

Models are powerful tools supporting decision making processes in various domains
such as economics, finance, pharmacy, and biosciences to name a few. They are
accepted as intelligent decision making tools and are commonly viewed as valuable
business-wide assets. However, in the real world there are (local) models designed to
work well within defined narrow applicability domains. They are too specific in their
application to become general business tools, but are useful enough to become valuable
assets within organisations. Despite this, very often they are lost within communities
instead of being validated and subsequently used to support future decisions.

In this chapter a new concept of model governance in the predictive toxicology do-
main was proposed. The model governance processes were discussed in detail, and the
information management framework for data and model governance was introduced.
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3.8 Summary

The main challenge is how to bring models to life to enhance and improve their avail-
ability and to provide the means to assess their potential utility for future decision
making. To achieve this, a suitable model representation is required. In this chapter
the minimum information about a QSAR model representation (MIAQMR) was de-
fined. This representation combines and extends elements included in existing model
representations to provide a transparent and sufficient model object representation. An
XML schema was proposed for the MIAQMR mark-up language. As a proof of con-
cept, the prototype of the MADFARM system was presented. The MADFARM has
been developed in collaboration with Dr. Xin Fu and Dr. Richard Marchese Robinson
that were KTP Research Associates in Syngenta.

In MADFARM, a process of model reuse is manual. Users have to compare models
to find the most suitable ones. There is a need to provide automated or semi-automated
methods that support decision on a model usage and its analysis. The following chap-
ters will address these issues.
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Chapter 4
Model Identification

Reuse of information and existing models in predictive toxicology is important due to
the current focus on the reduction of animal testing and the cost of new product devel-
opment. The decision to use a model is left to users and it is based on their trusts that
the model is accurate. This chapter introduces a new concept of semi-automated model
identification. Having a collection of good quality models we would like to identify
the most suitable model for a given chemical compound. To solve this problem we
propose a partitioning model. To construct such model two method are introduced: the
first based on the nearest neighbour and the second based on a Pareto neighbourhood.
This chapter defines a theoretical framework and proposes algorithms for the model
identification process. Experimental work shows that the proposed approach provides
good results. The work presented in this chapter was published in [84] and [122].

4.1 Introduction

There is an extensive literature associated with the best practice for model generation
and data integration (see Section 2.4), but management and identification of relevant
models from available collections of models is still an open problem. In recent years
a large number of highly predictive models, having various applicability domains, has
become publicly available. Some of them, tested on a wide chemical space, have
become officially approved tools, e.g. KOWWIN (estimates the log octanol-water
partition coefficient) or BCFBAF (estimates fish bioconcentration factor) built into Es-
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timation Program Interface (EPI) Suite [28]. There is also a large number of quality
models that are applicable only for a narrow chemical space. Some of them are an-
notated according to the OECD principles and publicly available in databases like the
JRC QSAR Models Database [54]. Models that are stored in model databases can be
reused to predict toxicity of new chemical compounds. Unfortunately, this involves a
manual process of model selection. A potential user is required to make a compari-
son of model applicability domains and their predictivity for a given activity in order
to decide if the model can make reliable predictions for a given chemical compound.
Model comparison is a difficult task since models are generated using various sub-
sets or various chemical compound descriptors. Consequently, models can be trained
and validated on different datasets. Several model performance matrices have been
analysed in the context of model validation and model selection in [66]. They are ap-
plied in automated model development where models are validated by the same dataset
[124]. In the case where two models come from different sources, model comparison
becomes challenging. This requires predictive models to be validated across the entire
chemical space, which is very difficult as the list of available chemicals and assays can
be limited. Clearly, there is a need for automated techniques for mining model reposi-
tories including methods for model quality control, data and model integration, model
identification, and model interpretation. To partially address these issues, this chapter
proposes a mathematical framework for model identification in predictive toxicology.

In engineering, the term “model identification” refers to the system identification
that uses statistical methods to build mathematical models of dynamic systems from
measured data. In this chapter, the term “model identification“ is used to cover the
whole range of problems related to model selection from a collection of existing mod-
els (for a given endpoint) developed on various datasets and in the different time. In
the extreme case, datasets (and specified applicability domains) for two models can be
disjoint (ie. non-overlapping). Model identification is a much harder problem than the
well known model selection problem [64], i.e. choosing a model from a set of candi-
date models with the same applicability domain. Therefore, various methods applied
in traditional model selection [49, 66, 73, 111] cannot be directly applied to model
identification. In contrast to model selection, model identification cannot take into ac-
count all model variables or parameters since some model variables cannot be easily
accessed for new chemical compounds.
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4.2 Partitioning Model

4.2 Partitioning Model

The idea of model identification is simply based on a partition of a chemical space into
groups according to a similarity of elements in this space and model performances.
Each group is assigned with a model that gives reliable prediction for all elements
from such group. In this section the basic definitions for a mathematical framework
for model identification are introduced.

Definition 4.1. A chemical space X is defined as a set of pairs x = (xd, xf ), where

xd ∈ RK1 represents descriptors, xf ∈ {0, 1}K2 is a fingerprint, and K1 + K2 is the

dimension of the chemical space.

Descriptors represent various topological, geometrical, physiochemical properties
of a chemical compound. A fingerprint is a binary vector whose coordinates define
the presence or absence of predefined structural fragments within a molecule. A fin-
gerprint is also a one dimensional representation of the molecular descriptor and it is
widely used for chemical similarity search in large databases. Detailed discussion of
chemical representation was presented in Section 2.2.1. It is also worth noting that
a fingerprint is not a unique chemical compound representation because it encodes
only a fragment of a molecule. There can be two different molecules having the same
fingerprint representation.

Definition 4.2. A predictive model M is a mapping X → Y , where x ⊂ Rd is a

chemical space and Y ⊂ R is the output space.

The output space Y might, for example, represent a particular biological, physical
or chemical activity of a chemical compound. For such defined models, an input data
is represented by the pairs:

(xi, yi) ∈ X × Y, i = 1, . . . , n,

where xi is an element of the chemical space and yi is the measured activity of that
element. There is also a set of m predictive models M = {M1, . . . ,Mm} associated
with the activity Y . These models were generated using various statistical or data
mining techniques and they have different applicability domains and performances. To
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4.2 Partitioning Model

identify the most predictive model from the collection of models M for a new chemical
compound x ∈ X , a partitioning model is defined.

Definition 4.3. A partitioning model M̂ is a mapping X → Y given by the following

formula:

M̂(x) =



M1(x), x ∈ D1,

M2(x), x ∈ D2,
...,

...,

Mm(x), x ∈ Dm,

where

• D1, . . . , Dm ⊆ X are disjoint,

• ⋃m
i=1Di = X .

A computer representation of the partitioning model is a demanding task due to the
size of the chemical space – one has to store the sets D1, . . . , Dm. The partitioning
model aims at dividing the chemical space in such a way that every element x ∈ X

is assigned to the model, from the set of available models, with the highest predictive
power. This task is clearly infeasible as the setX is large whereas available information
is limited. Therefore, there is a need to concentrate on approximate solutions to build
the partitioning model.

The construction of the partitioning model is a similarity-based classification prob-
lem, that assigns a given chemical compound to the most predictive model. The
similarity-based classifier estimates the class label of a test item using similarities
between the test item and a set of labelled training items [15]. While most learning
methods derive a set of classification rules from training data, in this work the classifi-
cation is obtained by applying a pre-defined classification function on a given dataset.
This function is a combination of the chemical compounds similarity and model perfor-
mance. According to Definition 4.3, the partitioning model splits the chemical space
in groups in order to maximize the similarity of their chemical compounds and to min-
imize the error of a model associated with this group. Let us call such a group - a

model group. It is easy to notice that this is a bi-criteria problem and the solutions
have to represent a trade-off between optimality of these criteria (the so-called Pareto
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Algorithm 1 Double Min-Score Algorithm
Input: A dataset T , a family of models MT and a new data x.
Output: The most predictive model M .
Step 1: Calculate the error ei,j for every model Mj and every item xi in dataset T .
Step 2: Split the dataset T into m disjoint model groups.
Step 3: Calculate the nearest neighbourhood of x.
Step 4: Select the model Mj assigned with the nearest neighbour of x.

points[23]). Pareto optimality is a multi-criteria optimisation problem widely used in
decision-making. The usage of Pareto points for model identification in predictive
toxicology will be presented later in this chapter (see Section 4.4.2).

4.3 Double Min-Score Algorithm

The construction of the partitioning model, as mentioned in the previous section, is a
bi-criteria problem. For simplicity, this problem can be reduced to be a one-criteria
problem based on the chemical compound similarity hypothesis [51] which states that
similar compounds have similar properties. The mapping between the chemical space
and a set of model indexes is defined using the Double Min-Score (DMS) algorithm
(see Algorithm 1).

Let’s consider a dataset T of pairs (xi, yi) ∈ X × Y , where i = 1, . . . , n, and the
family of predictive models MT. In Step 1 of the DMS algorithm presented above, the
error ei,j of the model Mj for the i-th data item is defined as follows:

ei,j = |yi −Mj(xi)|, (4.1)

where i = 1, . . . , n and Mj ∈MT for j = 1, . . . ,m.
In the next step a mapping of the chemical space into a set of model indexes D :

X ← {1, 2, . . . ,m} is defined. Firstly, a mapping D on the dataset T is considered in
such a way that for each xi ∈ T :

D(xi) = min{j ∈ {1, 2, . . . ,m} : ei,j = min{ei,l : l = 1, . . . ,m}} (4.2)

In this step, a class (a model index) is defined for elements in the dataset T . In Step
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2 of Algorithm 1 a dataset is divided into m disjoint sets. According to formula (4.2),
each data item xi ∈ T is assigned to the model that has the minimal error defined by
formula (4.1) over all available models. In case where more than one model has the
same predictive error, the model with the lowest index is chosen.

In the next step, the mapping D is extended to the whole chemical space X in the
following way: for x ∈ X

D(x) = min{D(xi) : ρ(xf , xfi ) = (4.3)

min{ρ(xf , xfk) : k = 1, . . . , n}, i = 1, . . . , n}

where D(xi) is defined by formula (4.2) and ρ is the fingerprint-based similarity co-
efficient (widely used in chemical similarity searching [121]). The DMS algorithm
uses only the molecular similarity of chemicals and does not require knowledge of the
model applicability domain. In this stage (Steps 3-4, Algorithm 1) the nearest neigh-
bourhood of x is calculated. Then, the element x is assigned to the model group of its
nearest neighbour xi according to formula (4.3). The selected model can be applied on
x to predict its activity y.

It is worth noting that the automated model selection framework can also be used
for the applicability domain estimation. The partitioning model groups chemicals ac-
cording to the model performance, and then ranges for model descriptors can be easily
obtained from the chemical space X .

4.4 Algorithms Based on Pareto Order

The identification of the most reliable model from the collection of models for new
chemicals is a challenging task. As was mentioned in Section 4.2 it is a bi-criteria op-
timisation problem. The solution must to be a trade-off between the chemical similarity
and the model performances. This means that there can be more than one solution.

This section has three main subsections. The first introduces new properties of the
Pareto order. The second presents a new method for finding the set of optimal Pareto
sets of candidate models. In the last section the Pareto neighbourhood is discussed and
two methods for unambiguous model identification are presented.
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4.4.1 Pareto Optimality

Pareto optimality, often called Pareto efficiency, is named after 20-th century Italian
economist Vilfredo Pareto, who studied income distribution and the analysis of in-
dividuals’ choices. He introduced the concept of Pareto efficiency, widely used in
economics and engineering, to find solutions for multi-criteria optimisation problems
[24]. Multi-criteria optimisation involves more than one objective function to be opti-
mized simultaneously and the methods are applied where optimal decisions need to be
taken in the presence of trade-offs between two or more conflicting objectives. In this
concept, the maximization of the similarity within a model group and minimization of
the model error associated with the group are the main two objective functions.

In engineering, a set of solutions/choices that are Pareto efficient is very often
called the Pareto frontier or Pareto set. In this work the Pareto set is used to define a
set of candidate models for new chemicals. The following sections include a recall of
the Pareto order and proposes its new properties.

4.4.1.1 Pareto Set

Let us consider a vector v = [f1, f2, . . . , fK ] in the K-dimensional space. Let πj(v) =

fj denote a j-th coordinate of vector v and V be a finite set of vectors in RK .

Definition 2 (Domination). A vector v ∈ RK is dominated by a vector w ∈ RK , which

is denoted by v � w, if

πj(v) ≤ πj(w), ∀j= 1, . . . , K. (4.4)

One can say that v is strictly dominated by w, v ≺ w, if v � w and v 6= w, i.e.

∀j= 1, . . . , K πj(v) ≤ πj(w), ∃j=1,...,K πj(v) < πj(w). (4.5)

Definition 3 (Comparison). Vectors v, w ∈ RK are incomparable, which we denote by

v ∼ w, if neither v � w nor w � v.
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Notice that v ∼ w if and only if there exist i, j ∈ {1, . . . , K}, i 6= j, such that

πi(v) < πi(w) and πj(v) > πj(w). (4.6)

Definition 4 (Pareto set). A set Γ ⊂ V of minimal vectors with respect to � is called a

Pareto set for V .

Note that Γ consists of incomparable vectors. Then one can define Γ equivalently
by the formula

Γ = {v ∈ V : ∀w∈V v � w ∨ v ∼ w}. (4.7)

The above definitions and basic properties of the Pareto set can be found in [110].
Below there are defined some properties of Pareto sets and Pareto order that are used
in the following sections. First, a convenient notation is introduced. Let

fmin
j := min{πj(v) : v ∈ V }, j = 1, . . . , K, (4.8)

and
Vj := {v ∈ V : πj(v) = fmin

j }, j = 1, . . . , K. (4.9)

The set Vj consists of all vectors in V with minimal value on the j-th coordinate.

Lemma 1. Let Γj be the set of all minimal vectors in Vj . Then Γj ⊂ Γ, where Γ is the

Pareto set for V .

Proof. One can prove this lemma by contradiction. Let’s j ∈ {1, . . . , K} and choose
v ∈ Γj . Assume that v /∈ Γ, which is equivalent to saying that there exists w ∈ V that
is strictly dominated by v, i.e. w ≺ v. This means that πj(w) = πj(v) and w ∈ Vj .
By the definition of Γj we know that v is a minimal vector in Vj , so v � w, which
contradicts w ≺ v.

Let IΓ =
⋃

j=1,...,K Γj and

fmax
j := max{πj(v) : v ∈ IΓ}, j = 1, . . . , K. (4.10)

In particular one can notice that IΓ is a subset of Γ and it is called an initial Pareto set.
The next lemma establishes the dependence of the conditions for incomparability with
vectors in this initial Pareto set.
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Lemma 2. If a vector v ∈ V is incomparable with all vectors in IΓ, then there exist at

least two indices j ∈ {1, . . . , K} such that

πj(v) ∈ (fmin
j , fmax

j ). (4.11)

Proof. Let v ∈ V . First notice that πj(v) ≥ fmin
j , j = 1, . . . , K. If πj(v) /∈

(fmin
j , fmax

j ) for all j then πj(v) ≥ fmax
j for all j and w � v for w ∈ IΓ. If there

exists exactly one j ∈ {1, . . . , K} such that πj(v) ∈ (fmin
j , fmax

j ), then for each index
l 6= j we have πl(v) ≥ fmax

l and there exists a vector w ∈ Γj such that w � v. There-
fore, if v is incomparable with vectors in IΓ, none of the above cases can take place,
and the proof is completed.

4.4.1.2 Pareto Order in Two Dimensions

This subsection is devoted to study of the two-dimensional case, i.e. K = 2. We shall
use the notation introduced above.

Lemma 3. The set IΓ has at most two elements.

1. If |IΓ| = 1, then IΓ is the Pareto set for V .

2. If |IΓ| = 2, then a vector v ∈ V is incomparable with vectors in IΓ if and only if

∀j=1,2 πj(v) ∈ (fmin
j , fmax

j ). (4.12)

Proof. Notice first that each Γj , j = 1, 2, consists of one element, because the Pareto
order� induces a linear order on the sets Vj . Therefore, IΓ consists of at most two ele-
ments. Assume that IΓ has one element, which we denote by w. From the construction
of IΓ we have:

π1(w) = fmin
1 , π2(w) = fmin

2 .

Consequently, w is dominated by every vector of V , so it is the only minimal vector in
V . Assume now that IΓ consists of two vectors: w1 and w2.
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(⇒) After renumbering, Γ1 = {w1} and Γ2 = {w2}. Hence, we obtain from equations
(4.8)-(4.10)

fmin
1 = π1(w1), fmax

1 = π1(w2),

fmin
2 = π2(w2), fmax

2 = π2(w1).

Due to (4.6) the set of vectors v ∈ V incomparable with IΓ satisfies (4.12).
(⇐) Let v ∈ V for which inclusion (4.12) holds, then using renumbering of set Γj ,
j = 1, 2, from the above implication, we obtain:

π1(v) > fmin
1 = π1(w1), π1(v) < fmax

1 = π1(w2),

π2(v) < fmax
2 = π2(w1), π2(v) > fmin

2 = π2(w2).

According to Definition 3 and Formula (4.6), v ∼ w1 and v ∼ w2. Since IΓ =

{w1, w2}, then v is incomparable with the vectors w1 and w2.

As shown in Figure 4.1a and Figure 4.1b, when IΓ consists of two elements w1 and
w2, a set of vectors incomparable with IΓ is given by the rectangle V. Let γ be a vector
incomparable with IΓ, i.e. γ ∈ V. The introduction of v0 divides the rectangle V into
three areas:

• A′ and A′′ is a set of vectors incomparable with IΓ ∪ {γ},

• B is a set of vectors smaller then γ,

• C is a set of vectors bigger then γ.

The above properties of IΓ and vectors incomparable with IΓ allow us to limit the
search space V to find Pareto solutions.

4.4.1.3 Finding a Pareto Set in 2D Vector Space

This section proposes an algorithm for finding a Pareto set in two-dimensional
space (see Algorithm 2). FIND-PARETO-SET(V ) is a recursive algorithm that finds
all Pareto points in the rectangle V defined by two points in the initial Pareto set IΓ

(see Lemma 1); this rectangle contains all points from V . The algorithm starts from
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(a) A space V of incomparable vectors bounded by coordinates vectors w1, w2 ∈ IΓ

(b) A partial space V when a new vector γ is introduced.

Figure 4.1: Search space for Pareto solutions

finding a point γ that does not dominate any other points in V (line 4). This point
splits the area V into four rectangles (see Figure 4.1b). According to Lemma 2 and 3,
B∩V = ∅, C does not contain Pareto points, whereas points in rectangles A′ and A′′

are incomparable with γ. The above procedure is recursively repeated for V ∩A′ and
V ∩A′′ ( Q1 and Q2).

The algorithm sketched above calls FIND-PARETO-POINT(V̄ ) (see Algorithm 3)
to find a Pareto point in the set V̄ . This procedure works in the pessimistic time O(n2),
where n is a number of elements in V̄ (when all solutions are comparable, i.e., to form
a chain it may take n iterations to find a Pareto point). However, the expected running
time is much shorter thanks to the random selection of points.
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Algorithm 2 FIND-PARETO-SET(V )

1: if V = ∅ then
2: return ∅
3: end if
4: γ ← FIND-PARETO-POINT(V )
5: Q1 =

(
V {γ}

)
∩
(
(−∞, f1(γ)]× [f2(γ),∞)

)
6: Q2 =

(
V {γ}

)
∩
(
[f1(γ),∞)× (−∞, f2(γ)]

)
7: Γ = {γ} ∪ FIND-PARETO-SET(Q1) ∪ FIND-PARETO-SET(Q2)
8: return Γ

Algorithm 3 FIND-PARETO-POINT(V̄ )

1: if V̄ = ∅ then
2: return ∅
3: end if
4: select v̂ randomly from V̄
5: while v̂ dominates points from V̄ \ {v̂} do
6: V̄ ← {v ∈ V̄ \ {v̂} : v � v̂}
7: select v̂ randomly from V̄
8: end while
9: return v̂

4.4.2 Pareto Algorithms

Following the similarity hypothesis researchers build models for groups of chemicals
that have a common molecular fragment or common properties. These models are
more reliable and give better predictions for chemicals that lie in the model applica-
bility domains. Further, high quality models developed for a small subset of chemical
space can be combined in a global model that covers larger chemical space using vari-
ous ensemble techniques.

The chemical space X is a set of chemical compounds represented by the combi-
nation of all possible existing chemical descriptors (see Definition 4.1), and for a given
endpoint there is a collection of existing models M. For each chemical compound
x ∈ X , model predictions Y ′

= {y′
1, . . . , y

′
m} for models from M are known. To iden-

tify a model for a given query chemical compound q, the set of chemicals from X and
their model performances is converted into a set of pairs (di, eim), where di represents
the distance between q and the i-th chemical compound from the chemical space. The
error eim = |y(xi) − y′

m(xi)| defines model performance for the m-th model from M
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Algorithm 4 MODEL-IDENTIFY(T, q)
1: V ← INIT(T ,q)
2: Γ← FIND-PARETO-SET(V )
3: if |Γ| = 1 then
4: return modelId of the sole element of Γ
5: else
6: return FIND-MODEL-ID(Γ)
7: end if

Algorithm 5 INIT(T, q)

1: V ← ∅
2: for i = 0 to rows(T ) do
3: for j = 0 to models(T ) do
4: calculate the distance dqi and error eij
5: V = V ∪ {(dqi, eij)}
6: end for
7: end for
8: return V

applied to the i-th chemical compound. In a set of such pairs, one can find models
that have a low predictive power for the most similar chemical compounds whereas
the other gives better predictions. This illustrates the situation often encountered in
multi-criteria optimization problems: there is no solution that outperforms the others
with respect to all criteria. Hence, instead of having one solution we have a set of solu-
tions that cannot be compared to each other. The above task is a Pareto problem: one
has to balance similarity to existing chemical compounds and accuracy of predictions
offered by available models.

The model identification procedure (see Algorithm 4) can be described as follows:
for a query chemical compound q and a given chemical space – 1) create the set V of
pairs (di, eim), 2) find the Pareto set for V , and 3) select the most suitable model for q.
To create a set V we start from the array T (see Figure 4.2) that contains a structural
representation of the chemical compound, its measured activity (for a given endpoint)
and predictive performance of each model from M.

After executing MODEL-IDENTIFY(T, q), in line 1, the array T is converted into a
list of vectors V using procedure INIT(T, q) (see Algorithm 5). Every vector vi ∈ V is
defined as a pair of the distance between q and the i-th chemical compound from T , and

88



4.4 Algorithms Based on Pareto Order

Figure 4.2: Collection of models for the IGC50 prediction for Tetrahymena pyri-
formis.

the error of the j-th model from M for the compound i. The distance dqi = 1−STqi is
calculated using Tanimoto coefficient ST , which is the most frequently used similarity
measure in chemoinformatics [121]. This coefficient works with fingerprints (binary
representation of molecules) and is defined as a ratio between the number of bits set
on the same position in two fingerprints and the sum of bits set on different positions.
The model error eij is defined as a distance between the true activity for compound i
and the value computed by model j. We treat V as a set of all possible solutions for
model identification for a given query molecule q and known chemical sub-space.

In line 2 of MODEL-IDENTIFY(T, q), we call FIND-PARETO-SET(V ) to find
the set of all Pareto points Γ in V . Then, we analyse points in Γ in order to choose
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the most predictive model for q. In the case when |Γ| = 1, there is only one candi-
date, so the choice is trivial. This case is comparable to the DMS algorithm proposed
in Section 4.3 which selects the most predictive model for the most similar chemical
compound of q. In the case when Γ consists of many Pareto points, the model identi-
fication becomes a difficult task: the Tanimoto similarity coefficient (as well as other
fingerprint similarity measures) between chemical compounds may not be correlated
enough with their activity partially contradicting the similarity hypothesis [51] (see the
end of this section for a detailed example). To identify a model using Pareto points,
first we define the n-Pareto Neighbourhood as follows:

Definition 5. The n-Pareto Neighbourhood is a set with at most n Pareto points from

Γ which are at distance less than τ from the element q where τ > 0 and n > 0.

This Pareto neighbourhood defines at most n Pareto points that represents the
neighbouring chemicals to the query chemical compound q and their the most predic-
tive models in the same time. The threshold τ is selected by experiment and depends
on the chemical similarity within a given chemical space. As was mentioned above,
similar chemical compounds might have very different measurements of activity. To
demonstrate this, we analysed the TETRATOX dataset which contains growth inhibi-
tion concentration (IGC50) for Tetrahymena pyriformis [45, 99]. Chemical compounds
were compared in pairs. Their Tanimoto similarity coefficient and differences in mea-
sured activity were collected. Summarised results are displayed in Table 4.1. Column
headers hold differences in the measured activity between two chemicals, while row
headers describe molecule similarity threshold. A single cell of this array represents
the number of pairs of chemical compounds for which the distance is smaller than
the row identifier and the difference in the activity is smaller than the column iden-
tifier. The TETRATOX dataset contains over one thousand chemical compounds and
the biggest difference between measured values of IGC50 is equal to 5.3. Notice that
the number of pairs of chemicals that are similar, based on both the fingerprint sim-
ilarity and the activity, is very small. There is only one pair of chemical compounds
that have the same activity and maximal similarity (1 row, 1 column). On the other
hand, there are many chemicals which are similar fingerprint-wise but have different
activities. This makes model identification challenging. There is not a single model
identified that could be the most reliable for a query chemical compound. This in-
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Table 4.1: Analysis of chemical compound similarities in order to highlight the differ-
ence of the chemical activity for the TETRATOX dataset

fsim/ diffactiv 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0 1 2 2 2 2 2 2 2

0.1 3 13 27 44 51 62 70 79
0.2 6 112 220 335 431 512 585 655
0.3 16 318 617 933 1213 1474 1719 1928
0.4 32 720 1402 2081 2701 3297 3840 4328
0.5 66 1380 2726 4042 5227 6437 7536 8547

fsim/ diffactiv 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0 2 2 2 2 2 2 2 2

0.1 84 90 93 96 99 103 104 104
0.2 700 753 782 801 827 842 849 858
0.3 2106 2278 2412 2507 2621 2715 2784 2821
0.4 4763 5160 5526 5837 6119 6360 6575 6724
0.5 9481 10362 11167 11840 12488 13082 13589 14004

volves the analysis of the model performances over Pareto neighbourhood set that is
discussed in detail in the following subsections.

4.4.2.1 Average Pareto Model Identification

Having defined the Pareto neighbourhood for a given chemical compound q, two
methods for model identification are proposed below. The first one is called n-Average
Pareto (see Algorithm 6). The threshold τ is used to remove these chemical compounds
which are dissimilar to the query compound q. Next, we average model errors for the
chemicals represented by Pareto points and then the model with the smallest average
error is selected. Algorithm 4 that uses n-Average Pareto method is called n-Average

Algorithm 6 n-Average Pareto
FIND-MODEL-ID(Γ, T , n, τ )

1: n-PN← n-Pareto neighbourhood for a given n and the threshold τ
2: X ′ ← all chemical compounds linked to points in n-PN (use T to accomplish this

task)
3: compute for each model average error on chemical compounds from X ′

4: return Id of the model with smallest average error
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Algorithm 7 n-Centroid Pareto
FIND-MODEL-ID(Γ, T , n, τ )

1: n-PN← n-Pareto neighbourhood for a given n and the threshold τ
2: for all points from n-PN calculate the centroid c
3: for each point from n-PN calculate the Euclidean distance to the centroid
4: return Id of the model having the Pareto point with the smallest distance to the

centroid.

Pareto Model Identification (n-APMI). The usage of Pareto neighbourhood in compar-
ison with the standard nearest neighbourhood is more sensitive to model performance
and allows for the rejection of similar chemical compounds on which models perform
badly.

4.4.2.2 Centroid Pareto Model Identification

The second method is called n-Centroid Pareto (see Algorithm 7). For all Pareto points
from the n-Pareto Neighbourhood the centroid Pareto point c is calculated according
to the formula:

c = (dc, ec) =
(∑p∈n−PN dp

|n− PN | ,
∑

p∈n−PN ep

|n− PN |
)
, (4.13)

where dc is the average of distances and ec is the average of model errors for all Pareto
points from the neighbourhood n − PN . In the next step, the Euclidean distance be-
tween Pareto points and the centroid is computed. The model that is associated with
the Pareto point for which the Euclidean distance to the centroid is minimal, is se-
lected. Algorithm 4 that uses n-Centroid Pareto is called n-Centroid Pareto Model
Identification (n-CPMI). According to the definition, both n-APMI and n-CPMI are
partitioning models that split chemical space into disjoint groups and allow unambigu-
ous model identification.

4.5 Experimental Results

Three experiments were proposed in order to demonstrate the advantages of model
identification for predictive toxicology. Each experiment has two phases. In the first
phase we treat model identification as a classification problem to study the performance
of proposed methods in comparison with the other classification algorithms. The class
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represents the name of the most predictive model from the collection of existing models
and it is assign to each chemical compound. In the second phase, for each chemical
compound we apply the identified model to predict the following: the growth inhibition
concentration (IGC50), partition coefficient (LogP), and chemical persistence in the
soil. Finally, we compared these results with the original model performances.

4.5.1 IGC50 Prediction for Tetrahymena pyriformis

A dataset (Tetrahymena pyriformis Toxicity – TPT) of 1129 chemicals was obtained
from the INCHEMICOTOX webpage [45]. This dataset is composed of toxicity data
for the unicellular ciliate protozoan Tetrahymena pyriformis (see [99]) and was pub-
lished in [125]. The measure of toxicity is the 50% growth inhibition concentra-
tion (IGC50). Two QSAR regression models were obtained from INCHEMICOTOX.
These models are also reported in the JRC QSAR Models Database [89]. The first,
non-polar narcosis (NPN) QSAR [26], was originally trained on 87 chemicals identi-
fied as non polar narcotics with q2 = 0.95. The linear regression model was defined as
follows:

log(1/IGC50) = 0.83 logP − 2.07,

where logP is the octanol-water partition coefficient. The second, polar narcosis
(PN) QSAR model [27] for Tetrahymena pyriformis, was trained on 138 polar nar-
cosis chemicals with q2 = 0.75 and defined as follows:

log(1/IGC50) = 0.62 logP − 1.00.

Training datasets for both models were obtained from the JRC QSAR Models
Database. We compared these sets with the Tetrahymena pyriformis dataset and we
confirmed that 204 (136 from the PN model and 68 from the NPN models) training
chemicals were present in the TPT dataset. We did not perform any data curation for
this dataset. We implemented both models with the logP value calculated using the
CDK library [103] and we used them to predict toxicity for the TPT datasets.

First, we considered the model identification problem as a classification problem to
predict which model will be the most reliable for a given chemical compound. Having
a dataset of the predicted IGC50 for both models and the measured value, we used
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Table 4.2: Comparison of classification algorithms according to a number of correctly
classified elements, false positive, false negative and the classifiers accuracies. The
polar narcosis model label was defined as the positive class.

Method Correct class False Positive False Negative Accuracy
SMO 899 122 (10.8%) 106 (9.4%) 0.80
Part 904 123 (10.9%) 101 (8.9%) 0.80
NaiveBayes 845 191 (19%) 90 (7.9%) 0.75
J48 905 123 (10.9%) 100 (8.9%) 0.80
IBK(1) 905 121 (10.7%) 102 (9%) 0.80
IBK(3) 901 133 (11.7%) 94 (8.3%) 0.79
IBK(5) 889 149 (13.2%) 93(8.2%) 0.78
BayesNet 756 264 (23%) 108 (9.5%) 0.67
DMS 901 115 (10.1%) 112 (9.9%) 0.79
3-CPMI 902 136 (12%) 90 (7.9%) 0.79
5-CPMI 897 137 (12%) 94 (8.3%) 0.79
10-CPMI 863 168 (14.8%) 97 (8.5%) 0.76
3-APMI 918 99 (8.7%) 111 (9.8%) 0.81
5-APMI 891 115 (10%) 122 (10.8%) 0.78

a priori information (called “oracle model“) about the best selected model for each
chemical compound and we applied various classification methods. To simulate the
model identification for new chemical compounds we used the leave-one-out (LOO)
method. Table 4.2 includes results from the comparison of n-CPMI and n-APMI pro-
posed in this chapter with the DMS algorithm, and with standard classification algo-
rithms such as: NaiveBayes, BayesNet decision trees (PART and J48), nearest neigh-
bour (IBK) or support vector machine (SMO) implemented in WEKA [36]. We used
the default parameter settings for all classifiers. To generate these classification mod-
els we used binary descriptors (1024 - bit fingerprints calculated using CDK library)
and the model errors. We compared all classifiers according to the number of the cor-
rectly classified chemicals and the classifier accuracies. The 3-APMI method gives the
highest number of correctly classified elements and relatively low numbers for false
positive and false negative - especially comparing this method to IBK(3). The 3-APMI
uses the 3-Pareto neighbourhood whereas IBK(3) uses the 3-nearest neighbourhood
for classification. This shows that model identification using Pareto points is as good
as or can be better than other well known classification algorithms.
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Figure 4.3: Chemical compounds wrongly associated with the PN model.

The decision which model is chosen, relies on the distance to the Pareto points.
Figures 4.3 and 4.4 show misclassification examples for 3-APMI algorithm. In Fig-
ure 4.4 for 3-phenyl-1-propanol the NPN model was identified. Its Pareto neigh-
bourhood included three chemicals: 4-chloro-3-methylphenol, methylbenzene and 4-

dimethylbenzene with the distances and models errors shown in Table 4.3. The 3-APMI
averages model errors for all Pareto points and selects the one with the smallest error,
in this case the NPN model. One can notice that the best model for this Pareto neigh-
bourhood is the NPN model for 4-dimethylbenzene whereas this chemical compound
is not the most similar to the query chemical compound.

To demonstrate a correct classification example, we selected benzylamine that was
associated correctly with the PN model. Its Pareto neighbourhood included two chemi-
cals: 2-chloroaniline and (+/-)-1,2-diphenyl-2-propanol with distances and model per-
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Figure 4.4: Chemical compounds wrongly associated with the NPN model.

Table 4.3: Model performances and distance comparison of the 3-Pareto neighbour-
hood of the 3-phenyl-1-propanol.

Name distance PN NPN
methylbenzene 0.33 0.37 0.28
4-dimethylbenzene 0.36 0.54 0.08
4-chloro-3-methylphenol 0.30 0.61 1.14
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Table 4.4: Model performances and distance comparison of the 3-Pareto neighbour-
hood of the benzylamine.

Name distance PN NPN
2-chloroaniline 0.08 0.30 0.38
(+/-)-1,2-diphenyl-2-propanol 0.11 0.041 0.59

Table 4.5: Analysis of model prediction accuracies for IGC50 for Tetrahymena pyri-
formis

Method Name r2 RSE q2 MAE RMSE
NPN 0.58 0.66 0.15 0.69 0.94
PN 0.58 0.66 0.58 0.50 0.66
DMS 0.68 0.56 0.62 0.43 0.62
3-CPMI 0.67 0.58 0.60 0.43 0.63
5-CPMI 0.66 0.59 0.59 0.44 0.65
10-CPMI 0.65 0.60 0.57 0.44 0.66
3-APMI 0.69 0.56 0.65 0.41 0.60
5-APMI 0.68 0.57 0.62 0.42 0.62
Oracle 0.75 0.50 0.71 0.35 0.54

formances shown in Table 4.4. These distances to the query chemical compound are
small and for both chemicals the PN model gives the most reliable prediction. Again
the 3-APMI identifies the PN model that has the minimal average error amongst the
Pareto neighbours.

In the next step, from the entire TPT dataset, we selected chemicals included in
the original training datasets for both models. We identified 4 out of 68 chemicals
that were used to train the NPN model but the oracle model associated them with the
PN model. The results from 3-APMI are shown in Figure 4.5. We repeated the same
analysis for the training dataset of the polar narcosis model and we identified 9 out
of 136 chemicals that were associated with the NPN model by the oracle model (see
Figure 4.6).

To predict IGC50 for the TPT dataset we used the identified model for each chem-
ical compound in this dataset. The results obtained for the entire dataset are shown in
Table 4.5. The statistics used are: r2 - correlation coefficient for the observed and pre-
dicted values, RSE - root-squared error, q2 - predictive squared correlation coefficient,
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Figure 4.5: Chemical compounds wrongly associated with the PN model by the oracle
model. These chemicals were originally used to train the NPN model.

MAE - mean absolute error and RMSE - root mean square error. The oracle model
has the knowledge of the best model for each chemical compound. Its predictivity is
low because we used only two existing models from JRC QSAR database that were
designed based on mode-of-action (polar/non polar narcosis) for chemicals from TPT.
The 3-APMI method provides the best prediction among non-oracle models. The first
two rows present prediction statistics for PN and NPN models. They are lower than for
all other models. Notice, however, that their r2 and RSE statistics are identical. This is
due to the fact that both models are affine functions of one and the same explanatory
variable. An affine function can, therefore, transform one model into another. This
is what happens when regression is applied to compute r2 and RSE. Notice that other
two measures of q2 and predictive errors are different for these models.

As another example, we considered only a small subset of the whole initial TPT
dataset that contains only 376 chemical compounds. This dataset includes all training
chemicals used in PN and NPN models plus over 100 additional chemicals from the
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Figure 4.6: Chemical compounds wrongly associated with the NPN model by the
oracle model. These chemicals were used to train the PN model.
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Table 4.6: Comparison of classification algorithms according to a number of correctly
classified elements, false positive, false negative and the classifiers accuracies. The
polar narcosis model label was defined as the positive class.

Method Correct class False Positive False Negative Accuracy
SMO 296 47(12%) 33(8.7%) 0.787
Part 303 34(9%) 39(10.3%) 0.805
NaiveBayes 281 67(17%) 28(7.4%) 0.747
J48 296 44(11.7%) 36(9.5%) 0.787
IBK(1) 307 42(11.1%) 27(7.1%) 0.816
IBK(3) 300 42(11.1%) 34(9%) 0.797
IBK(5) 299 46(12.2%) 31(8.2%) 0.795
BayesNet 273 76(20.1%) 27(7.1%) 0.726
DMS 297 48(12.7%) 31(8.2%) 0.719
3-CPMI 316 29 (7.7%) 31(8.2%) 0.844
5-CPMI 305 33(8.7%) 38(10.1%) 0.811
10-CPMI 288 41(10.9%) 47(12.5 %) 0.766
3-APMI 306 33(8.7%) 37(9.8%) 0.813
5-APMI 300 41(10.9%) 35(9.3%) 0.797

TPT dataset. We included chemicals for which the absolute error of the oracle model
is less than 0.4 and they are in the applicability domain of both models. The value
of logP ∈ [−0.5, 6.2] and the toxicity value is in the range [−2.5, 3.05]. Again we
compared various classifiers that were used for model identification (see Table 4.6).
In this case the best method is 3-CPMI that from the 3-Pareto neighbourhood selects
model for which the Pareto point is the closest to the neighbourhood centroid. This
method gives better results if compared with the DMS method that selects the model
with the smallest error for the nearest neighbour. Comparing the regression models for
IGC50 (see Table 4.7), 3-CMPI method give us better prediction than DMS, PN and
NPN models.

The above examples show a great potential of the proposed model identification
methods. Model identification can be considered as an ensemble technique to build
consensus models in predictive toxicology.
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Table 4.7: Analysis of model prediction accuracies for IGC50 for Tetrahymena pyri-
formis

Method Name r2 RSE q2 MAE RMSE
NPN 0.84 0.37 0.60 0.44 0.57
PN 0.84 0.37 0.75 0.33 0.46
DMS 0.89 0.30 0.88 0.20 0.32
3-CPMI 0.92 0.25 0.91 0.16 0.26
5-CPMI 0.90 0.28 0.89 0.18 0.29
10-CPMI 0.88 0.32 0.86 0.21 0.33
3-APMI 0.91 0.27 0.90 0.18 0.29
5-APMI 0.90 0.28 0.89 0.19 0.30
Oracle 0.98 0.10 0.98 0.09 0.11

4.5.2 LogP Prediction for Syngenta Dataset

The octanol/water Partition coefficient (LogP) is a measure of the lipophilicity of
chemical compounds and is an important descriptive parameter in bio-studies [32].
It describes the ability of a chemical compound to dissolve in fats, oils, lipids, and
non-polar solvents. Currently, there are various methods that allow the estimation
of LogP: fragment-based methods (CLOGP, KOWWIN), atom contribution methods
(TSAR, XLOGP), topological indices (MLOGP), molecular properties (BLOGP). The
initial dataset contained about 9000 chemical compounds and their measured LogP
values. This measure was collected from experiments that have been run in Syngenta’s
laboratories. The measured value of LogP is in the range [−5.08, 8.65] (see Figure
4.7a). There was around 6300 chemicals between the first and third quantile (see red
lines in Figure 4.7a and Figure 4.7b). There was no additional data curation apart from
the curation provided by Syngenta.

For such defined dataset, two experiment were prepared. In the first experiment,
three models to predict LogP were considered. The first one called CLOGP was devel-
oped in Syngenta, the second model called KOWWIN from EPI Suite [28] and finally
MLOGP model from Dragon software [109]. These models were run on entire dataset
and the model predictions were collected for each chemical compound in this dataset.
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Figure 4.7: Syngenta’s measured LogP dataset.
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4.5 Experimental Results

Table 4.8: Analysis of model prediction accuracies for a LogP estimation

nr chemicals Mod.Name q2 MAE RMSE
CLOGP 0.83 0.38 0.74

1000 MLOGP 0.57 0.84 1.19
KOWWIN 0.79 0.47 0.83
3-APMI 0.84 0.38 0.74
CLOGP 0.76 0.41 0.78

2000 MLOGP 0.44 0.85 1.2
KOWWIN 0.69 0.50 0.88
3-APMI 0.78 0.39 0.72
CLOGP 0.37 1.21 1.54

2333 MLOGP 0.39 1.13 1.52
KOWWIN 0.41 1.01 1.49
3-APMI 0.64 0.80 1.16

The 1000 randomly selected chemicals out of 9000 was used as an unknown dataset and
the remaining 8000 chemicals as a known chemical space for the partitioning model.
The 3-APMI method was used as the most accurate in the previous experiment. The
performance of CLOGP, KOWWIN, MLOGP, and 3-APMI models were compared
for these 1000 randomly selected chemicals. The same experiment was repeated for
2000 randomly selected chemicals. In this case, the remaining set of 7000 chemicals
was used as a known chemical space. Finally, from the initial dataset those chemical
compounds for which the oracle model has absolute error > 0.7 were selected and
used to test the partitioning model. We obtained a set of 2333 chemical compounds
and we used remaining part as a known chemical space. In this experiment, 3-APMI
algorithm was run only once for each case: 1000, 2000, 2333 chemicals. Table 4.8 dis-
plays the accuracy of model predictions. As LogP is a continuous value, the validation
statistics for the linear regression model were used to compare model performances
(q2, MAE, RMSE). One can observe that there is one best model – CLOGP. The other
models: KOWWIN, MLOGP even if they are widely accepted models and many re-
searches use them to calculate LogP, are not very accurate. These results show that
the 3-APMI method is generally at least as good as the best model (CLOGP). In the
case of 1000 randomly selected chemicals CLOGP was hard to beat, although for 2000
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Table 4.9: Analysis of model prediction accuracies for a LogP estimation for 1000
randomly selected chemicals in 10-CV

Mod.Name Run R2 RSE Q2 MAE RMSE Run R2 RSE Q2 MAE RMSE
CLOGP

1

0.847 0.694 0.826 0.412 0.739

2

0.805 0.767 0.774 0.449 0.825
XLogP 0.621 1.094 0.458 0.927 1.306 0.546 1.170 0.279 1.022 1.473
MLOGP 0.563 1.174 0.546 0.843 1.195 0.561 1.151 0.559 0.857 1.152
KOWIN LOGP 0.831 0.729 0.804 0.469 0.786 0.776 0.821 0.728 0.524 0.904
3-APMI 0.867 0.647 0.859 0.359 0.665 0.864 0.641 0.856 0.380 0.659
Oracle 0.940 0.435 0.939 0.207 0.438 0.923 0.481 0.921 0.228 0.486
CLOGP

3

0.775 0.833 0.743 0.462 0.890

4

0.805 0.723 0.768 0.421 0.787
XLogP 0.583 1.135 0.330 0.984 1.437 0.572 1.071 0.276 0.966 1.392
MLOGP 0.557 1.170 0.552 0.867 1.175 0.563 1.083 0.554 0.820 1.092
KOWIN LOGP 0.759 0.864 0.718 0.517 0.933 0.798 0.737 0.755 0.467 0.809
3-APMI 0.839 0.705 0.828 0.383 0.728 0.859 0.615 0.849 0.341 0.636
Oracle 0.911 0.525 0.909 0.233 0.531 0.921 0.460 0.918 0.207 0.468
CLOGP

5

0.788 0.779 0.747 0.439 0.850

6

0.805 0.752 0.776 0.434 0.806
XLogP 0.549 1.136 0.257 1.008 1.456 0.566 1.122 0.300 1.001 1.423
MLOGP 0.534 1.154 0.531 0.858 1.157 0.561 1.128 0.556 0.835 1.134
KOWIN LOGP 0.767 0.816 0.722 0.501 0.891 0.788 0.785 0.753 0.493 0.846
3-APMI 0.847 0.662 0.839 0.376 0.679 0.864 0.629 0.856 0.355 0.647
Oracle 0.918 0.485 0.916 0.229 0.491 0.931 0.448 0.929 0.213 0.453
CLOGP

7

0.843 0.662 0.822 0.397 0.705

8

0.818 0.739 0.796 0.419 0.782
XLogP 0.604 1.052 0.419 0.911 1.273 0.586 1.115 0.379 0.954 1.364
MLOGP 0.565 1.103 0.557 0.837 1.111 0.544 1.171 0.535 0.859 1.181
KOWIN LOGP 0.779 0.786 0.736 0.484 0.859 0.791 0.792 0.762 0.482 0.844
3-APMI 0.876 0.589 0.869 0.349 0.603 0.883 0.591 0.878 0.341 0.604
Oracle 0.945 0.392 0.944 0.194 0.394 0.934 0.444 0.933 0.210 0.449
CLOGP

9

0.823 0.750 0.791 0.446 0.814

10

0.823 0.750 0.800 0.423 0.796
XLogP 0.602 1.123 0.338 0.965 1.448 0.607 1.116 0.385 0.985 1.394
MLOGP 0.587 1.145 0.583 0.843 1.149 0.559 1.182 0.553 0.861 1.188
KOWIN LOGP 0.781 0.834 0.739 0.522 0.909 0.795 0.806 0.762 0.497 0.867
3-APMI 0.871 0.640 0.862 0.374 0.660 0.870 0.641 0.865 0.351 0.653
Oracle 0.938 0.442 0.936 0.220 0.450 0.939 0.439 0.938 0.206 0.444

randomly selected chemicals one can clearly see the benefit of using 3-APMI (higher
q2 and lower MAE). The biggest gain is, however, observed for those chemicals whose
activity is difficult to predict (the last case). In case where all available models have a
poor predictivity, the proper model identification and the usage of the identified model
for predictions can lead to increased model accuracy.

To test 3-APMI method and to show its robustness, the second experiment was es-
tablished. For the same LogP dataset, four models were considered: CLOGP - devel-
oped in Syngenta, KOWWIN - from EPI Suite [28], MLOGP - from Dragon software
[109] and XLOGP from CDK library [92]. The same 3-APMI algorithm was used for
a model identification in a cross-validation test. In the first case 1000 chemicals were
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randomly selected in each of 10 runs. Table 4.9 presents the model performances for
each run. The R2 and RSE were obtained from the fitted linear regression represent-
ing a relation between observed and predicted values. The Q2, MAE and RMSE were
calculated using (2.6), (2.15), (2.14). One can notice that in this case CLOGP model is
the best model among the available models and using the partitioning models to choose
the best possible model for a new data we are able to increase the model predictivity
(see Figure 4.8). This figure demonstrates that using the 3-APMI methods increased
the prediction in comparison to the best model (CLOGP).

CLOGP XLogP MLOGP K_LOGP 3−APMI ORACLE

0
.2

0
.4

0
.6

0
.8

1
.0

Model Name

M
A

E

CLOGP XLogP MLOGP K_LOGP 3−APMI ORACLE

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Model Name

q
2

Figure 4.8: Aggregated minimum absolute error (MAE) and predictive squared coef-
ficient correlation (Q2) for the 3-APMI 10-cross validation. In each test 1000 chemical
were selected.

In second test 2000 chemicals were randomly selected out of 9000 available chem-
ical compounds in each of 10 runs. Model performances were collected and presented
in Table 4.10 in the same way as in the previous case. The results demonstrate that
the usage a proper model identification method for unknown data can lead to the in-
creased model predictivity. In each of 10 runs 3-APMI gives better predictions than
the CLOGP model (see Figure 4.9). The analysis of oracle model’s performance is
an important element in this study. The oracle model represents situation where we
exactly know which model should be used for new data. The goal of model identifica-
tion methods is to minimize a distance between a chosen method and the oracle model
performances. One can observe that, the chosen method (3-APMI) in this experiment
gives predictions that are between the best model and oracle model. The results were
consistence between different runs, demonstrating the robustness of the model identi-
fication method based on the chemical space partitioning.
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Table 4.10: Analysis of model prediction accuracies for a LogP estimation for 2000
randomly selected chemicals in 10-CV

Mod.Name Run R2 RSE Q2 MAE RMSE Run R2 RSE Q2 MAE RMSE
CLOGP

1

0.819 0.742 0.790 0.426 0.798

2

0.771 0.825 0.735 0.462 0.887
XLogP 0.595 1.109 0.387 0.954 1.364 0.533 1.178 0.230 1.023 1.512
MLOGP 0.576 1.134 0.567 0.840 1.147 0.537 1.173 0.532 0.865 1.179
KOWIN LOGP 0.788 0.803 0.743 0.501 0.882 0.728 0.899 0.675 0.534 0.982
3-APMI 0.861 0.649 0.853 0.361 0.668 0.818 0.736 0.805 0.390 0.761
Oracle 0.938 0.435 0.937 0.209 0.439 0.898 0.551 0.894 0.243 0.560
CLOGP

3

0.807 0.759 0.783 0.438 0.804

4

0.835 0.711 0.814 0.401 0.756
XLogP 0.553 1.155 0.293 1.013 1.452 0.611 1.092 0.435 0.948 1.315
MLOGP 0.561 1.145 0.558 0.846 1.147 0.591 1.120 0.588 0.822 1.123
KOWIN LOGP 0.770 0.828 0.736 0.501 0.887 0.826 0.730 0.803 0.458 0.777
3-APMI 0.861 0.644 0.857 0.363 0.653 0.871 0.629 0.867 0.354 0.639
Oracle 0.927 0.467 0.926 0.217 0.471 0.936 0.443 0.935 0.203 0.446
CLOGP

5

0.821 0.727 0.795 0.425 0.779

6

0.824 0.737 0.799 0.431 0.787
LogP 0.588 1.104 0.370 0.948 1.365 0.602 1.107 0.390 0.968 1.371
MLOGP 0.538 1.169 0.530 0.853 1.179 0.566 1.157 0.558 0.846 1.167
KOWIN LOGP 0.781 0.805 0.741 0.489 0.874 0.806 0.773 0.776 0.488 0.831
3-APMI 0.855 0.655 0.847 0.363 0.673 0.874 0.624 0.868 0.361 0.637
Oracle 0.932 0.450 0.929 0.212 0.458 0.934 0.452 0.932 0.212 0.458
CLOGP

7

0.812 0.753 0.789 0.430 0.797

8

0.795 0.787 0.765 0.446 0.842
XLogP 0.581 1.123 0.375 0.941 1.371 0.534 1.186 0.289 1.001 1.465
MLOGP 0.549 1.165 0.542 0.849 1.173 0.558 1.156 0.556 0.849 1.15
KOWIN LOGP 0.780 0.814 0.750 0.493 0.867 0.767 0.839 0.729 0.503 0.904
3-APMI 0.853 0.664 0.848 0.371 0.677 0.831 0.714 0.820 0.392 0.736
Oracle 0.926 0.470 0.925 0.219 0.474 0.912 0.515 0.910 0.231 0.522
CLOGP

9

0.829 0.707 0.806 0.419 0.754

10

0.813 0.723 0.782 0.422 0.780
XLogP 0.585 1.101 0.366 0.945 1.361 0.581 1.082 0.354 0.930 1.344
MLOGP 0.536 1.166 0.527 0.865 1.175 0.545 1.128 0.538 0.834 1.136
KOWIN LOGP 0.791 0.781 0.754 0.491 0.847 0.802 0.744 0.765 0.474 0.810
3-APMI 0.862 0.636 0.854 0.367 0.653 0.867 0.610 0.859 0.349 0.628
Oracle 0.928 0.460 0.926 0.219 0.465 0.931 0.441 0.929 0.205 0.446
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Figure 4.9: Aggregated minimum absolute error (MAE) and predictive squared coef-
ficient correlation (Q2) for the 3-APMI 10-cross validation. In each test 2000 chemical
were selected.
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4.5.3 Prediction of Chemical Persistence in Soil for Syngenta Dataset

The length of time a chemical compound remains active in soil is called ”soil persis-
tence,” or ”soil residual life”. The longer a chemical persists, the higher the potential
for human or environmental exposure to it. The rate of degradation of a chemical in
soil is a critical aspect of its environmental profile. It is desirable to control e.g weeds
during the application time but after this time chemicals should not persist and affect
growing crops. There is a lot of experimental data that includes soil-based screens
for the chemical persistence, but there would still be a benefit in being able to predict
soil persistence. The prediction of the degradation rate in soil is hard due to a complex
combination of a number of different physical, chemical and biological processes. This
is why finding a relation between various chemical attributes that can affect persistence
in soil is a difficult problem.

In 2012 Syngenta published the challenge (prediction of soil persistence ) on the
IdeaConection [42] platform to identify potential new approaches. There were 268
chemicals from Syngenta’s various projects, in the overall dataset. The dataset pro-
vided included log base 10 of the degradation rate for whole soil where log(k) ∈
[−3.8, 0.84] and soil water log(k) ∈ [−2.7, 4.7] and k = 0.693/half-life. For each
chemical compound, there were 4000 descriptors such as: constitutional indices, ring
descriptors, connectivity and information indices, 2D matrix-based descriptors, bur-
den eigenvalues, geometrical descriptors, molecular properties, drug-like indices, func-
tional group counts, gateway descriptors, WHIM descriptors, 3D-MoRSE descriptors,
RDF descriptors, 3D matrix-based descriptors, topological descriptors calculated by
Dragon software [109]. From the initial dataset a training dataset of 134 was published.
The remaining part was hidden for competitors and used for the external validation of
new QSAR models.

The challenge published by Syngenta was to build a model that accurately predicts
the degradation rate in soil for each chemical. There were five teams in the competition,
providing more than one model. Only four of them submitted models that could be
validated on the external dataset. The statistics R2, q2 and R2

all (see Formula 2.3-2.6)
were used to identify the winning models and award teams. Table 4.11 and Table 4.12
presents the result of the validation process. The wining models were Team 4’s model
based on Burden Eigenvalues for soil-water and Team 6’s model for whole-soil.
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Table 4.11: Validation of soil-water models.

Model Name R2
tr q2 R2

all

Team: 4,G I Model Based on Burden Eigenvalues 0.77 -0.03 0.38
Team: 4, G I Model Based on All Descriptors 0.82 -0.22 0.32
Team: 3, Model 2 0.67 -0.37 0.17
Team: 6, Model 0.79 -0.65 0.09
Team: 3, Model 1 0.86 -2.44 -0.74
Team: 4, G I Model Based on RDF Descriptors 0.74 -0.45 0.16
Team: 4, G III Model 0.59 -0.26 0.18
Team: 4, G I Model Based on 3D Matrix Descriptors 0.57 -0.22 0.18
Team: 4, G I Model Based on GETAWAY Descriptors 0.56 0.26 0.42
Team: 4, G II Model Based on Ring Descriptors, Drug-like
Indices and Molecular Properties

0.31 -0.20 0.06

Team: 4, G II Model Based on All Descriptors 0.30 -1.22 -0.43
Team: 4, G II Model Based on Constitutional Indices, Geo-
metrical and GETAWAY Descriptors

0.04 0.22 0.13

Table 4.12: Validation of whole-soil models.

Model Name R2
tr q2 R2

all

Team: 6, Model 0.71 -0.57 0.10
Team: 3, Model 2 0.67 -0.79 -0.03
Team: 3, Model 1 0.68 -0.86 -0.06
Team: 4, G I Model Based on All Descriptors 0.79 -1.10 -0.12
Team: 4, G I Model Based on 3D Matrix Descriptors 0.72 -1.27 -0.23
Team:5, Linear Regression Approximation to Neural Net-
work

-1.86 -2.09 -1.96

Team: 4, G III Model 0.72 -0.28 0.24
Team: 4, G I Model Based on RDF Descriptors 0.70 -1.26 -0.24
Team: 4, G I Model Based on GETAWAY Descriptors 0.63 -0.29 0.19
Team: 4, G I Model Based on Burden Eigenvalues 0.59 -0.12 0.25
Team: 4, G II Model Based on Constitutional Indices, Geo-
metrical and GETAWAY Descriptors

0.43 -1.36 -0.42

Team: 4, G II Model Based on All Descriptors 0.13 -2.84 -1.29
Team: 4, G II Model Based on Ring Descriptors, Drug-like
Indices and Molecular Properties

-0.15 -0.76 -0.44
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Figure 4.10: Heatmap of the chemical structure similarity between training and testing
datasets.
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One can notice that models have an acceptable range of the coefficient of deter-
mination R2

tr for a training dataset, whereas the q2 values went to be very low. The
negative number means that using the average as a predictor will give better prediction
comparing to the usage of original models. This happened because the chemicals used
in the initial dataset were very diverse. Only a portion of test chemicals has similar
chemicals in training dataset. Figure 4.10 presents the heat-map of the chemical com-
pound structural similarities. The columns represent chemicals from training dataset
and rows represent chemicals from testing dataset. The dendograms are a replace-
ment for similarity functions in hierarchical clustering for each dataset separately. The
chemical similarity was calculated based on the “extended” fingerprint using Tanimoto
measure (see Formula 2.1) and ranged from 0 to 1. Similarity 1 means that chemical
structures are identical or very similar.

The validation results were very surprising, most of the models can give reliable
prediction for chemicals used in training process but only a few give positive statistics
for the test chemicals. The interesting question here was if model identification can be
used in such a case and if the obtained results can be better than results of the original
provided models. To answer these questions two tests were performed for the soil-
water endpoint. For each test a few models were selected and DMS, APMI, CMPI
model identification methods were applied. The prediction accuracy was compared
with the original selected models, oracle model and the AVG models. The AVG model
uses the nearest neighbourhood and selects the model that gives the minimal average
error for chemicals in this neighbourhood.

In the first test, three models that have good accuracies for the training dataset were
selected: Team: 4, G I Model Based on All (MI) Descriptors, Team: 4,G I Model Based
on Burden Eigenvalues (MII) and Team: 4, G I Model Based on RDF Descriptors
(MIII). These models were used for model identification and compared with the oracle
model. Table 4.13 presents the results of model accuracies using the LOO approach for
the training dataset. Table 4.14 presents the results of model accuracies for the testing
dataset and the training dataset is used as a known chemical space. The columns
represent the n-neighbourhood. One can notice that usage of oracle model will lead
to the accuracy 0.95 for the training dataset and 0.64 for testing dataset. In this case,
the partitioning model selected based on the training dataset validation is as good as
the best provided model MI (see 4-APMI) and the results are comparable with using
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Table 4.13: Model identification applied to three models for training dataset of soil-
water endpoint.

Mod Name 2 3 4 5 6 7 8 9 10
MI 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
MII 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
MII 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74

Oracle 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
DMS 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
APMI 0.80 0.80 0.84 0.84 0.84 0.84 0.84 0.834 0.84
CPMI 0.80 0.79 0.79 0.79 0.78 0.80 0.82 0.82 0.81
AVG 0.81 0.80 0.83 0.82 0.82 0.84 0.84 0.83 0.82

Table 4.14: Model identification applied to three models for testing dataset of soil-
water endpoint.

Mod Name 2 3 4 5 6 7 8 9 10
MI -0.22 -0.22 -0.22 -0.22 -0.22 -0.22 -0.22 -0.22 -0.22
MII -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
MIII -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45

Oracle 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64
DMS -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27
APMI -0.23 -0.24 -0.33 -0.27 -0.28 -0.28 -0.26 -0.23 -0.26
CPMI -0.27 -0.33 -0.35 -0.27 -0.24 -0.25 -0.23 -0.25 -0.22
AVG -0.22 -0.24 -0.27 -0.35 -0.36 -0.42 -0.34 -0.28 -0.43

the standard nearest neighbourhood approach (see 7-AVG in Table 4.13). The results
for the testing dataset are influenced by the big residuals in all three models. Model
MII have the smallest negative q2 statistic and the model MIII the biggest. The most
frequent selected model was model MI and the accuracies for the partitioning models
for both the nearest and Pareto neighbourhoods are close to −0.22.

In the second test, only two models with positive q2 were selected: Team: 4, G
II Model Based on Constitutional Indices, Geometrical and GETAWAY Descriptors
(MI) and Team: 4, G I Model Based on GETAWAY Descriptors (MII). Table 4.15
presents the comparison of the model accuracies. one can notice that there is one most
predictive model, MII with accuracy 0.56. The accuracies of partitioning model that
uses Pareto approaches as well as the DMS algorithm are in the same range as model
MII. The 3-APMI method uses model MII with comparable accuracy 0.6.
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Table 4.15: Model identification applied to two models for training dataset of soil-
water endpoint.

Mod Name 2 3 4 5 6 7 8 9 10
MI 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
MII 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Oracle 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
DMS 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
APMI 0.58 0.6 0.17 0.19 0.16 0.17 0.16 0.16 0.16
CPMI 0.53 0.54 0.49 0.49 0.49 0.49 0.49 0.51 0.53
AVG 0.19 0.21 0.21 0.19 0.18 0.2 0.21 0.19 0.20

Table 4.16: Model identification applied to two models for testing dataset of soil-water
endpoint.

Mod Name 2 3 4 5 6 7 8 9 10
MI 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
MII 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

Oracle 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
DMS 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
APMI 0.29 0.33 0.32 0.33 0.32 0.34 0.34 0.34 0.34
CPMI 0.32 0.32 0.31 0.31 0.29 0.28 0.27 0.26 0.27
AVG 0.24 0.28 0.25 0.30 0.29 0.30 0.29 0.29 0.28

Interesting observation was made when model identification algorithms were ap-
plied to the testing dataset (see Table 4.16). Both original models have positive q2.
Having knowledge which model should be used, the accuracy could be increased to
0.56 (see oracle model). In this case, application of the nearest neighbour (DMS) and
Pareto approaches win compared to both models. The highest accuracy is 0.34 for
DMS and 7-APMI.

In this work, the analysis of the partitioning model accuracies according to the size
of the neighbourhood were studied. Figure 4.11 presents how accuracy is changed with
the increasing number of neighbours. In this case Pareto neighbourhood (APMI and
CPMI) is compared with the standard n-nearest neighbourhood (AVG). The consid-
ered number of neighbours is from 2 to 10. The results summarised Tables 4.13–4.16
plus additional analysis for applying model identification to all models for soil-water
endpoint (see Figure 4.11e and Figure 4.11f). The red line represent APMI, blue CPMI
and green AVG methods, respectively.
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Figure 4.11: Model accuracies vs size of neighbourhood for soil-water models.
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4.6 Summary

The similar observation was made for the models for whole-soil endpoint. In the
first case where all selected models have R2

tr > 0.7 and negative q2, the model iden-
tification approach is not possible. In a case when the models are not good but the q2

is positive the model identification approach increases the predictivity of such model
combination.

All methods proposed in the chapter were implemented in R [19]. The logP value,
fingerprints and Tanimoto similarity were calculated using the R CDK library [92]. A
number of tests were run to define the threshold τ . It is important to notice that the
n-Pareto neighbourhood defines the set of at most n-Pareto points. Therefore, for the
3-Pareto neighbourhood we found chemicals that have 1, 2, or 3 Pareto neighbours for
τ = 0.4 for the entire TPT dataset. For the 5-Pareto neighbourhood τ = 0.7 and for
the 10-Pareto neighbourhood we considered all Pareto neighbours. This shows that the
size of the Pareto neighbourhood depends on a size of the available chemical space and
may vary for different endpoints. Also, looking at the results for APMI in Tables 4.8-
4.10 one can notice that it is not worth considering all Pareto points, and that the size
of the Pareto neighbourhood depends on chemical compound similarities.

4.6 Summary

The large volume of publicly available toxicity information and the increasing number
of good quality models managed properly can become useful sources of information.
Models and data can be further reused within in-silico modelling to speed up the pro-
cess of high-throughput screening. Decision on usage of a particular model for new
chemicals is a result of model analysis and validation. In this chapter we developed a
framework for intelligent model management and mining that automatizes the decision
making process on the choice of the best model.

Firstly, the concept of the partitioning model in terms of model identification was
proposed. The main idea proposed here is to split the chemical space into disjoint
model groups. Each group is assigned with a particular predictive model in order to
maximize the similarity of chemicals and to minimize the model error within a group.
This is clearly a bi-criteria classification problem. To construct a partitioning model,
three algorithms were proposed. In the Double Min Score (DMS) algorithm, the as-
sumption was that the model performance is equal for similar chemicals according to
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4.6 Summary

the similarity hypothesis. A new item is classified to the particular group based on the
nearest neighbour. Two other proposed methods (APMI and CPMI) identify a suitable
model for a query chemical compound based on the model performance in a Pareto
neighbourhood. The concept of Pareto optimality was recalled and lemmas were pro-
posed for properties of Pareto points. These properties were used to build a simple yet
effective method for finding a Pareto set in 2D space.

The experimental results demonstrated the advantage of the proposed approaches
and indicated that the automated model identification is a promising research direction
with many practical applications. An additional interesting problem is the estimation
of the identified model’s reliability for a new chemical compound. To address this
question, a method for model interpretation is proposed in the following chapter.
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Chapter 5
Model Interpretation

Model interpretation is one of the key aspects of the model evaluation process. The ex-
planation of the relationship between model variables and the output is relatively easy
for such statistical models as linear regressions thanks to the availability of model pa-
rameters and their statistical significance. For Random Forest models, this information
is hidden within the model structure. This chapter presents an approach for computing
feature contributions for Random Forest classification models and introduces methods
for their analysis. The extensive analysis leads to a discovery of the standard behaviour
of the model and allow for an additional assessment of model reliability for new data.
The methodology presented in this chapter was published in [81] and [85].

5.1 Introduction

Models are used to discover interesting patterns in data or to predict a specific outcome,
such as drug toxicity, client shopping purchases, or car insurance premium. They are
often used to support human decisions in various business strategies. In Chapter 2,
the process of model development was extensively discussed. Implementation of this
process together with capturing information on how the data was harvested, how the
model was built and how the model was validated, allows us to trust that the model
gives reliable predictions. But, how to analyse the relation between predicted values
and the training dataset? Which features contribute the most to classifying a specific
instance? How to assess the reliability of a models prediction?
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5.1 Introduction

Answers to these questions are considered particularly valuable in such domains
as chemoinformatics, bioinformatics or predictive toxicology [95]. Linear models,
which assign instance-independent coefficients to all features, are the most easily in-
terpreted. Regression coefficients represent the mean change in the response variable
for one unit of change in the predictor variable while other predictors are held constant
in the model. However, in the recent literature, there has been considerable focus on
interpreting predictions made by non-linear models which do not render themselves
to straightforward methods for the determination of variable/feature influence. In [12],
the authors present a method for local interpretation of Support Vector Machine (SVM)
and Random Forest models by retrieving the variable corresponding to the largest com-
ponent of the decision-function gradient at any point in the model. Interpretation of
classification models using local gradients is discussed in [2]. A method for visual in-
terpretation of kernel-based prediction models is described in [38]. Another approach,
which is presented in detail later, was proposed in [67] and aims at shedding light on
the decision-making process of regression Random Forests.

Of interest to this chapter is the popular Random Forest model proposed by Braiman
[6]: this model does not provide information on individual trees. This is why it is some-
times referred to as a ”black box”, a system who’s internal workings are not visible and
is only defined by its inputs and outputs, what makes its interpretation a difficult task
[87]. Its author suggests two measures for the significance of a particular variable:
the variable importance and the Gini importance [7]. The variable importance is de-
rived from the loss of accuracy of model predictions when values of one variable are
permuted between instances. Gini importance is calculated from the Gini impurity
criterion used in the growing of trees in the Random Forest. However, in [104], the
authors showed that the above measures are biased in favor of continuous variables and
variables with many categories. They also demonstrated that the general representa-
tion of variable importance is often insufficient for the complete understanding of the
relationship between input variables and the predicted value.

Following the above observation, Kuzmin et al. proposed in [67] a new technique
to calculate a feature contribution, i.e., a contribution of a variable to the prediction,
in a Random Forest model. Their method applies to models generated for data with
numerical observed values (the observed value is a real number). Unlike the vari-
able importance measures [7], feature contributions are computed separately for each
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5.2 Random Forest

instance/record. They provide detailed information about relationships between vari-
ables and the predicted value: the extent and the kind of influence (positive/negative)
of a given variable. This new approach was positively tested in [67] on a Quantitative
Structure-Activity (QSAR) model for chemical compounds. The results were not only
informative about the structure of the model but also provided valuable information for
the design of new compounds.

The procedure from [67] for the computation of feature contributions applies to
Random Forest models predicting numerical observed values. This chapter aims to
extend it to Random Forest models with categorical predictions, i.e., where the ob-
served value determines one from a finite set of classes. The difficulty of achiev-
ing this aim lies in the fact that a discrete set of classes does not have the algebraic
structure of real numbers which the approach presented in [67] relies on. Due to the
high-dimensionality of the calculated feature contributions, their direct analysis is not
easy. In this chapter, three techniques for discovering class-specific feature contribu-
tion ”patterns” in the decision-making process of Random Forest models are proposed:
the analysis of median feature contributions, of clusters and log-likelihoods. This facil-
itates interpretation of model predictions as well as allowing a more detailed analysis
of model reliability for new data.

5.2 Random Forest

A Random Forest (RF) model introduced by Breiman [6] is a collection of tree predic-
tors. Each tree is grown according to the following procedure [7]:

1. the bootstrap phase: select randomly a subset of the training dataset – a lo-
cal training set for growing the tree. The remaining samples in the training
dataset form a so-called out-of-bag (OOB) set and are used to estimate the RF’s
goodness-of-fit.

2. the growing phase: grow the tree by splitting the local training set at each node
according to the value of one variable from a randomly selected subset of vari-
ables (called the best split method) using the classification and regression tree
(CART) method [8].
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5.3 Feature Contributions for Binary Classifiers

3. each tree is grown to the largest extent possible. There is no pruning.

The bootstrap and growing phases require an input of random quantities. It is assumed
that these quantities are independent between trees and identically distributed. Conse-
quently, each tree can be viewed as sampled independently from the ensemble of all
tree predictors for a given training dataset.

For prediction, an instance is run through each tree in a forest down to a terminal
node which assigns it a class. Predictions supplied by the trees undergo a voting pro-
cess: the forest returns a class with the maximum number of votes. Draws are resolved
through a random selection.

Before a feature contribution procedure can be presented, there is a need to de-
velop a probabilistic interpretation of the forest prediction process. Denote by C =

{C1, C2, . . . , CK} the set of classes and by ∆K the set

∆K =
{

(p1, . . . , pK) :
K∑
k=1

pk = 1 and pk ≥ 0
}
.

An element of ∆K can be interpreted as a probability distribution over C. Let ek be an
element of ∆K with 1 at position k – a probability distribution concentrated at classCk.
If a tree t predicts that an instance i belongs to a class Ck then we write Ŷi,t = ek. This
provides a mapping from predictions of a tree to the set ∆K of probability measures
on C. Let

Ŷi =
1

T

T∑
t=1

Ŷi,t, (5.1)

where T is the overall number of trees in the forest. Then Ŷi ∈ ∆K and the prediction
of the Random Forest for the instance i coincides with a class Ck for which the k-th
coordinate of Ŷi is maximal.

5.3 Feature Contributions for Binary Classifiers

The set ∆K simplifies considerably when there are two classes, K = 2. An element
p ∈ ∆K is uniquely represented by its first coordinate p1 (p2 = 1− p1). Consequently,
the set of probability distributions onC is equivalent to the probability weight assigned
to class C1.
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5.3 Feature Contributions for Binary Classifiers

To understand the feature contribution method, the knowledge of the tree growing
process is important. In the first step of this process, the training dataset is selected and
it is positioned in the tree root node. A splitting variable (feature) and a splitting value
are selected and the set of instances is split between the left and the right child nodes
of the root node. The procedure is repeated until all instances in a node are in the same
class or further splitting does not improve prediction. The class that a tree assigns to a
terminal node is determined through majority voting between instances in that node.

We will refer to instances of the local training set that pass through a given node
as the training instances in this node. The fraction of the training instances in a node
n belonging to class C1 will be denoted by Y n

mean. This is the probability that a ran-
domly selected element from the training instances in this node is in the first class. In
particular, a terminal node is assigned to class C1 if Y n

mean > 0.5 or Y n
mean = 0.5 and

in this case the draw is resolved in favor of class C1.
The feature contribution procedure for a given instance involves two steps: 1) the

calculation of local increments of feature contributions for each tree and 2) the aggre-
gation of feature contributions over the forest. A local increment corresponding to a
feature f between a parent node (p) and a child node (c) in a tree is defined as follows:

LIcf =


Y c
mean − Y p

mean,

if the split in the parent
is performed over the
feature f ,

0, otherwise.

Similarly to the tree growing procedure the local training set is run down a tree and
at each node except the root node the local increments for a splitting feature f are
calculated. They represent the change of the probability of being in class C1 between
the child node and its parent node provided that f is the splitting feature in the parent
node. It is easy to show that the sum of these changes, over all features, along the path
followed by an instance from the root node to the terminal node in a tree is equal to the
difference between Ymean in the terminal and the root node.

The contribution FCf
i,t of a feature f in a tree t for an instance i is equal to the sum

of LIf over all nodes on the path of instance i from the root node to a terminal node.
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5.3 Feature Contributions for Binary Classifiers

The contribution of a feature f for an instance i in the forest is then given by

FCf
i =

1

T

T∑
t=1

FCf
i,t. (5.2)

The feature contributions vector for an instance i consists of contributions FCf
i of all

features f .
Notice that if the following condition is satisfied:

(U) for every tree in the forest, local training instances in each terminal node are of
the same class

then Ŷi representing forest’s prediction (5.1) can be written as

Ŷi =
(
Y r +

∑
f

FCf
i , 1− Y r −

∑
f

FCf
i

)
(5.3)

where Y r is the coordinate-wise average of Ymean over all root nodes in the forest.
If this unanimity condition (U) holds, feature contributions can be used to retrieve
predictions of the forest. Otherwise, they only allow for the interpretation of the model.

5.3.1 Example of Feature Contributions Calculation

In this section, to demonstrate the calculation of feature contributions on a toy example,
a subset of the UCI Iris Dataset [116] is used. From the original dataset, ten records
were selected – five for each of two types of the iris plant: versicolor (class 0) and vir-
ginica (class 1) (see Table 5.1). A plant is represented by four attributes: Sepal.Length
(f1), Sepal.Width (f2), Petal.Length (f3) and Petal.Width (f4). This dataset was used to
generate a Random Forest model with two trees, see Figure 5.1. In each tree, the local
training dataset (LD) in the root node collects those records which were chosen by the
Random Forest algorithm to build that tree. The LD sets in the child nodes correspond
to the split of the above set according to the value of a selected feature (it is written
between branches). This process is repeated until reaching terminal nodes of the tree.
Notice that the condition (U) is satisfied – for both trees, each terminal node contains
local training instances of the same class: Ymean is either 0 or 1.
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5.3 Feature Contributions for Binary Classifiers

Figure 5.1: A Random Forest model for the dataset from Table 5.1.
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5.3 Feature Contributions for Binary Classifiers

Table 5.1: Selected records from the UCI Iris Dataset. Each record corresponds to a
plant. The plants were classified as iris versicolor (class 0) and virginica (class 1).

Sepal Petal
Length (f1) Width (f2) Length (f3) Width (f4) Class

x1 6.4 3.2 4.5 1.5 0
x2 6.3 2.5 4.9 1.5 0
x3 6.4 2.9 4.3 1.3 0
x4 5.5 2.5 4.0 1.3 0
x5 5.5 2.6 4.4 1.2 0
x6 7.7 3.0 6.1 2.3 1
x7 6.4 3.1 5.5 1.8 1
x8 6.0 3.0 4.8 1.8 1
x9 6.7 3.3 5.7 2.5 1
x10 6.5 3.0 5.2 2.0 1

The process of calculating feature contributions runs in 2 steps: the determination
of local increments for each node in the forest (a preprocessing step) and the calculation
of feature contributions for a particular instance. Figure 5.1 shows Y n

mean and the local
incrementLIcf for a splitting feature f in each node. Having computed these values, we
can calculate feature contributions for an instance by running it through both trees and
summing local increments of each of the four features. For example, the contribution
of a given feature for the instance x1 is calculated by summing local increments for that
feature along the path p1 = n0 → n1 in tree T1 and the path p2 = n0 → n1 → n4 → n5

in tree T2. According to Formula (5.2) the contribution of feature f2 is calculated as

FCf2
x1

=
1

2

(
0 +

1

4

)
= 0.125

and the contribution of feature f3 is

FCf3
x1

=
1

2

(
− 3

7
− 9

28
− 1

2

)
= −0.625.

The contributions of features f1 and f4 are equal to 0 because these attributes are not
used in any decision made by the forest. The predicted probability Ŷx1 that x1 belongs
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5.4 Feature Contributions for General Classifiers

to class 1 (see Formula (5.3)) is

Ŷx1 =
1

2

(3

7
+

4

7

)
︸ ︷︷ ︸

Ŷ r

+
(
0 + 0.125− 0.625 + 0

)︸ ︷︷ ︸∑
f FCf

x1

= 0.0

Table 5.2 collects feature contributions for all 10 records in the example dataset.
These results can be interpreted as follows:

• for instances x1, x3, the contribution of f2 is positive, i.e., the value of this fea-
ture increases the probability of being in class 1 by 0.125. However, the large
negative contribution of the feature f3 implies that the value of this feature for
instances x1 and x3 was decisive in assigning the class 0 by the forest.

• for instances x6, x7, x9, the decision is based only on the feature f3.

• for instances x2, x4, x5, the contribution of both features leads the forest decision
towards class 0.

• for instances x8, x10, Ŷ is 0.5. This corresponds to the case where one of the
trees points to class 0 and the other to class 1. In practical applications, such
situations are resolved through a random selection of the class. Since Ŷ r = 0.5,
the lack of decision of the forest has a clear interpretation in terms of feature
contributions: the amount of evidence in favour of one class is counterbalanced
by the evidence pointing towards the other.

5.4 Feature Contributions for General Classifiers

When K > 2, the set ∆K cannot be described by a one-dimensional value as above.
We, therefore, generalize the quantities introduced in the previous section to a multi-
dimensional case. Y n

mean in a node n is an element of ∆K , whose k-th coordinate,
k = 1, 2, . . . , K, is defined as

Y n
mean,k =

|{i ∈ TS(n) : i ∈ Ck}|
|TS(n)| , (5.4)
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Table 5.2: Feature contributions for the Random Forest model from Figure 5.1.

Sepal Petal
Ŷ Length (f1) Width (f2) Length (f3) Width (f4) Prediction

x1 0.0 0 0.125 -0.625 0 0
x2 0.0 0 -0.125 -0.375 0 0
x3 0.0 0 0.125 -0.625 0 0
x4 0.0 0 -0.125 -0.375 0 0
x5 0.0 0 -0.125 -0.375 0 0
x6 1.0 0 0 0.5 0 1
x7 1.0 0 0 0.5 0 1
x8 0.5 0 0.125 -0.125 0 ?
x9 1.0 0 0 0.5 0 1
x10 0.5 0 0 0 0 ?

where TS(n) is the set of training instances in the node n and | · | denotes the number
of elements of a set. Hence, if an instance is selected randomly from a local training
set in a node n, the probability that this instance is in class Ck is given by the k-th
coordinate of the vector Y n

mean. Local increment LIcf is analogously generalized to a
multidimensional case:

LIcf =


Y c
mean − Y p

mean,

if the split in the parent
is performed over the
feature f ,

(0, . . . , 0)︸ ︷︷ ︸
K times

, otherwise,

where the difference is computed coordinate-wise. Similarly, FCf
i,t and FCf

i are ex-
tended to vector-valued quantities. Notice that if the condition (U) is satisfied, Equa-
tion (5.3) holds with Y r being a coordinate-wise average of vectors Y n

mean over all root
nodes n in the forest.

Take an instance i and let Ck be the class to which the forest assigns this instance.
Our aim is to understand which variables/features drove the forest to make that pre-
diction. We argue that the crucial fact is the one which explains the value of the k-th
coordinate of Ŷi. Hence, we want to study the k-th coordinate of FCf

i for all features
f .
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Algorithm 8 FC(RF ,i)

1: k ← forest predict(RF, i)
2: FC ← vector(features)
3: for each tree T in forest F do
4: parent← root(T )
5: while parent ! = TERMINAL do
6: f ← SplitFeature(parent)
7: if i[f ] <= SplitV alue(parent) then
8: child← leftChild(parent)
9: else

10: child← rightChild(parent)
11: end if
12: FC[f ]← FC[f ] + Y child

mean,k − Y parent
mean,k

13: parent← child
14: end while
15: end for
16: FC ← FC / nTrees(F )
17: return FC

Pseudo-code to calculate feature contributions (FC) for a particular instance to-
wards the class predicted by the Random Forest is presented in Algorithm 8. Its inputs
consist of a Random Forest model RF and an instance i which is represented as a
vector of feature values. In line 1, k ∈ {1, 2, . . . , K} is assigned the index of a class
predicted by the Random Forest RF for the instance i. The following line creates a
vector of real numbers indexed by features and initialized to 0. Then for each tree in
the forest RF the instance i is run down the tree and feature contributions are calcu-
lated. The quantity SplitFeature(parent) identifies a feature f on which the split is
performed in the node parent. If the value i(f) of that feature f for the instance i
is lower or equal to the threshold SplitV alue(parent), the route continues to the left
child of the node parent. Otherwise, it goes to the right child (each node in the tree
has either two children or is a terminal node). A position corresponding to the feature
f in the vector FC is updated according to the change of value of Ymean,k, i.e., the k-th
coordinate of Ymean, between the parent and the child.

Algorithm 9 provides a sketch of the preprocessing step to compute Y n
mean for all

nodes n in the forest. The parameter D denotes the set of instances used for training
of the forest RF . In line 2, TS is assigned the set used for growing tree T . This set
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5.5 Analysis of Feature Contributions

Algorithm 9 Ymean(RF,D)

1: for each tree T in forest F do
2: TS ← training set for tree T
3: use DFS algorithm to compute training sets in all other nodes n of tree T and

compute the vector Y n
mean according to formula (5.4).

4: end for

is further split in nodes according to values of splitting variables. We propose to use
DFS (depth first search [17]) to traverse the tree and compute the vector Y n

mean once a
training set for a node n is determined. There is no need to store a training set for a
node n once Y n

mean has been calculated.
The above algorithms are implemented as a package randomForest Feature Con-

tributions (rfFC) in R and published at R-Forge [82]. The detailed documentation is
included in Appendix A.

5.5 Analysis of Feature Contributions

Feature contributions provide the means to understand mechanisms that lead the model
towards particular predictions. This is important in chemical or biological applications
where the additional knowledge of the forest’s decision-making process can inform
the development of new chemical compounds or explain their interactions with living
organisms. Feature contributions may also be useful for assessing the reliability of
model predictions for unseen instances. They provide complementary information to
a forest’s voting results. This section proposes three techniques for finding patterns in
the way a Random Forest uses available features and linking these patterns with the
forest’s predictions.

5.5.1 Median Analysis

The median of a sequence of numbers is a value such that the number of elements big-
ger than it and the number of elements smaller than it is the same. When the number of
elements in the sequence is odd, this is the central element of the sequence. Otherwise,
it is common to take the midpoint between the two most central elements. In statistics,
the median is an estimator of the expectation which is less affected by outliers than
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5.5 Analysis of Feature Contributions

the sample mean. We will use this property of the median to find a “standard level” of
feature contributions for representatives of a particular class. This standard level will
facilitate an understanding of which features are instrumental for the classification. It
can also be used to judge the reliability of forest’s prediction for an unseen instance.

For a given Random Forest model, we select those instances from the training
dataset that are classified correctly. We calculate the medians of contributions of every
feature separately for each class. The medians computed for one class are combined
into a vector which is interpreted as providing the aforementioned “standard level” for
this class. If most of the instances from the training dataset belonging to a particular
class are close to the corresponding vector of medians, we may treat this vector justifi-
ably as a standard level. When a prediction is requested for a new instance, we query
the Random Forest model for the fraction of trees voting for each class and calculate
feature contributions leading to its final prediction. If a high fraction of trees votes
for a given class and the feature contributions are close to the standard level for this
class, we may reasonably rely on the prediction. Otherwise we may doubt the Random
Forest model prediction.

It may, however, happen that many instances from the training dataset correctly
predicted to belong to a particular class are distant from the corresponding vector of
medians. This might suggest that there is more than one standard level, i.e., there are
multiple mechanisms relating features to correct classes. The next subsection presents
more advanced methods capable of finding a number of standard levels – distinct pat-
terns followed by the Random Forest model in its prediction process.

5.5.2 Cluster Analysis

Clustering is an approach for grouping elements/objects according to their similarity
[37]. This allows us to discover patterns that are characteristic for a particular group.
As discussed above, feature contributions in one class may have more than one ”stan-
dard level”. When this is discovered, clustering techniques can be employed to find
if there is a small number of distinct standard levels, i.e., feature contributions of the
instances in the training dataset group around a few points with only a relatively few
instances being far away from them. These few instances are then treated as unusual
representatives of a given class. We shall refer to clusters of instances around these
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Figure 5.2: The workflow for assessing the reliability of the prediction made by a
Random Forest (RF) model.

standard levels as ”core clusters”.
The analysis of core clusters can be of particular importance for applications. For

example, in the classification of chemical compounds, the split into clusters may point
to groups of compounds with different mechanisms of activity. We should note that
the similarity of feature contributions does not imply that particular features are simi-
lar. We examined several examples and noticed that clustering based upon the feature
values did not yield useful results whereas the same method applied to feature contri-
butions was able to determine a small number of core clusters.

Figure 5.2 demonstrates the process of analysis of model reliability for a new in-
stance using cluster analysis. In a preprocessing phase, feature contributions for in-
stances in the training dataset are obtained. The optimal number of clusters for each
class can be estimated by using one of the following methods: the Akaike informa-
tion criterion (AIC), the Bayesian information criterion (BIC) or the Elbow method

129



5.5 Analysis of Feature Contributions

[37, 90]. We noticed that these methods should not be rigidly adhered to: their un-
derlying assumption is that the data is clustered and we only have to determine the
number of these clusters. As we argued above, we expect feature contributions for
various instances to be grouped into a small number of clusters and we accept a rea-
sonable number of outliers interpreted as unusual instances for a given class. Cluster-
ing algorithms tend to push those outliers into clusters, hence increasing the number
of clusters unnecessarily. We recommend, therefore, to treat the calculated optimal
number of clusters as the maximum value and consecutively decrease it looking at the
structure and performance of the resulting clusters: for each cluster we assess the av-
erage fraction of trees voting for the predicted class across the instances belonging to
this cluster as well as the average distance from the centre of the cluster. Relatively
large clusters with the former value close to 1 and the latter value small form the group
of core clusters.

To assess the reliability of the model prediction for a new instance, we recommend
looking at two measures: the fraction of trees voting for the predicted class as well
as the cluster to which the instance is assigned based on its feature contributions. If
the cluster is one of the core clusters and the distance from its centre is relatively
small, the instance is a typical representative of its predicted class. This together with
high decisiveness of the forest suggests that the model’s prediction should be trusted.
Otherwise, we should allow for an increased chance of misclassification.

5.5.3 Log-likelihood Analysis

Feature contributions for a given instance form a vector in a multi-dimensional Eu-
clidean space. Using a popular k-mean clustering method, for each class we divide
vectors corresponding to feature contributions of instances in the training dataset into
groups minimizing the Euclidean distance from the centre in each group. Figure 5.3
shows a box-plot of feature contributions for instances in a core cluster in a hypothet-
ical Random Forest model. Notice that some features are stable within a cluster – the
height of the box is small. Others (F1 and F4) display higher variability. One would
therefore expect that the same divergence of contributions for features F3 and F4 from
their mean value should be treated differently. It is more significant for the feature
F3 than for the feature F4. This is unfortunately not taken into account when the Eu-
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5.5 Analysis of Feature Contributions

clidean distance is considered. Here, we propose an alternative method for assessing
the distance from the cluster centre which takes into account the variation of feature
contributions within a cluster. Our method has probabilistic roots and we shall present
it first from a statistical point of view and provide other interpretations afterwards.
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Figure 5.3: The box-plot for feature contributions within a core cluster for a hypothet-
ical Random Forest model.

We assume that feature contributions for instances within a cluster share the same
base values (µf ) - the centre of the cluster. We attribute all discrepancies between
this base value and the actual feature contributions to a random perturbation. These
perturbations are assumed to be normally distributed with the mean 0 and the variance
σ2
f , where f denotes the feature. The variance of the perturbation for each feature is

selected separately – we use the sample variance computed from feature contributions
of instances of the training dataset belonging to this cluster. Although it is clear that
perturbations for different features exhibit some dependence, it is impossible to assess
it given the number of instances in a cluster and the large number of features typically
in use. A covariance matrix of feature contributions has F (F + 1)/2 distinct entries,
where F is the number of features. This value is usually larger than the size of a cluster
making it impossible to retrieve useful information about the dependence structure of
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feature contributions. Application of more advanced methods, such as principal com-
ponent analysis, is left for future research. Therefore, we resort to a common solution:
we assume that the dependence between perturbations is small enough to justify treat-
ing them as independent. Summarising, our statistical model for the distribution of
feature contributions within a cluster is as follows: feature contributions for instances
within a cluster are composed of a base value and a random perturbation which is
normally distributed and independent between features.

Take an instance i with feature contributions FCf
i . The log-likelihood of being in

a cluster with the centre (µf ) and variances of perturbations (σ2
f ) is given by

LLi =
∑
f

(
− (FCf

i − µf )2

2σ2
f

− 1

2
log(2πσ2

f )
)
. (5.5)

The higher the log-likelihood the bigger the chance of feature contributions of the in-
stance i to belong to the cluster. Notice that the above sum takes into account the
observations we made at the beginning of this subsection. Indeed, as the second term
in the sum above is independent of the considered instance, the log-likelihood is equiv-
alent to ∑

f

(
− (FCf

i − µf )2

2σ2
f

)
,

which is the negative of the squared weighted Euclidean distance between FCf
i and µf .

The weights are inversely proportional to the variability of a given feature contribution
in the training instances in the cluster. In our toy example of Figure 5.3, this corre-
sponds to penalizing more for discrepancies for features F2 and F3, and significantly
less for discrepancies for features F1 and F4.

In the following section, we analyse relations between the log-likelihood and clas-
sification for a UCI Breast Cancer Wisconsin Dataset.

5.6 Experimental Results

In this section, we demonstrate how the techniques from the previous section can be
applied to improve understanding of a Random Forest model. We consider one exam-
ple of a binary classifier using the UCI Breast Cancer Wisconsin Dataset [115] (BCW
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Dataset) and one example of a general classifier for the UCI Iris Dataset [116]. We
complement our studies with a robustness analysis.

5.6.1 Breast Cancer Wisconsin Dataset

The UCI Breast Cancer Wisconsin Dataset contains characteristics of cell nuclei for
569 breast tissue samples; 357 are diagnosed as benign and 212 as malignant. The
characteristics were captured from a digitized image of a fine needle aspirate (FNA) of
a breast mass. There are 30 features, three (the mean, the standard error and the average
of the three largest values) for each of the following 10 characteristics: radius, texture,
perimeter, area, smoothness, compactness, concavity, concave points, symmetry and
fractal dimension. For brevity, we numbered these features from F1 to F30 according
to their order in the data file.

To reduce correlation between features and facilitate model interpretation, the min-
max (minimal-redundancy-maximal-relevance) method was applied and the following
features were removed from the dataset: 1, 3, 8, 10, 11, 12, 13, 15, 19, 20, 21, 24, 26.
A Random Forest model was generated on 2/3 randomly selected instances using 500
trees. The other 1/3 of instances formed the testing dataset. The validation showed
that the model accuracy was 0.9682 (only 6 instances out of 189 were classified in-
correctly); similar accuracy was achieved when the model was generated using all the
features.

We applied our feature contribution algorithm to the above Random Forest binary
classifier. To align notation with the rest of the chapter, we denote the class “malignant”
by 1 and the class “benign” by 0. Aggregate results for the feature contributions for all
training instances and both classes are presented in Figure 5.4. Light-grey bars show
medians of contributions for instances of class 0, whereas black bars show medians
of contributions for instances of class 1 (malignant). Notice that there are only a few
significant features in the graph: F4 – the mean of the cell area, F7 – the mean of
the cell concavity, F14 – the standard deviation of the cell area, F23 – the average of
three largest measurements of the cell perimeter and F28 – the average of three largest
measurements of concave points. This selection of significant features is perfectly in
agreement with the results of the permutation based variable importance (the left panel
of Figure 5.5) and the Gini importance (the right panel of Figure 5.5). Interpreting the
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Figure 5.4: Medians of feature contributions for each class for the BCW Dataset.
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Figure 5.5: The left panel shows permutation based variable importance and the right
panel displays Gini importance for a RF binary classification model developed for the
BCW Dataset.
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Table 5.3: Percentage of trees that vote for each class in RF model for a selection of
instances from the BCW Dataset.

Instance Id benign (class 0) malignant (class 1)
3 0 1

194 0.298 0.702
537 0.234 0.766

size of bars as the level of importance of a feature, our results are in line with those
provided by the Gini index. However, the main advantage of the approach presented in
this chapter lies in the fact that one can study the reasons for the forest’s decision for a
particular instance.

Comparison of feature contributions for a particular instance with medians of fea-
ture contributions for all instances of one class provides valuable information about the
forest’s prediction. Take an instance predicted to be in class 1. In a typical case when
the large majority of trees votes for class 1 the feature contributions for that instance
are very close to the median values (see Figure 5.6a). This happens for around 80%

of all instances from the testing dataset predicted to be in class 1. However, when the
decision is less unanimous, the analysis of feature contributions may reveal interesting
information. As an example, we have chosen instances 194 and 537 (see Table 5.3)
which were classified correctly as malignant (class 1) by a majority of trees but with a
significant number of trees expressing an opposite view. Figure 5.6b presents feature
contributions for these two instances (grey and light grey bars) against the median val-
ues for class 1 (black bars). The largest differences can be seen for the contributions
of very significant features F23, F4 and F14: it is highly negative for the two instances
under consideration compared to a large positive value commonly found in instances
of class 1. Recall that a negative value contributes towards the classification in class
0. There are also three new significant attributes (F2, F22 and F27) that contribute
towards the correct classification as well as unusual contributions for features F7 and
F28. These newly significant features are judged as only moderately important by both
of the variable importance methods in Figure 5.5. It is, therefore, surprising to note that
the contribution of these three new features was instrumental in correctly classifying
instances 194 and 537 as malignant. This highlights the fact that features which may
not generally be important for the model may, nonetheless, be important for classify-

135



5.6 Experimental Results

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

Features

F
e

a
tu

re
 c

o
n

tr
ib

u
ti
o

n

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

(a)

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

Features

F
e

a
tu

re
 c

o
n

tr
ib

u
ti
o

n

−
0

.1
0

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(b)

Figure 5.6: Comparison of the medians of feature contributions (toward class 1) over
all instances of class 1 (black bars) with a) feature contributions for instance number 3
(light-grey bars) b) feature contributions for instances number 194 (grey bars) and 537
(light-grey bars) from the BCW Dataset. The fractions of trees voting for class 0 and
1 for these three instances are collected in Table 5.3.
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ing specific instances. The approach presented in this chapter is able to identify such
features, whilst the standard variable importance measures for Random Forest cannot.

5.6.2 Cluster Analysis and Log-likelihood

The training dataset previously derived for the BCW Dataset was partitioned according
to the true class labels. A clustering algorithm implemented in the R package kmeans
was run separately for each class. This resulted in the determination of three clusters
for class 0 and three clusters for class 1. The structure and size of clusters is presented
in Table 5.4. Each class has one large cluster: cluster 3 for class 0 and cluster 2 for
class 1. Both have a bigger concentration of points around the cluster centre (small
average distance) than the remaining clusters. This suggests that there is exactly one
core cluster corresponding to a class. This explains the success of the analysis based
on the median as the vectors of medians are close to the centres of unique core clusters.

Figure 5.7 lends support to our interpretation of core clusters. The upper panel
shows the box-plot of the fraction of trees voting for class 0 among training instances
belonging to each of the three clusters. A value close to one represents predictions for
which the forest is nearly unanimous. This is the case for cluster 3. Two other clusters
comprise around 10% of the training instances for which the Random Forest model
happened to be less decisive. A similar pattern can be observed in the case of class
1, see the bottom panel of the same figure. The unanimity of the forest is observed
for the most numerous cluster 2 with other clusters showing lower decisiveness. The
reason for this becomes clear once one looks at the variability of feature contributions
within each cluster, see Figure 5.8. The upper and lower ends of the box correspond
to the 75% and 25% quantiles, whereas the whiskers show the full range of the data.

Table 5.4: The structure of clusters for BCW Dataset. For each cluster, the size (the
number of training instances) is reported in the left column and the average Euclidean
distance from the cluster centre among the training dataset instances belonging to this
cluster is displayed in the right column.

Cluster 1 Cluster 2 Cluster 3
size avg. distance size avg. distance size avg. distance

class 0 12 0.220 16 0.262 213 0.068
class 1 20 0.241 109 0.111 10 0.336
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Figure 5.7: Fraction of forest trees voting for the correct class in each cluster for
training part of the BCW Dataset.
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(a) Cluster 1
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(b) Cluster 2
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(c) Cluster 3

Figure 5.8: Boxplot of feature contributions (towards class 1) for training instances in
each of three clusters obtained for class 1.
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Figure 5.9: Log-likelihoods for belonging to the core cluster in class 0 (vertical axis)
and class 1 (horizontal axis) for the testing dataset in BCW. Circles correspond to
instances of class 0 while triangles denote instances of class 1.

Cluster 2 enjoys a minor variability of all the contributions which supports our earlier
claims regarding the similarity of instances (in terms of their feature contributions) in
the core class. One can see much higher variability in two remaining clusters showing
that the forest used different features as evidence to classify instances in each of these
clusters. Although in cluster 2 all contributions were positive, in clusters 1 and 3
there are features with negative contributions. Recall that a negative value of a feature
contribution provides evidence against being in the corresponding class, here class 1
(malignant).

Based on the observation that clusters correspond to a particular decision-making
route for the Random Forest model, we introduced the log-likelihood as a way to assess
the distance of a given instance from the cluster centre, or, in a probabilistic interpre-
tation, to compute the likelihood that the instance belongs to the given cluster. The
likelihood is obtained by applying the exponential function to the log-likelihood. It
should however be clarified that one cannot compare the likelihood for the core cluster
in class 0 with the likelihood for the core cluster in class 1. The likelihood can only be
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used for comparisons within one cluster: having two instances we can say which one
is more likely to belong to a given cluster. By comparing it to a typical likelihood for
training instances in a given cluster we can further draw conclusions about how well
an instance fits that cluster. Figure 5.9 presents the log-likelihoods for the two core
clusters (one for each class) for instances from the testing dataset. Shapes are used to
mark instances belonging to each class: circles for class 0 and triangles for class 1.
Notice that likelihoods provide a very good split between classes: instances belong-
ing to class 0 have a high log-likelihood for the core cluster of class 0 and rather low
log-likelihood for the core cluster of class 1. And vice-versa for instances of class 1.

5.6.3 Iris Dataset

In this section we use the UCI Iris Dataset [116] to demonstrate interpretability of
feature contributions for multi class classification models. We generated a Random
Forest model on 100 randomly selected instances. The remaining 50 instances were
used to assess the accuracy of the model: 47 out of 50 instances were correctly clas-
sified. Then we applied our approach for determining the feature contributions for the
generated model. Figure 5.10 presents medians of feature contributions for each of the
three classes. In contrast to the binary classification case, the medians are positive for
all classes. A positive feature contribution for a given class means that the value of this
feature directs the forest towards assigning this class. A negative value points towards
the other classes.

Feature contributions provide valuable information about the reliability of Random
Forest predictions for a particular instance. It is commonly assumed that the more trees
voting for a particular class, the higher the chance that the forest decision is correct.
We argue that the analysis of feature contributions offers a more refined picture. As
an example, take two instances: 120 and 150. The first one was classified in class
Versicolour (88% of trees voted for this class). The second one was assigned class
Virginica with 86% of trees voting for this class. We are, therefore, tempted to trust
both of these predictions to the same extent. Table 5.5 collects feature contributions
for these instances towards their predicted classes. Recall that the highest contribution
to the decision is commonly attributed to features 3 (Petal.Length) and 4 (Petal Width),
see Figure 5.10. These features also make the highest contributions to the predicted
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Figure 5.10: Medians of feature contributions for each class for the UCI Iris Dataset.

Table 5.5: Feature contributions towards predicted classes for selected instances from
the UCI Iris Dataset.

Instance
Sepal Petal

Length Width Length Width
120 0.059 0.014 0.053 0.448
150 -0.097 0.035 0.259 0.339

class for instance 150. The indecisiveness of the forest may stem from an unusual
value for the feature 1 (Sepal.Length) which points towards a different class. In con-
trast, the instance 120 shows standard (low) contributions of the first two features and
unusual contributions of the last two features: very low for feature 3 and high for fea-
ture 4. Recall that features 3 and 4 tend to contribute most to the forest’s decision
(see Figure 5.10) with values between 0.25 and 0.35. The low value for feature 3 is
non-standard for its predicted class, which increases the chance of it being wrongly
classified. Indeed, both instances belong to class Virginica while the forest classified
the instance 120 wrongly as class Versicolour and the instance 150 correctly as class
Virginica.

The cluster analysis of feature contributions for the UCI Iris Dataset revealed that
it is sufficient to consider only two clusters for each class. Cluster sizes are 4 and 38
for class Setosa, 2 and 25 for class Versicolour and 3 and 28 for class Virginica. Core
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Figure 5.11: Log-likelihoods for all instances in UCI Iris Dataset towards core clusters
for each class. Circles represent the Setosa class, triangles represent Versicolour and
diamonds represent the Virginica class. Points corresponding to the same class tend to
group together and there are only four instances that are far from their cores.

clusters were straightforward to determine: for each class, the largest of the two clus-
ters was selected as the core cluster. Figure 5.11 displays an analysis of log-likelihoods
for all instances in the dataset. For every instance, we computed feature contributions
towards each class and calculated log-likelihoods of being in the core clusters of the
respective classes. On the graph, each point represents one instance. The coordinate
LH1 is the log-likelihood for the core cluster of class Setosa, the coordinate LH2 is
the log-likelihood for the core cluster of class Versicolour and the coordinate LH3 is

143



5.6 Experimental Results

the log-likelihood for the core cluster of class Virginica. Shapes of points show the
true classification: class Setosa is represented by circles, Versicolour by triangles and
Virginica by diamonds. Notice that points corresponding to instances of the same class
tend to group together. This can be interpreted as the existence of coherent patterns in
the reasoning of the Random Forest model.

5.6.4 Robustness Analysis

For the validity of the study of feature contributions, it is crucial that the results are
not artefacts of one particular realization of a Random Forest model but that they con-
vey actual information held by the data. We therefore propose a method for robust-
ness analysis of feature contributions. We will use the UCI Breast Cancer Wisconsin
Dataset studied in Subsection 5.6.1 as an example.

We removed instance number 3 from the original dataset to allow us to perform
tests with an unseen instance. We generated 100 Random Forest models with 500
trees with each model built using an independent randomly generated training set with
379 ≈ 2/3 · 568 instances. The rest of the dataset for each model was used for its
validation. The average model accuracy was 0.963. For each generated model, we
collected medians of feature contributions separately for training and testing datasets
and each class. The variation of these quantities over models for class 1 and the train-
ing dataset are presented using a box plot in Figure 5.12a. The top of the box is the
75% quantile, the bottom is the 25% quantile, while the bold line in the middle is the
median (recalling that this is the median of the median feature contributions across
multiple models). Whiskers show the extent of minimal and maximal values for each
feature contribution. Notice that the variation between simulations is moderate and
conclusions drawn for one realization of the Random Forest model in Subsection 5.6.1
would hold for each of the generated 100 Random Forest models.

A testing dataset contains those instances that do not take part in the model gener-
ation. One can, therefore, expect more errors in the classification of the forest, which,
in effect, should imply lower stability of the calculated feature contributions. Indeed,
the box plot presented in Figure 5.12b shows a slight tendency towards increased vari-
ability of the feature contributions when compared to Figure 5.12a. However, these
results are qualitatively on a par with those obtained on the training datasets. We can,
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(a) Medians of feature contributions for training datasets
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(b) Medians of feature contributions for testing datasets
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(c) Feature contributions for an unseen instance

Figure 5.12: Feature contributions towards class 1 for 100 Random Forest models for
the BCW dataset.
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therefore, conclude that feature contributions computed for a new (unseen) instance
provide reliable information. We further tested this hypothesis by computing feature
contributions for instance number 3 that did not take part in the generation of mod-
els. The statistics for feature contributions for this instance over 100 Random Forest
models are shown in Figure 5.12c. Similar results were obtained for other instances.

5.7 Summary

Feature contributions provide a novel approach towards the Random Forest model in-
terpretation. They measure the influence of variables/features on the prediction out-
come and provide explanations as to why a model makes a particular decision. Al-
though there are approaches for analysing machine learning models, the analysis of
the model decision for a particular instance is still a difficult task.

The focus of this chapter was the well known Random Forest model. It ensembles
a number of decision trees and the implementation of the kernel methods for model
interpretation can become even more complex task in this case. This is why, we fo-
cus on extracting information from the model structure rather than providing complex
methods to calculate feature contributions for a single instance. The main contribution
in this part was the extension of the feature contribution method of [67] to Random
Forest classification models and the design of three techniques (median, cluster anal-
ysis and log-likelihood) for finding patterns in the Random Forest’s use of available
features. The additional contribution was the implementation of a package for the R
statistical programming language. This package has been submitted to R-Forge [82]
under the name rfFC.

The proposed methodology was validated using UCI benchmark datasets. Exper-
imental results showed the robustness of the proposed methodology. We also demon-
strated how feature contributions can be applied to understand the dependence between
instance characteristics and their predicted classification and to assess the reliability of
the prediction. The relation between feature contributions and standard variable impor-
tance measures was also investigated. Currently there is ongoing research to validate
this approach in predictive toxicology to interpret Random Forest models for Ames
mutagenicity.
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Chapter 6
Conclusions

The reuse of existing information can support decision making processes in various
application domains. This has become one of the most significant challenges due to the
large amount of available data and models used for data analysis. The reuse of models
is the main interest of this research. This chapter summarises the work presented in
the thesis highlighting main contributions, discussing novel open problems and making
recommendations for future work.

6.1 Research Contributions

In the domain of life sciences the reuse of information has become crucial due to
the current aims of reduction in the number of animal tests. This encourages various
R&D institutions to search for alternative methods that can be used in the product
(such as drugs, cosmetic, agriculture and domestic products) development processes.
These methods are mostly based on the reuse of existing available information. Such
information represents not only data but also models that can provide new insights
or discover patterns in existing data. Although data curation, quality and integration
as well as model development processes have been widely studied over the last ten
years, management and efficient reuse of models has been left to users. In these days,
models can be seen as important information assets, thus there is a need to provide a
framework for their storage, management and efficient reuse.

Making models in predictive toxicology reliable and reusable sources of informa-
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tion has became a major motivation for this research. This thesis proposed general
methodologies, frameworks and algorithms, and presented solutions in the area of
QSAR modelling. To define needs and aims for model storage and management, an
extensive review of the toxicity data and model development processes have been pre-
sented in Chapter 2. Various toxicity frameworks have been reviewed and we found
the following limitations for the model reuse:

• Existing systems allow generation and reuse of models only within their frame-
work. To make use of existing models, users are required to register with the
system and to submit data that they use for predicting a given endpoint. This
discourages modellers from using such predictive toxicology systems because
the data in use is often confidential.

• Decision on model reuse is left to the user. A potential user is required to make
a comparison of model applicability domains and their predictivity for a given
endpoint in order to decide if the model can make reliable predictions for a new
chemical compound.

• Although all model representations follow the OECD principles, model exchange
between various toxicity platforms is not possible. The OECD principles are
incorporated within the model representation format designed for a particular
system. A transfer of the model from one platform to another requires parsing
of meta-information about a model.

• Models are not continuously validated. Often models are updated when model
creators become aware of newly available data that can be used to validate or
improve existing models; otherwise models are left without any updates. This is
not a major problem for models derived from the chemical structure and those
that have a large applicability domain. But for local models, it is crucial to extend
the boundary of the chemical space where the model gives reliable predictions
and provide limitations and conditions where the prediction can be unreliable.

The review of toxicity systems was partially published in [30] in respect to the princi-
ples of data governance, and partially in [83] according to model storage, provenance
and management practices. The conclusion from these reviews was that existing toxi-
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city frameworks strongly support model development processes and model storage but
do not support model validation and further reuse.

In Chapter 3 a novel concept of model governance was proposed. The idea is
to treat models as valuable information assets rather than business intelligence tools.
Decision domains of the model governance were built based on the principles of data
governance. The novelty of this research was defining model governance processes
which aimed to:

• ensure that a model is properly used,

• validate and maintain model effectiveness,

• help understanding model weaknesses (i.e. where the model can be safely ap-
plied, how reliable it is, etc.).

In Section 3.3 three processes: model evaluation, control and validation were defined
and discussed in terms of the rules and actions taken in each process. The Information
Management System for Data and Model Governance was proposed in Section 3.4.
The framework includes human roles in the data and model organisational level and de-
fines responsibilities. An important part of the decision domains for model governance
is the definition of model meta-data. In Section 3.6 the six rules for Minimum Infor-
mation About QSAR Model Representation were proposed. These rules are designed
to comply with the defined model governance processes and include information about
the model development process as well as information about model performance. In
contrast to other model representations, storage of this information allows the analysis
and comparison of models. Providing users with information about model provenance
can increase the trust in further model reuse. The analysis of model performance sup-
ports the assessment of model reliability. Based on the proposed six rules, the markup
language called MIAQMR-ML was designed. The proposition of the model gover-
nance framework together with the model representation format was published in [83].
A proof of the proposed concept was the design of database and implementation of
Syngenta in-house Data and Model Governance Framework presented in Section 3.7.

To decide if a model can be safely applied to new data and used to support a user
decision, a novel model identification framework was proposed in Chapter 4. In this re-
search, model identification represents the selection of a model from a group of models
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coming from various sources. In Section 4.2 a partitioning model that splits a search
space into groups was proposed. The partition is done by grouping similar instances
maximizing the similarity of the elements within the group and minimizing the error
of the model assigned to this group. The assumption of this approach was that groups
are disjoint and only one model is assigned to a group. The construction of the par-
titioning model is a difficult task as this is a bi-criteria optimization problem and the
solution has to be a trade-off between the similarity of group elements and the model
performance for these elements.

In the first attempt, the problem of constructing a partitioning model was reduced
to a one-criteria problem, see the Double Min-Score (DMS) algorithm in Section 4.3.
This is a classification problem that uses two pre-defined rules: select the nearest neigh-
bour and identify its most predictive model. The algorithm and results were published
in [122].

In the second attempt, to solve the original bi-criteria problem of the partitioning
model construction, the concept of Pareto neighbourhood was used in Section 4.4.
Three new lemmas for Pareto point properties were proposed in Section 4.4.1. Based
on these lemmas an algorithm that searches for Pareto points in a given search space
was designed. The Pareto points for a query instance define its Pareto neighbour-
hood. This Pareto neighbourhood is used in the model identification process, see Sec-
tion 4.4.2. There are two new algorithms proposed: the Centroid Pareto Model Iden-
tification (CPMI) and Average Pareto Model Identification (APMI). The first method
identifies a model that is associated with the Pareto point for which the Euclidean dis-
tance to the neighbourhood centroid is minimal. The second method averages model
errors for the instance represented by Pareto points and then the model with the small-
est average error is selected. Usage of the Pareto points for model identification is a
novel concept. The proposed methodology, algorithms and results for QSAR model
identification were published in [84].

In Section 4.5 experimental results were discussed. In this thesis, three use cases
were considered. The first one is model identification for local models with limited ap-
plicability domains. In this case, two models were used from the JRC QSAR database
for the Tetratox dataset. In the second case, global models available as tools for cal-
culating LogP were compared with the in-house Syngenta model. Finally, as the third
case, models were developed and collected during a competition that aimed to calcu-
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late chemical compound persistence in soil. The role of this project in the competition
was the preparation of the datasets and further validation of the collected models. The
experimental results demonstrated the advantage of the methods proposed in this the-
sis, and indicated that automated model identification is a promising research direction
with many practical applications.

Another contribution of this thesis was to provide tools for model interpretation. In
many life science domains, and particularly in predictive toxicology, mechanistic in-
terpretation of model predictions is necessary to increase trust and to inform decision-
making. Linear models are the easiest to be interpreted thanks to the availability of
model parameters and their statistical significance. Machine learning approaches and
non-linear models do not hold such transparency. Information is often hidden within
the model structure. Interpretation involves measuring the influence of variables/fea-
tures on the prediction outcome and providing explanations as to why a model makes
a particular decision.

In Chapter 5, a model interpretation method for random forest models was pro-
posed. This method generalises the feature contribution approach proposed in [67].
The original procedure for the computation of feature contributions applies to ran-
dom forest models predicting numerical observed values. This chapter extended it
to random forest models with categorical predictions, i.e., where the observed value
determines one from a finite set of classes. The methodology was published in [81].

The second contribution in this chapter was the analysis of feature contributions.
This is a novel concept showing how feature contributions can be used in order to anal-
yse why a model makes a particular decision and whether this decision is reliable. In
Section 5.5, three techniques for discovering class-specific feature contributions called
“patterns“ in the decision-making process of random forest models are proposed: the
analysis of median feature contributions, of clusters and log-likelihoods. These meth-
ods were validated using benchmark datasets. The experimental results, in Section 5.6,
showed the robustness of the proposed methodology. We also demonstrated how fea-
ture contributions can be applied to understand the dependence between instance char-
acteristics and their predicted classification and to assess the reliability of the predic-
tion. The relationship between feature contributions and standard variable importance
measures was also investigated. The methods proposed in this section were publish
in [85]. Currently we continue this research to validate these proposed methodolo-
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gies in predictive toxicology to interpret random forest models for Ames mutagenicity
prediction.

The last contribution for this thesis was the implementation of the R package called
random forest Feature Contributions (rfFC). This package is currently available in R-
Forge [82] and is prepared for submission to CRAN [19]. It includes feature contribu-
tion extraction as well as the calculation of changes in prediction for the varying data
values. The package was implemented in collaboration with Dr. Richard Marchese
Robinson, a former research associate in Product Safety department in Syngenta.

The methodologies and algorithms proposed in this thesis are not domain specific.
Model governance processes and model identification were discussed with applica-
tions in predictive toxicology. They can be easily adapted and implemented in other
domains. Entire project consists of three main research directions that are interlinked.
This research opens new problems in model reuse. A list of possible future research
projects is discussed in the following section.

6.2 Future Work

The work in this thesis consists of three research topics: model reuse, model identifi-
cation and model interpretation. They are linked to each other creating a foundation
for the development of a complex framework for model integration and reuse. This
opens a new domain of research where models are treated as information objects and
further model processing is required. In this section detailed information about future
research plans is provided.

Model Governance processes presented in Chapter 3 can be understood as quality
control procedures for using, improving, monitoring and maintaining models. They
define actions that should be taken within each process but do not propose or imple-
ment any performance metrics that evaluate these processes. Similarly to the concept
of data governance, “maturity models” [108] should be proposed in the context of
model management.

The methodology for model identification presented in Chapter 4 is a starting point
toward model integration and aggregation. This research can be extended by consider-
ing the following problems:
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1. The methods proposed in this chapter were applied to regression models. For
classification models the error of model performance can not be calculated using
Formula 4.1. In this case, the alternative method can be defined as follows:

ei,j =


−1, is FN,

0, is TP,
1, is FP,

(6.1)

where TP stands for True Positive (when the output was classified correctly), FP
– for False Positive (error is a type I), and FN – for False Negative for i instance
and j model.

2. In this research binary data (chemical fingerprints) and the Tanimoto measure for
calculating data similarity were considered. The assumption was that sometimes
for new instances it can be difficult to obtain descriptors that were used to build
models. An interesting question is how good the proposed methods could be
if we combine various similarity measures for mixed data types (combination
fingerprints with qualitative descriptors). This is possible due to the general
definition of the proposed framework. If we look at Definition 4.1, chemical
space is defined by all possible available descriptors. For other domains, the
chemical space is understood by the search space with the elements described
according to the domain specification. There is a question how to deal with a
sparse search space.

3. Proposed partitioning methods are based on pre-defined classification rules. The
question is whether it is possible to provide machine learning approaches that
are able to cluster the search space described by the partitioning model (see
Definition 4.3), and how good they can be in terms of model identification.

4. In this research we assumed that clusters are disjoint subsets of search space.
What if we consider that these subsets can overlap. This means that we can find
groups of elements that can have more than one optimal model identified. In this
case, we can consider a construction of the consensus model and implementation
of ensemble methods for prediction. The consensus should be calculated from
models Mi for which data x ∈ Di.
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5. Implementation of the above propositions, transfer us from model interpretation
to model aggregation. This is a much more general description of model reuse
and includes: a partition of the search space, identification of a model or a family
model for a new unseen instance and a consensus model to predict a specific
activity.

6. Since this methodology can be implemented in any application domain, the study
of other similarity measures used to defined neighbourhood should also be in-
vestigated.

In many domains the interpretation of the model becomes one of the crucial ele-
ments of model validation. Knowledge of how models make predictions increases the
trust in the model reliability. In machine learning there are many methods that allow us
to generate a good predictive models. Examples of methods include: Decision Trees,
Support Vector Machine (SVM), Random Forest and Artificial Neural Network. They
are often used to analyse large scale data where standard methods have problems with
the size of data. In Chapter 5, a method for interpreting random forest model prediction
was proposed. This research can be extended to:

1. Implementation of feature contributions method to a single decision tree. The
difficulty here will be to propose methods that calculate local increments of fea-
ture contributions for trees that do not follow CART.

2. Calculation of the feature contributions for artificial neural network models. An
interesting question is if it is possible to extract this information from the struc-
ture of the model. If yes, how then the weights on nodes in all layers should be
analysed.

3. Further analysis of feature contributions. For example, in regression random
forest models feature contributions represent a change in the forest prediction
from the model that uses the average as a predictor. For classification models,
the contributions represent the change of probability that an instance belongs to
a given class. This is important knowledge for domains such as chemistry or
biology where the importance of a particular substructure/atom or gene can be
investigated. This approach is straightforward for binary data where the pres-
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ence or absence of a particular feature influences model prediction. But how to
analyse and interpret features with constant/categorical values?

4. Implementation of visualisation methods for feature contributions. It is clear
that for large scale data it is not possible to analyse contributions manually. This
research proposed three methods that allow the interpretation and basic visuali-
sation but the current rfFC package version does not include them. It is planned
to add these methods to the package.

There is still a lot of work required to provide a flexible, transparent, interoperable,
efficient, widely acceptable framework for model integration and aggregation. Some
of the future work suggested above are subjects of ongoing research. Currently, there is
ongoing research to build consensus models to aggregate a subset of identified models
for new instances. There is also ongoing collaboration with Dr. Richard Marchese
Robinson from Liverpool John Moores University to use feature contribution approach
in cheminformatics applications.
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Package ‘rfFC’
October 11, 2013

Type Package

Title randomForest Feature Contributions

Version 1.0

Date 2013-01-24

Author Anna Palczewska <annawojak@gmail.com>, Richard Marchese Robin-
son <rmarcheserobinson@gmail.com>

Maintainer Anna Palczewska <annawojak@gmail.com>

Depends R (>= 2.13), randomForest

Description Random Forest Feature Contribution

License GPL (version 2 or later)

LazyLoad yes

R topics documented:

ames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
checkForestUnanimity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
featureContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getChanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
getLocalIncrements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
predictBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
prepareForPredictBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Index 12

1
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2 checkForestUnanimity

ames Hansen Ames Mutagenicity Dataset

Description

This binary classification dataset corresponds to the benchmark dataset for Ames mutagenicity mod-
elling presented by Hansen et al.

Usage

data(ames)

Format

ames is a data frame with 6512 cases (rows) and 170 variables (columns). This data set consists
of two types of Activity: (1) positive, (0) negative chemical compounds. All chemical structures
are encoded using binary attributes: a bit vector calculated based upon the MACCS key fingerprint.
Dataset structure: CAS_NO, Activity, Canonical_Smiles, X1-X166 - 166 binary descriptors, Type.
The CAS_NO column presents the CAS number (i.e. the instance ID). The ’Training’ and ’Test’
labels in the Type column denote the first of the five splits presented by Hansen et al.

References

K. Hansen, S. Mika, T. Schroeter, A. Sutter, A. ter Laak, T. Steger-Hartmann, N. Heinrich, K.-R.
Mueller (2009),Benchmark Data Set for in Silico Prediction of Ames Mutagenicity. Journal of
Chemical Information and Modeling, 49, 2077-2081.

checkForestUnanimity Check the unanimity of all trees in the Random Forest model

Description

This method checks the unanimity of all individual trees in the forest for classification models: this
denotes the condition that, for any given leaf (i.e. terminal) node of the tree, all instances in the train-
ing set assigned to that node should belong to a single class. If this holds for a single tree, the tree
is considered unanimous. Only if this condition -i.e. that all trees are unanimous - holds will the
predictions obtained (for "class 1") for a binary classification model using predict(...,type="prob")
and predictBC(...) be the same.

Usage

checkForestUnanimity(object, dataT)
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checkForestUnanimity 3

Arguments

object an object of the class randomForest

dataT a data frame with columns containing the attributes (descriptors) for all instances
(rows) in the training set of the randomForest object

Value

A list with the following components:

dec TRUE if all trees in the forest are unanimous, otherwise FALSE

tcCount a list providing the number of training set instances in each class for each ter-
minal node in all trees. Where the number 0 is presented for all classes, the
corresponding node is not a terminal node.

tuStatus a vector, with one element per tree, denoting whether or not that tree was unan-
imous (TRUE) or not (FALSE)

Author(s)

Anna Palczewska <annawojak@gmail.com>

See Also

randomForest

Examples

#Iris dataset
library(randomForest)
data(iris)
rF_Model <- randomForest(x=iris[,-5],y=as.factor(as.character(iris[,5])),

ntree=10,importance=TRUE, keep.inbag=TRUE,replace=FALSE)

#Check unanimity
itest<-checkForestUnanimity(rF_Model, iris[,-5])

## Not run:
# Ames dataset
data(ames)
ames_train<-ames[ames$Type=="Train",-c(1,3, ncol(ames))]
rF_Model <- randomForest(x=ames_train[,-1],y=as.factor(as.character(ames_train[,1])),

ntree=500,importance=TRUE, keep.inbag=TRUE,replace=FALSE)
itest<-checkForestUnanimity(rF_Model, ames_train[,-1])

## End(Not run)
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4 featureContributions

featureContributions Feature Contributions for a Random Forest Model

Description

This method calculates feature contributions for a given dataset and an existing Random Forest
model randomForest. The feature contributions are computed separately for each instance/record
in dataset and provide detailed information about relationships between variables and the predicted
value. This method was implemented based upon the approach of Kuz’min et al. for regression
models and extended to classification models. For a binary classification model the method returns
the feature contributions towards class "one". For a multi-class model, the feature contributions are
calculated towards the class predicted by the randomForest model for a given instance.

The method does not work for unsupervised models. The randomForest model must have a stored
in-bag matrix that keeps track of which samples were used to build trees in the forest and sampling
without replacement must be used to generate a model.

Hence, all Random Forest models analyzed by this method must be generated as follows:

model <- randomForest(...,keep.inbag=TRUE,replace=FALSE)

The reason for this current limitation is because, in the code of the randomForest implementation
of Random Forest provided by Liaw and Wiener, the inbag matrix does not record how many times
a sample was used to build a particular tree (if sampling with replacement).

Usage

featureContributions(object, lInc, dataT, mClass=NULL)

Arguments

object an object of the class randomForest

lInc local increments of feature contributions calculated for this object using
getLocalIncrements

dataT a data frame containing the variables in the model (columns) for all instances
(rows) for which feature contributions are desired

mClass a name of the class to which feature contributions is calculated. The class name
must to match to the one class name from the randomForest object variable y.
By default, the value of this parameter is set to NULL. In this case the feature con-
tributions are calculated to the predicted class returned by the predict method
from the randomForest package. This option is avaliable only for the multi-
classification problems.

Value

A list with the following components:
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featureContributions 5

contrib n x m matrix of feature contributions, where n is the number of records (i.e.
instances) and m is the number of features/variables (i.e. attributes/descriptors)
of the dataset dataT.
For regression, or multi-class classification, the feature contributions represent
the signed contributions towards the predicted value or a given class defined by
the argument mClass.
For binary classification, by default, the classes are internally treated as numeric
1 and 0 and the feature contributions represent the signed contributions towards
"class 1". If the class labels in the training set are presented as "1" and "0",
then the corresponding classes will be internally treated as 1 and 0 respectively;
otherwise, this mapping will be performed arbitrarily with the class of the first
instance in the training set treated internally as "class 1", or to the class provided
as a parameter in getLocalIncrements.

Author(s)

Anna Palczewska <annawojak@gmail.com> and
Richard Marchese Robinson <rmarcheserobinson@gmail.com>

References

V.E. Kuz’min et al. (2011), Interpretation of QSAR Models Based on Random Forest Methods,
Molecular Informatics, 30, 593-603.
A. Palczewska et al. (2013), Interpreting random forest models using a feature contribution method,
Proceedings of the 2013 IEEE 14th International Conference on Information Reuse and Integration
IEEE IRI 2013, August 14-16, 2013, San Francisco, California, USA, 112-119.

See Also

randomForest, getLocalIncrements

Examples

#Multi-class Classification
library(randomForest)
data(iris)
rF <- randomForest(x=iris[,-5],y=as.factor(as.character(iris[,5])),

ntree=25,importance=TRUE, keep.inbag=TRUE,replace=FALSE)
#Get Local feature incremets
li<-getLocalIncrements(rF, iris[,-5])
#Calculate feature contributions
fc<-featureContributions(rF, li, iris[,-5])

## Not run:
#Binary classification
library(randomForest)
data(ames)
ames_train<-ames[ames$Type=="Train",-c(1,3, ncol(ames))]
rF_Model <- randomForest(x=ames_train[,-1],y=as.factor(as.character(ames_train[,1])),

ntree=500,importance=TRUE, keep.inbag=TRUE,replace=FALSE)
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6 getChanges

li <- getLocalIncrements(rF_Model,ames_train[,-1])
fc<-featureContributions(rF_Model, li, ames_train[,-1])

## End(Not run)

getChanges Get change in prediction for an updated feature.

Description

This method calculates the changes in predictions, for a pre-determined Random Forest model and
set of instances, resulting from updating the value(s) of a specified (vector of) feature(s). The
method works with regression and classification models. In case of binary classification the pre-
dictions are calculated by predictBC() or predict.randomForest and represent the probabili-
ties of being in a given class. If the model was obtained directly via the randomForest() func-
tion, the type of predictions calculated correspond to predict.randomForest(). However, if the
model is a binary classification model and was obtained via post-processing the original model from
randomForest(), using prepareForPredictBC(), the type of predictions calculated correspond
to predictBC().

Usage

getChanges(features, dataT, object, value=NULL, type=NULL, mcls=NULL)

Arguments

features a vector of the feature numbers/names to be updated

dataT a data frame containing the variables in the model for all instances for which
changes in predictions are desired

object an object of the class randomForest

value a vector of new feature values for the features provided in features N.B. If
this is set to NULL, and the specified features are binary, the prediction changes
reported are those associated with the only possible change in value for these
features: from 1 to 0 or vice-versa.

type the type of the predictions considered for classification models, by default it is
set to type="prob" but can be set to type="votes".

mcls main class that be set to "1" for binary classification. If NULL, the class name
from the first record in dataT will be set as "1"

Value

A matrix n x m of prediction changes, n is the number of instances in dataT and m is the number of
updated features.
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getLocalIncrements 7

Author(s)

Anna Palczewska <annawojak@gmail.com> and
Richard Marchese Robinson <rmarcheserobinson@gmail.com>

See Also

randomForest

Examples

library(randomForest)
data(ames)
ames_train<-ames[ames$Type=="Train",-c(1,3, ncol(ames))]
ames_train<-ames_train[1:100,]
rF_Model <- randomForest(x=ames_train[,-1],y=as.factor(as.character(ames_train[,1])),

ntree=500,importance=TRUE, keep.inbag=TRUE,replace=FALSE)
gc <- getChanges(c(1,166), ames_train, rF_Model)
change<-getChanges(c(1), ames_train[1, ], rF_Model, value = c(0.49))

getLocalIncrements Get Local Increments of Feature Contributions for a Random Forest
Model

Description

This method calculates local increments of feature contributions from an existing randomForest
model. This method was implemented based upon the approach of Kuz’min et al. for regres-
sion models and extended to classification models. The method does not work for unsupervised
models. The randomForest model must have a stored in-bag matrix that keeps track of which
samples were used to build trees in the forest and sampling without replacement must be used
to generate a model. Hence, all Random Forest models analyzed by getLocalIncrements() and,
subsequently, featureContributions(), must be generated as follows: model <- randomFor-
est(...,keep.inbag=TRUE,replace=FALSE) The reason for this current limitation is because, in the
code of the randomForest implementation of Random Forest provided by Liaw and Wiener, the
inbag matrix does not record how many times a sample was used to build a particular tree (if
sampling with replacement). The method returns local increments for all nodes in each tree for
regression and binary classification models. In case of multi-classification problems the method
returns the local increments calculated for all classes for every tree node in the forest.

Usage

getLocalIncrements(object, dataT, binAsReg=TRUE, mcls=NULL)
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8 getLocalIncrements

Arguments

object an object of the class randomForest

dataT a data frame containing the variables in the model for all instances for which
feature contributions are desired

binAsReg this option is only relevant for binary classification. If TRUE (default), the binary
classification model is treated like a regression model,for the purpose of calcu-
lating feature contributions, with the class labels treated as numeric values of 1
or 0. If FALSE, only the local increments in favour of the predicted class (for the
forest as a whole) are calculated - as per the treatment of multi-class classifiers.

mcls main class that be set to "1" for binary classification. If NULL, the class name
from the first record in dataT will be set as "1", otherwhise the provided class
will be map to "1".

Value

A list with the following components:

type the type of the method used for calculating local increments of feature contribu-
tions

forest If a multi-class classification model, or a binary classification model analyzed
using the binAsReg=FALSE option, has been analyzed, this is a list that con-
tains: a vector lIncrements of local increments for all classes and each node
of each tree, and a k x ntree matrix rmv of the mean proportion of instances
in each class in the root nodes, where k is the number of classes and ntree is
the number of trees in the forest. If a regression model,or a binary classifica-
tion model analyzed using the binAsReg=TRUE option, has been analyzed, this
is this is a list that contains: a vector lIncrements of local increments for all
classes and each node of each tree, and another vector, of length ntree, rmv of
the mean activity (with the two classes treated as numeric values of 1 or 0 in the
case of binary classification) of instances in the root nodes.

Author(s)

Anna Palczewska <annawojak@gmail.com> and
Richard Marchese Robinson <rmarcheserobinson@gmail.com>

References

V.E. Kuz’min et al. (2011). Interpretation of QSAR Models Based on Random Forest Methods,
Molecular Informatics, 30, 593-603.
A. Palczewska et al. (2013), Interpreting random forest models using a feature contribution method,
Proceedings of the 2013 IEEE 14th International Conference on Information Reuse and Integration
IEEE IRI 2013, August 14-16, 2013, San Francisco, California, USA, 112-119.

See Also

randomForest
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Examples

## Not run:
#Binary classification
library(randomForest)
data(ames)
ames_train<-ames[ames$Type=="Train",-c(1,3, ncol(ames))]
rF_Model <- randomForest(x=ames_train[,-1],y=as.factor(as.character(ames_train[,1])),

ntree=500,importance=TRUE, keep.inbag=TRUE,replace=FALSE)
li <- getLocalIncrements(rF_Model,ames_train[,-1])

## End(Not run)

predictBC Makes predictions for a binary classification Random Forest model by
averaging "probabilities".

Description

This method makes predictions for a binary classification Random Forest model by computing the
arithmetic mean of the "probability" generated by each tree, across all trees in the forest, that the
instance being predicted will belong to the "selected" class. For a single tree, the probability is
calculated as the proportion of local training set instances assigned to the terminal node in question
which belong to the "selected" class. The class of the first instance in the complete training dataset
is chosen as the "selected" class. This function will only work when applied to a randomForest
object modified by prepareForPredictBC.

Usage

predictBC(object, dataT)

Arguments

object an object of class randomForest

dataT a data frame containing the variables in the model for the instances for which
predictions are desired

Value

A vector of predictions for instances from the dataT dataset. The predicted values represent the
estimated probability that the instance is in the "selected" class (the class of the the first instance in
dataT).

Author(s)

Anna Palczewska <annawojak@gmail.com>
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See Also

randomForest, prepareForPredictBC

Examples

## Not run:
library(randomForest)
data(ames)
ames_train<-ames[ames$Type=="Train",-c(1,3, ncol(ames))]
rF_Model <- randomForest(x=ames_train[,-1],y=as.factor(as.character(ames_train[,1])),

ntree=500,importance=TRUE, keep.inbag=TRUE,replace=FALSE)

new_Model<-prepareForPredictBC(rF_Model, ames_train[,-1])
predicted<-predictBC(new_Model, ames_train[,-1])

## End(Not run)

prepareForPredictBC Convert node predictions into probabilities for binary classification
models.

Description

This method can only be aplied for a binary classification model. Its primary purpose is to process
a randomForest object as required for predictBC(). This method converts node predictions in
the randomForest object. The current class label in terminal nodes is replaced by the probability
of belonging to a "selected" class - where the probability is calculated as the proportion of local
training set instances assigned to the terminal node in question which belong to the "selected" class.
The class of the first instance in the complete training dataset is chosen as the "selected" class.

Usage

prepareForPredictBC(object, dataT, mcls=NULL)

Arguments

object an object of the class randomForest

dataT a data frame containing the variables in the model for all instances in the training
set

mcls main class that be set to "1" for binary classification. If NULL, the class name
from the first record in dataT will be set as "1"

Value

an object of class randomForest with a new type="binary".
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Author(s)

Anna Palczewska <annawojak@gmail.com>

See Also

randomForest

Examples

## Not run:
library(randomForest)
data(ames)
ames_train<-ames[ames$Type=="Train",-c(1,3, ncol(ames))]
rF_Model <- randomForest(x=ames_train[,-1],y=as.factor(as.character(ames_train[,1])),
ntree=500,importance=TRUE, keep.inbag=TRUE,replace=FALSE)
new_Model<-prepareForPredictBC(rF_Model, ames_train[,-1])

## End(Not run)
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