AN ISOTOPIC AND HISTORICAL STUDY OF DIET AND MIGRATION DURING THE GREAT IRISH POTATO FAMINE (1845-1852)

High-resolution carbon and nitrogen isotope profiling of teeth to investigate migration and short-term dietary change at the Union Workhouse, Kilkenny and Lukin Street, London

Julia BEAUMONT

Submitted for the degree
of Doctor of Philosophy

Archaeological Sciences
University of Bradford

2013
Julia BEAUMONT

AN ISOTOPIC AND HISTORICAL STUDY OF DIET AND MIGRATION DURING THE GREAT IRISH POTATO FAMINE (1845-1852)

Keywords: stable isotopes, England, Ireland, maize, bone, collagen, dentine, palaeodiet.

Abstract:

Historical evidence from contemporary documents established that Irish migrants to London during the Great Irish Famine (1845-1852) were likely to come from low socio-economic groups in south-west Ireland, and has characterised mid-19th-century health status and living conditions in both locations. Using samples from 119 individuals from the Catholic cemetery at Lukin Street, London (1843-1854) and 20 from the Union Workhouse Famine cemetery, Kilkenny, Ireland (1847-51), mean bone collagen isotope values were established for the well-documented Irish pre-Famine potato-based diet (δ^{15}N 10.6‰, δ^{13}C -19.1‰), and the diet of contemporaneous Londoners (δ^{15}N 12.6‰, δ^{13}C -19.1‰). The introduction of maize as a short-term Famine relief food was identified in three Kilkenny juveniles with bone collagen δ^{13}C above -17‰, and incremental dentine collagen demonstrating temporal changes in δ^{13}C consistent with dietary change from C_3 to C_4 plants. Bone collagen values for two Lukin Street individuals were consistent with high marine protein consumption. Techniques developed in this study to sample increments of dentine representing nine months or less of life have improved temporal resolution not only for migration events but also short-term dietary changes and physiological status during childhood. Combining epigraphic, osteological and archaeological evidence, individual “lifeways” have been constructed using isotope data and provide insights into the connection between health, diet and skeletal manifestations of deprivation during childhood and adolescence. New models are investigated for examining maternal and infant health using dentine collagen increments formed in utero and combining dentine and bone collagen values to explore the effects of nutritional stress on bone turnover.
Acknowledgements:

I have always been interested in the scientific search for truth: my first career, as a dentist and orthodontist, taught me to investigate how the human body grew and functioned, how diet and disease affected the tissues, and to engage with the work of improving health. My hobby, archaeology, allowed me to engage with humans in the past, their behaviour and experiences, using a scientific approach to the evidence they left behind. In both fields, I found that some of the “received wisdom” did not satisfy my curiosity, and the discovery of evidence-based practice and the Cochrane reviews of published studies allowed me to learn by questioning the status quo in dentistry.

The staff at the department of Archaeological Sciences at University of Bradford encouraged me to study, first at Masters and now at Doctoral level, the evidence behind the interpretations for the health and behaviour of our ancestors. The results in this study are, I believe, the fortunate combination of old professional and new scientific skills to produce a method for re-examining a small part of that evidence.

Many people have helped me to aspire to the level of study at which I find myself: my supervisor Dr Janet Montgomery, who I first met on a student visit to Bradford. From that day, she has been inspirational, supportive but also rigorous and testing as befits her considered scientific approach to her work. I can think of nothing better than being her colleague. My family: husband Ian who accepted my decision to follow a different career, and my three immensely talented children, Rachel, Jo and Jonny (who seem to be as proud of me as I am of them!).

This study arose from a suggestion by Natasha Powers of MOLA, who recognised the potential importance of the individuals buried in Lukin Street. Her help and support, and that of her colleagues, especially Don Walker, have been invaluable in this work. Grateful thanks to MOLA and the Catholic diocese of Westminster for granting permission to undertake the scientific analysis of individuals recovered from the Lukin Street site. The other site, Kilkenny Union workhouse Famine cemetery, was the subject of the PhD of Dr Jonny Geber, Queen’s University Belfast, and his generous help in getting access and permission to analyse the samples was pivotal: it was data from these which allowed comparison with the migrants in London, and also unlocked a number of unexpected findings. I would like to thank The Irish Antiquities Section of the National
Museum of Ireland for kindly granting permission to undertake the scientific analysis of the human remains from Kilkenny Union Workhouse.

I have been fortunate to have been taught by, supervised by, and work with some of the best archaeological scientists in the country. Former and present supervisors (in chronological order) are Dr Chris Knüsel, Professor Julia Lee-Thorp and Dr Andy Wilson who kindly adopted me when others moved on. In the department at Bradford, Dr Emma Brown, Dr Cathy Batt, Rob Janaway, John McIlwaine, Prof Carl Heron and especially Dr Jo Buckberry, Andy Gledhill and my fellow student Jacqueline Towers have been there at significant moments to discuss, suggest, argue and agree with (or even mop the occasional tear). Dr Nigel Melton was always there with supportive, insightful suggestions and a proper archaeological viewpoint. Thank you to the talented Peter Montgomery who produced most of the figures and taught me how to do some of my own. Outside Bradford, friends Eddy Faber, Alison Foster, Maisoon Al-Jawad, Nicola Bell and Neil Boothroyd have maintained an interest in the study and shared drinks and curry (and even hair and fingernails).

Grateful thanks must go to the organisations who have given me financial support: A bursary for fees in years 1 and 2 from the Department at Bradford, the Arts and Humanities Council who funded years 4 and 5 (AHRC Studentship AH/I503307/1), and the Andy Jagger Fund for supporting a conference visit. The British Federation of Women Graduates (the Eila Campbell scholarship) and the British Association for Biological, Anthropology and Osteoarchaeology (the Jane Moore prize) were both kind enough to give me awards and the confidence to leave my former career.

Finally, the completion of this thesis marks not an ending, but a beginning: I have made my hobby into my job, and look forward to investigating many more aspects of the health and development of people from the past, in my future.
List of contents

Abstract
Acknowledgements
List of contents
List of figures
List of tables
"Here and there; or, emigration a remedy" Punch, 1848

Chapter One Introduction: History and Archaeology 1
1.1 Introduction: history and archaeology 1
 1.1.1 The familiar past 3
1.2 Using diet to investigate migration 4
 1.2.1 The Londoners 4
 1.2.2 The Irish 5
1.3 Aims and objectives 6
1.4 Structure of the thesis 7

Chapter Two Historical Background 9
2.1 Ireland 9
 2.1.1 The Great Famine 9
 2.1.2 A Malthusian disaster 10
 2.1.3 Evidence for the pre-Famine diet 12
 2.1.4 Famine relief 15
 2.1.5 Migration-the diaspora 16
 2.1.6 A reason to leave 17
 2.1.7 Patterns of migration 18
 2.1.8 The effect of the Famine 19
 2.1.9 The workhouse 21
 2.1.10 Kilkenny Union workhouse 22
 2.1.11 Burials 23
2.2 London 24
 2.2.1 Migration to London 24
 2.2.2 Arriving in London- the local diet 25
2.3 The Irish in London 27
 2.3.1 History of Irish migrants in London 27
 2.3.2 Recorded origins of the migrants 28
 2.3.3 Prejudice 29
 2.3.4 A place to call home 30
 2.3.5 Dietary preferences 32
2.4 The cemetery of the Catholic mission of St Mary and St Michael 33
2.5 Nutrition and undernutrition in Britain 1800-1850 35
 2.5.1 The effect of undernutrition on the human body 35
 2.5.2 Height as a measure of undernutrition in the past 37
2.6 Reports of the Registrar General 1838-1856. 40
 2.6.1 Causes of death 40
 2.6.2 Dietary evidence from the reports 42
 2.6.3 Irish migration in the reports 44
 2.6.4 Urban and rural populations 47
 2.6.5 Premature death of infants 48
 2.6.6 Summary of the Registrar’s reports 48
2.7 A last chance for a local London diet

Chapter Three The isotopic investigation of diet

3.1 Introduction

3.2 The principles of dietary reconstruction by stable isotope analysis
- 3.2.1 Basic concepts
- 3.2.2 Fractionation in dietary studies
- 3.2.3 Carbon and nitrogen stable isotope ratios in dietary studies
- 3.2.4 Carbon and nitrogen stable isotope ratios in body tissues

3.3 Carbon
- 3.3.1 C$_3$ and C$_4$ plants
- 3.3.2 Terrestrial and aquatic ecosystems

3.4 Nitrogen
- 3.4.1 Nitrogen in the foodweb
- 3.4.2 Physiological effects on nitrogen isotope ratios

3.5 Addressing the challenges in dietary studies

3.6 Dietary routing of amino acids

3.7 North European Mesolithic/Neolithic dietary changes

3.8 Temporal resolution in human tissues
- 3.8.1 Bone
- 3.8.2 Dental enamel
- 3.8.3 Dentine
- 3.8.4 Hair and nail
- 3.8.5 Combining body tissues

3.9 Weaning studies

3.10 Migration
- 3.10.1 Modelling dietary regimes

Chapter Four Bone, Dentine and Hair

4.1 Introduction

4.2 Collagen

4.3 Bone structure and growth

4.4 Dentine structure and growth

4.5 Keratin

4.6 Hair structure and growth

4.7 Taphonomy and diagenesis
- 4.7.1 Assessing diagenesis

Chapter Five Materials and methods

5.1 Materials and methods

5.2 The sites
- 5.2.1 Lukin Street
- 5.2.2 Lukin Street demography
- 5.2.3 Kilkenny Union workhouse Famine cemetery
- 5.2.4 Kilkenny demography

5.3 Samples
7.2.3 Short-term changes in δ13C values 132
7.2.4 Changes between bone collagen and hair keratin 133
7.3 Combining isotopic and epigraphic data 134
7.4 Incremental dentine collagen data 136
7.4.1 Comparison of the methods 136
7.4.2 Comparison of the collagen isotope profiles 136
7.5 Interpreting δ13C in the dentine collagen increments 137
7.6 Interpreting δ15N in the dentine collagen increments 140
7.7 Reconstructing “lifeways” 144
7.7.1 Relating bulk bone collagen values to dentine averages 144
7.7.2 Group 1 148
7.7.3 Group 2 154
7.7.4 Group 3 154
7.7.5 Group 4 157
7.8 Breastfeeding 166
7.8.1 The current model for estimating weaning age 167
7.8.2 A new interpretation 169
7.9 New methods to interpret maternal and infant health 169
7.9.1 Testing the new methods 170
7.9.2 First dentine increment as a measure of in-utero δ15N 170
7.9.3 Dentine profiles and osteological reports 173
7.9.4 A new interpretation of bone collagen weaning studies 174
7.9.5 A new interpretation of Eerkens et al. 2011 179
7.9.6 A new interpretation of Fuller et al. 2003 182
7.9.7 Evaluating the new interpretation 194
7.10 Migration: the importance of time resolution 195

Chapter Eight Conclusions and further work 196
8.1 Introduction 196
8.2 Addressing the research aims 196
8.2.1 Characterizing the dietary regimes in mid-19th-century London and Ireland, and identifying Irish Famine survivors where no other evidence is available. 196
8.2.2 Improving temporal resolution for dietary changes using carbon and nitrogen isotope analysis of recovered skeletal tissues 197
8.2.3 Investigating whether nitrogen isotopes in incremental dentine sections can identify physiological changes such as nutritional stress in children living through the Famine period 198
8.3 Combining body tissues 199
8.4 Future work on samples from Kilkenny Union workhouse and Lukin Street 200
8.4.1 Incremental dentine analysis 200
8.4.2 Other elements and isotopes 200
8.5 Further work 202
8.5.1 Methodological development 202
8.5.2 Modern samples 203
8.5.3 Ancient populations 204
8.5.4 Individual amino acid studies

8.6 Conclusions

Bibliography

List of figures

Chapter One

1.1 Map showing the position of contemporaneous sites discussed in section 1.6 and chapter six (Beaumont et al., 2012)

Chapter Two

2.1 Record of evictions from the Mahon estate, County Roscommon for the village of Gorttoose (Gurthuse). From the Freemans Journal, April 29th 1848

2.2 Map of Ireland showing distribution of Irish surnames from Lukin Street (visitireland.com, origin markers added by author)

2.3 Section from Booth Poverty map 1898-99 http://booth.lse.ac.uk/

2.4 Key for the Booth Poverty map (Figure 2.3)

2.5 Pages 306-7 of Registrar’s report 1838 showing starvation as cause of death

2.6 Description of deaths by Privation, Registrars’ report 1841

2.7 Detail from map in Registrar’s report of 1841 showing registration districts. St Mary and St Michael would be just inside the boundary of St George in the East

2.8 Queries addressed to the Registrars, and the list of districts and registrars’ names (Report of the Registrar General 1843)

2.9 Responses of the registrar of the Aldgate district of Whitechapel, adjacent to the area of the Lukin Street Burial ground. (Report of the Registrar General 1843).

2.10 Table of deaths in London for the Famine years 1847-1851

Chapter Three

3.1 Diagram showing the relative positions within a carbon and nitrogen plot for trophic levels for a terrestrial C3 plant-based food chain and marine food chain, and the relative position of C4 plants. The axes have no values as these vary depending on archaeological period, geographical location and climate.

3.2 Plot showing the time of life potentially represented by different body tissues

3.3 Biplot showing possible bone collagen δ15N and δ13C for the proposed dietary regimes for individuals in the Lukin Street and Kilkenny Union workhouse cemeteries

Chapter Four

4.1 Helical structure of collagen (source: P.Montgomery and author)

4.2 Section of mandible showing compact and trabecular bone (Nanci et al. 2003)

4.3 Structure of a secondary osteon (author)

4.4 A diagram showing the direction of dentine development in a human molar tooth, the relationship between Andresen bands and the mineralizing front, and points A and B within the same Andresen band (Beaumont
et al., 2012) 77
4.5 Diagram showing structure of hair follicle (P.Montgomery) 79
4.6 Cross-section of hair showing layers in shaft (author) 79

Chapter Five
5.1 Location of the Lukin Street site (A:LUK04) in the London Borough of Tower Hamlets and within Greater London (re-drawn from Miles, forthcoming) 85
5.2 Location of excavated burials at St Mary and St Michael’s burial ground (Miles, forthcoming) 85
5.3 Distribution of aged individuals from Lukin Street (Miles, forthcoming) 87
5.4 Adult age distribution from Lukin Street (Miles, forthcoming) 87
5.5 Subadult age at death in years from Lukin Street (Miles, forthcoming) 88
5.6 Perinatal age at death in gestational weeks from Lukin Street (Miles, forthcoming) 88
5.7 Map of mid-nineteenth century Kilkenny city showing the location of the Union workhouse and the burial grounds. (Maura Pringle, Queen’s University Belfast (Geber, 2011)) 89
5.8 Site plan of excavation at Kilkenny Union workhouse (Geber 2012) 90
5.9 Distribution of aged individuals from Kilkenny Union workhouse (data from Geber (2011)) 92
5.10 Adult age distribution from Kilkenny Union workhouse (data from Geber (2011)) 92
5.11 Diagram showing direction of sectioning procedure, method 1 (P.Montgomery) 99
5.12 Embedded human tooth root is sectioned using fixed rotating saw 100
5.13 Demineralised human tooth root is sectioned using a scalpel blade 100
5.14 Diagram of the basic components of a mass spectrometer (P.Montgomery and author) 103

Chapter Six
6.1 A biplot of δ^{13}C and δ^{15}N values from bone collagen for individuals from Lukin Street and Kilkenny Union workhouse (analytical error +/- 0.2 permil) 108
6.2 Boxplots for δ^{15}N values for bone collagen for individuals from Kilkenny (KUW) and Lukin Street (LUK) showing mean, median and outliers (≥ 1.5 times the interquartile range) 109
6.3 Boxplots for δ^{13}C values for bone collagen for individuals from Kilkenny (KUW) and Lukin Street (LUK) cemeteries showing mean, median and outliers (≥ 1.5 times the interquartile range) 109
6.4 Plot of δ^{15}N values for bone collagen for infants aged 0-4 years from Lukin Street Cemetery, London. Infants are plotted relative to the mean and one standard deviation (solid and dashed horizontal lines) of bone collagen values for adult females at the cemetery 110
6.5 Plot of δ^{13}C values for bone collagen for infants aged 0-4 years from Lukin Street Cemetery, London. Infants are plotted relative to the mean and one standard deviation (solid and dashed horizontal lines) of bone collagen values for adult females at the cemetery 110
6.6 Plot showing the differences in isotope ratio between bone collagen and bulk hair keratin for δ^{13}C and δ^{15}N values of six individuals from
6.7 δ¹³C and δ¹⁵N values of dentine sections against age for LUK 1567, second maxillary permanent molar
6.8 δ¹³C and δ¹⁵N values against age for dentine sections for LUK 1404, first and second permanent maxillary molars
6.9 δ¹³C and δ¹⁵N values against age for dentine sections for LUK 1459, first and second permanent maxillary molars
6.10 δ¹³C and δ¹⁵N values against age for dentine sections from LUK 47, first and second permanent maxillary molars
6.11 δ¹³C and δ¹⁵N values of dentine sections against age for second permanent molar, KUW 14
6.12 δ¹³C and δ¹⁵N values of dentine sections against age for second permanent molar, KUW 4
6.13 δ¹³C and δ¹⁵N values of dentine sections against age for first permanent molar, KUW 13
6.14 δ¹³C and δ¹⁵N values of dentine sections against age for first permanent molar, LUK 1212 (John Broschan)
6.15 δ¹⁵N values of dentine sections against age for first permanent molars of individuals who lived beyond root completion, Lukin Street and Kilkenny Union workhouse.
6.16 δ¹³C values of dentine sections against age for first permanent molars of individuals who lived beyond root completion, Lukin Street and Kilkenny Union workhouse
6.17 δ¹⁵N values of dentine sections against age for first permanent molars of individuals who died during root completion, Lukin Street and Kilkenny Union workhouse
6.18 δ¹³C values of dentine sections against age for first permanent molars of individuals who died during root completion, Lukin Street and Kilkenny Union workhouse
6.19 δ¹⁵N values of dentine sections against age for first (DM1) and second deciduous molars from Lukin Street
6.20 δ¹³C values of dentine sections against age for first (DM1) and second deciduous molars from Lukin Street
6.21 δ¹⁵N values of dentine sections against age for second permanent molars with completed roots from Lukin Street and Kilkenny Union workhouse
6.22 δ¹³C values of dentine sections against age for second permanent molars (M2) with completed roots from Lukin Street and Kilkenny Union workhouse
6.23 δ¹⁵N values of dentine sections against age for second permanent molars with incomplete roots from Lukin Street and Kilkenny Union workhouse
6.24 δ¹³C values of dentine sections against age for second permanent molars with incomplete roots from Lukin Street and Kilkenny Union workhouse
6.25 δ¹³C and δ¹⁵N values of dentine sections against age for second premolar, LUK 1348 (Miguel Pineda)
6.26 δ¹³C and δ¹⁵N values of dentine sections against age for second premolar, LUK 1348 (Georgiana Neale)
Chapter Seven

7.1 A biplot of δ13C and δ15N values, showing mean and 1 SD for individuals from Lukin Street and Kilkenny Union workhouse and four contemporaneous English sites, Chelsea, and Coventry (Trickett, 2006) Birmingham (Richards, 2006) and Spitalfields (Nitsch, 2011)

7.2 δ13C and δ15N values of dentine sections against age for developing M1, KUW 12

7.3 δ13C and δ15N values of dentine sections against age for developing M1, KUW 16

7.4 Rate of change of δ15N‰ per year for dentine collagen profiles of completed M1s from Lukin Street and Kilkenny Union workhouse

7.5 Rate of change of δ15N‰ per year for dentine collagen profiles of incomplete M1s from Lukin Street and Kilkenny Union workhouse

7.6 Rate of growth with age for modern males and females, British 1990 reference (Cole et al. 1998)

7.7 Dentine collagen profiles for δ15N for M2s from Lukin Street and Kilkenny Union workhouse

7.8 Differences between bone collagen and dentine collagen δ15N and δ13C for Lukin Street individuals aged 0-3 years at death

7.9 Differences between bone collagen and dentine collagen δ15N and δ13C for Lukin Street individuals aged 5-12 years at death

7.10 Differences between bone collagen and dentine collagen δ15N and δ13C for Lukin Street adults

7.11 Differences between bone collagen and dentine collagen δ15N and δ13C for Kilkenny Union workhouse individuals, by increasing age at death from left to right

7.12 δ13C and δ15N values of dentine sections, hair keratin and bone collagen, LUK 1567

7.13 δ13C and δ15N values of dentine sections and bone collagen, LUK 1348 (Miguel Pineda)

7.14 δ13C and δ15N values of dentine sections, hair keratin and bone collagen, LUK 755

7.15 δ13C and δ15N values of dentine sections and bone collagen, LUK 955

7.16 δ13C and δ15N values of dentine sections and bone collagen, LUK 1459

7.17 δ13C and δ15N values of dentine sections and bone collagen, KUW 10

7.18 δ13C and δ15N values of dentine sections and bone collagen, KUW 9

7.19 δ13C and δ15N values of dentine sections and bone collagen, LUK 1312 (Georgiana Neale)

7.20 δ13C and δ15N values of dentine sections and bone collagen, LUK 316

7.21 δ13C and δ15N values of dentine sections and bone collagen, KUW 1

7.22 δ13C and δ15N values of dentine sections and bone collagen, KUW 18

7.23 δ13C and δ15N values of dentine sections and bone collagen, KUW 20

7.24 δ13C and δ15N values of dentine sections and bone collagen, LUK 1129

7.25 δ13C and δ15N values of dentine sections and bone collagen, LUK 567

7.26 δ13C and δ15N values of dentine sections and bone collagen, LUK 419

7.27 δ13C and δ15N values of dentine sections and bone collagen, LUK 517

7.28 δ13C and δ15N values of dentine sections and bone collagen, LUK 724

7.29 δ13C and δ15N values of dentine sections and bone collagen, LUK 259

7.30 δ13C and δ15N values of dentine sections and bone collagen, LUK 923

7.31 δ13C and δ15N values of dentine sections and bone collagen, KUW 13
7.32 δ¹³C and δ¹⁵N values of dentine sections and bone collagen, KUW 14
7.33 δ¹³C and δ¹⁵N values of dentine sections and bone collagen, KUW 16
7.34 δ¹³C and δ¹⁵N values of dentine sections and bone collagen, LUK 1212
7.35 δ¹³C and δ¹⁵N values of dentine sections and bone collagen, LUK 695
7.36 δ¹³C and δ¹⁵N values of dentine sections and bone collagen, LUK 1033
7.37 δ¹³C and δ¹⁵N values of dentine sections and bone collagen, KUW 4
7.38 δ¹³C and δ¹⁵N values of dentine sections and bone collagen, LUK 413
7.39 Isotopic trend for infants and young children showing expected pattern for bone collagen δ¹⁵N values when plotted against age for a period of breastfeeding followed by weaning. The dotted line represents the average value for adult females (Jay et al., 2008, Millard, 2000)
7.40 Differences in δ¹³C and δ¹⁵N values between the bone collagen and the final increment of dentine for the individuals from Lukin Street and Kilkenny Union workhouse
7.41 Birth values (first dentine increment from M1) and bone collagen values for individuals from Lukin Street shown with adult female mean bone collagen values
7.42 Birth values (first dentine increment from deciduous teeth) and bone collagen values for individuals from Lukin Street shown with adult female mean bone collagen values
7.43 Plot of δ¹⁵N values for bone collagen for infants aged 0-5 years from Aşikh Höyük. Infants are plotted relative to the mean and one standard deviation (solid and dashed horizontal lines) of bone collagen values for adult females at the cemetery (data from Pearson et al. 2010)
7.44 Plot of δ¹⁵N values for bone collagen for infants aged 0-5 years from Çayönü Tepesi. Infants are plotted relative to the mean and one standard deviation (solid and dashed horizontal lines) of bone collagen values for adult females at the cemetery (data from Pearson et al. 2010)
7.45 Comparison of δ¹⁵N and δ¹³C in serial sections of six first molars and adult bone collagen values from prehistoric Marsh Creek, California (Eerkens et al., 2011)
7.46 Comparison of δ¹⁵N and δ¹³C in serial dentine sections of M1, M2 and M3 from Burial 59, from prehistoric Marsh Creek, California (Eerkens et al., 2011)
7.47 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G5229 from Wharram Percy (data from Fuller et al. 2003)
7.48 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual NA37 from Wharram Percy (data from Fuller et al. 2003)
7.49 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G327 from Wharram Percy (data from Fuller et al. 2003)
7.50 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual NA28 from Wharram Percy (data from Fuller et al. 2003)
7.51 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G430 from Wharram Percy (data from Fuller et al. 2003)
7.52 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual WC072 from Wharram Percy (data from Fuller et al. 2003)
7.53 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual
7.54 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G339 from Wharram Percy (data from Fuller et al. 2003)

7.55 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G363 from Wharram Percy (data from Fuller et al. 2003)

7.56 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G576 from Wharram Percy (data from Fuller et al. 2003)

7.57 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual WC097 from Wharram Percy (data from Fuller et al. 2003)

7.58 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G614 from Wharram Percy (data from Fuller et al. 2003)

7.59 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual NA79 from Wharram Percy (data from Fuller et al. 2003)

7.60 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G424 from Wharram Percy (data from Fuller et al. 2003)

7.61 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual NA23 from Wharram Percy (data from Fuller et al. 2003)

7.62 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual EE65 from Wharram Percy (data from Fuller et al. 2003)

7.63 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual EE66 from Wharram Percy (data from Fuller et al. 2003)

7.64 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual WC0141 from Wharram Percy (data from Fuller et al. 2003)

7.65 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G500 from Wharram Percy (data from Fuller et al. 2003)

7.66 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual EE72 from Wharram Percy (data from Fuller et al. 2003)

7.67 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G568 from Wharram Percy (data from Fuller et al. 2003)

7.68 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual EE36 from Wharram Percy (data from Fuller et al. 2003)

7.69 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual CN28 from Wharram Percy (data from Fuller et al. 2003)

7.70 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G597 from Wharram Percy (data from Fuller et al. 2003)

7.71 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual CN2 from Wharram Percy (data from Fuller et al. 2003)

7.72 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual EE3 from Wharram Percy (data from Fuller et al. 2003)

7.73 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual NA59 from Wharram Percy (data from Fuller et al. 2003)

7.74 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual EE67 from Wharram Percy (data from Fuller et al. 2003)

7.75 δ¹³C and δ¹⁵N values of dentine sections and bone collagen for individual G746 from Wharram Percy (data from Fuller et al. 2003)
List of Tables

Chapter Two
Table 2.1 Nutritional analysis of male diets 1839-1904 (adapted from Clarkson and Crawford, 2001) 13

Chapter Three
Table 3.1 Causes of catabolism and anabolism in the body and the effect on δ^{15}N 56

Chapter Four
Table 4.1 Ten diagenetic parameters, methods used to assess them, and the alteration to bone they represent, modified from Nielsen-Marsh and Hedges (2000) and Smith et al. (2007) 81

Chapter Five
Table 5.1 Carbon and nitrogen isotope ratio values for international and laboratory standards used in this study 104

Chapter Seven
Table 7.1 Reference values for the rate (in percentages per year) of remodelling of human bone with age (Valentin, 2003) 133
Table 7.2 Differences between bone collagen and average dentine isotope ratios by age 145
Table 7.3 Diagnoses given in osteological reports for individuals with incomplete M1, M2 or deciduous teeth, Lukin Street (Miles and Powers, 2006) and Kilkenny Union workhouse (Geber, 2012) 174

Appendix I
Table A.1 Isotope data and collagen quality indicators for bone from Lukin Street, London A-1
Table A.2 Isotope data and collagen quality indicators for bone from Kilkenny Union workhouse cemetery A-6
Table A.3 δ^{13}C and δ^{15}N data for bulk hair keratin analysis for six individuals from Lukin Street A-7
Table A.4 Age, sex and epigraphic data, tooth type and developmental stage and incremental sampling method used for dentine collagen samples from Lukin Street and Kilkenny Union workhouse A-8
Table A.5 Isotope data and collagen quality indicators for dentine sections from M1s from Lukin Street A-9
Table A.6 Isotope data and collagen quality indicators for dentine sections from M1s from Kilkenny Union workhouse A-13
Table A.7 Isotope data and collagen quality indicators for dentine sections from M2s from Lukin Street A-15
Table A.8 Isotope data and collagen quality indicators for dentine sections from M2s from Kilkenny Union workhouse A-18
Table A.9 Isotope data and collagen quality indicators for dentine sections from DM1s and DM2s from Lukin Street A-20
Table A.10 Isotope data and collagen quality indicators for dentine sections from PM2 (Miguel Pineda) and C (Georgiana Neale) from Lukin Street A-23
Table A.11 Approximate age in years for the midpoint of each dentine section A-24
for individuals from Wharram Percy (data from Fuller et al. 2003) A-24

Appendix 2
A2.1 Key to Booth’s poverty map A2-1
A2 2 List of publications A2-3
“Here and there; or, emigration a remedy” from Punch (1848)