Evaluation of Raman Spectroscopy for Application in Analytical Astrobiology

The Application of Raman Spectroscopy for Characterisation of Biological and Geological Materials of Relevance to Space Exploration

Kristian Page

Submitted for the Degree of Doctor of Philosophy

Division of Chemical and Forensic Sciences

University of Bradford

2011
Acknowledgements

I would like to thank my supervisors; Prof. Howell Edwards for his Raman experience, Dr Ian Scowen for his analytical expertise and Dr. Tasnim Munshi for her help and guidance throughout the course of my research. I would also like to thank Dennis Farwell for his instrumental expertise and Dr. Mike Hargreaves for their assistance at the beginning of my PhD. Thank you also to Richard and Ian for their engineering, construction and experience with the prototype Raman spectrometer and Jacquie for preparation of several inorganic and organic mixtures. I would also like to thank three Barry Herschey for his collaboration with the biomarkers work, Lewis Dartnell for his collaboration with the cellular systems work and Petr Vitek for his collaboration on the bio-geological inclusions samples.
Publications

Raman spectra of biomarkers of relevance to analytical astrobiological exploration: Hopanoids, sterols and steranes

H.G.M. Edwards, B. Herschy, K. Page, T. Munshi, I.J. Scowen

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

Volume 78, Issue 1, January 2011, Pages 191-195

Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications

Petr Vítek, Esam M.A. Ali, Howell G.M. Edwards, Jan Jehlička, Rick Cox, Kristian Page

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

In Press, Accepted Manuscript

Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars


Analytical and Bioanalytical Chemistry

In Press, Accepted Manuscript
Abstract

In 2018 ESA and NASA plan to send the ExoMars rover to the Martian surface. This rover is planned to have a suite of analytical equipment that includes a Raman spectrometer. In this context, an evaluation of Raman spectroscopy as an analytical tool for interplanetary studies is investigated. The preparation techniques for appropriate inorganic and organic mixtures are interrogated. Methods are investigated to optimize the homogeneity of over 50 samples involving mineral phases; calcite, gypsum and goethite and selected organic biomolecular systems; anthracene, naphthalene and beta-carotene. From mixtures produced of these organic and inorganic materials differences between homogeneity of the samples is observed. Different mixing techniques are investigated to reduce this, however all the samples display variation on a micron scale. To resolve this issue a grid system of 9 points is implemented on solid samples and solutions are used to produce standards. The standards are devised using a range of instrument validation parameters for comparison between commercially available spectrometers and the prototype instrument. From these standards a prototype instrument is optimized for data acquisition and an evaluation procedure for instrument performance is established. The prototype Raman spectrometer is evaluated to match the specifications of the spectrometer on board ExoMars rover. A range of astrobiological relevant samples are interrogated; geological samples, biomarkers, cellular systems and bio-geological inclusions. From these samples detection of organics is observed to be only possible, with Raman spectroscopy where organics are localised in high concentrations, upon grinding and mixing geological inclusions Raman spectroscopy is unable to detect the organic components.

Key words; Raman Spectroscopy, Astrobiology, Space Exploration, Biomaterials, Geomaterials and Instrumentation
## Contents

### CHAPTER 1  Introduction

1.1. Aims and objectives

1.2. Theory of Raman spectroscopy
   - 1.2.1. The physical basis of Raman scattering
   - 1.2.2. Chemical application of Raman spectroscopy
   - 1.2.3. Instrumentation

1.3. Context of study
   - 1.3.1. Martian mineralogy
   - 1.3.2. Life on Mars
   - 1.3.3. Mars missions
   - 1.3.4. Remote Raman Spectroscopy

### CHAPTER 2  Experimental

2.1. Instrumentation
   - 2.1.1. Renishaw InVia Raman Instrument
   - 2.1.2. Bruker IFS66/FRA 106 FT-Raman Instrument
   - 2.1.3. MOB instrument
   - 2.1.4. Data analysis

2.2. Sample preparation
   - 2.2.1. Establishing a Protocol for Analysis of Inorganic and Organic Mixtures
     - 2.2.1.1. Analysis of prepared Organic and Inorganic Mixtures
     - 2.2.1.2. Preparation of Inorganic and Organic Mixture
     - 2.2.1.3. Goethite samples and Martian soil simulant samples
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2.</td>
<td>Development of Criteria for Instrument Performance Comparison</td>
<td>35</td>
</tr>
<tr>
<td>2.2.3.</td>
<td>Instrument performance comparators</td>
<td>35</td>
</tr>
<tr>
<td>2.2.4.</td>
<td>Exemplar systems</td>
<td>37</td>
</tr>
<tr>
<td>2.3.</td>
<td>Storage and systematic naming of samples</td>
<td>41</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Establishing a Protocol for Analysis of Inorganic and Organic Mixtures</td>
<td>44</td>
</tr>
<tr>
<td>3.1.</td>
<td>Raman Analysis of an Organic Compound within an Inorganic Matrix.</td>
<td>44</td>
</tr>
<tr>
<td>3.2.</td>
<td>Preparation of Inorganic and Organic Mixtures</td>
<td>53</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Naphthalene systems</td>
<td>60</td>
</tr>
<tr>
<td>3.2.1.1.</td>
<td>Solution-Solution mixing</td>
<td>60</td>
</tr>
<tr>
<td>3.2.1.2.</td>
<td>Solid-Solution mixing</td>
<td>63</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>Anthracene systems</td>
<td>64</td>
</tr>
<tr>
<td>3.3.</td>
<td>Spectra from Goethite and Martian soil simulate samples</td>
<td>68</td>
</tr>
<tr>
<td>3.4.</td>
<td>Conclusions</td>
<td>73</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>Development of Criteria for Instrument Performance Comparison</td>
<td>74</td>
</tr>
<tr>
<td>4.1.</td>
<td>Signal-to-noise ratio effects on instrument performance</td>
<td>74</td>
</tr>
<tr>
<td>4.2.</td>
<td>Instrument validation</td>
<td>82</td>
</tr>
<tr>
<td>4.3.</td>
<td>Evaluation of instrument resolution</td>
<td>90</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Trehalose as a standard</td>
<td>91</td>
</tr>
<tr>
<td>4.3.2.</td>
<td>Effect of accumulations on sample resolution</td>
<td>91</td>
</tr>
<tr>
<td>4.4.</td>
<td>Instrument performance: Laser power stability analysis</td>
<td>97</td>
</tr>
<tr>
<td>4.5.</td>
<td>Systematic identification of compounds</td>
<td>102</td>
</tr>
</tbody>
</table>
4.5.1. Organic 103
4.5.2. Inorganic 105
4.6. Conclusions 112

CHAPTER 5  Instrument performance comparators 113
5.1. Preparation for comparison of MOB instrument with InVia 113
  5.1.1. Sample variation observed on Renishaw InVia instrument 115
  5.1.2. Comparison with prototype instrument 117
  5.1.3. Laser spot size and sampling 120
  5.1.4. Comparison of data collected with and without mask 122
5.2. Comparison of Spectra Obtained from ExoMars rover Raman instrument with a laboratory Raman instrument. 124
  5.2.1. Instrument Comparison 124
5.3. Conclusion 133

CHAPTER 6  Exemplar systems 134
6.1. Identification of mineralogical samples 134
  6.1.1. Standards 135
  6.1.2. Lake Magadi sample 138
6.2. Raman analysis of potential life biomarkers 140
  6.2.1. Standards 143
  6.2.2. Analysis of powder mixtures 144
  6.2.3. Analysis of hopanoids 145
  6.2.4. Conclusions 146
6.3. Effects of irradiation on bacterial species 148
  6.3.1. Freeze dried 150
6.3.2. Cells in culture 154
6.3.3. Cells grown on a metal slide 156
6.4. Detection of life in extreme environments 160
  6.4.1. Inclusions 161
  6.4.2. Ground samples 166
6.5. Conclusion 168

CHAPTER 7 Conclusions and Further work 169

References 173
Table of Figures and Tables

Chapter 1

Figure 1.1.1. Diagram to show Rayleigh Scattering 5
Figure 1.1.2. Diagram of Stokes Raman scattering 5
Figure 1.1.3. Diagram of Anti-Stokes Raman scattering 6
Figure 1.1.4. Diagram of Relaxed fluorescence. 7
Figure 1.1.5. Schematic of the major components of Raman spectrometers 10

Chapter 2

Table 2.1.1. Specifications of different instruments used 23
Figure 2.1.1. Photographs of the MOB instrument 25
Figure 2.1.2 Diagram showing systematically how spectra are processed after collection. 27
Figure 2.1.3. Examples of spectra and baseline correction methods used 28
Table 2.2.1. Standards used, details of source and purity 30
Table 2.2.2. Mass of compounds used to form gypsum-naphthalene and calcite naphthalene mixtures 31
Table 2.2.3. Map parameters used in analysis 31
Figure 2.2.1. Equations for formulation of inorganic components and amounts needed to produce 1 g 32
Table 2.2.4. Table showing different pure inorganic products produced for analysis 33
Table 2.2.5. Table showing different mixtures produced using solution-solution mixing methods. 33
Table 2.2.6. Table showing different mixtures produced using solid-solution mixing methods. 34
Table 2.2.7 Table of samples analysed 36
Table 2.2.8. The chemical structure of each biomarker 38
Table 2.2.9. Composition of cholestane and ergosterol mixed powder samples 39
Table 2.2.10. Bacterial samples analysed using Raman Spectroscopy 41
Table 2.3.1 Details of the different sections within the database and their description 42
Chapter 3

Figure 3.1.1. Raman spectrum of gypsum and calcite standard samples and the synthetic samples (JC111 to JC114) 46

Table 3.1.1. Peak assignments for gypsum standard 47

Table 3.1.2. Peak assignments and structure of calcite 48

Figure 3.1.2 Raman spectrum of calcite-naphthalene mixtures at different concentrations from 25% (JC143) to 0.5% (JC149) 48

Table 3.1.3. Peak assignments and structure of naphthalene 49

Figure 3.1.3 Raman spectrum of gypsum-naphthalene mixtures from 25% (JC150) to 0.5% (JC156) 50

Figure 3.1.4 Maps of sample 15 % naphthalene in calcite JC144 51

Figure 3.2.1. Raman spectrum of calcite samples produced from solvents using excess water (KP111), excess water and acetone (KP112), minimum water quantities and filtration (KP113) and minimum water quantities (KP114). 55

Figure 3.2.2. Raman spectra of A) KP120- Solution-solution mixture of calcite and naphthalene using the solvents water and acetone, B) Calcite and C) Naphthalene 56

Figure 3.2.3. Raman spectra of A) KP121- Solution-solution mixture of calcite and naphthalene using the solvents water and methanol, B) Calcite and C) Naphthalene. 56

Figure 3.2.4 Raman spectrum of a single peak at 1381 cm$^{-1}$ within the spectrum of naphthalene in calcite 58

Table 3.2.1 Table showing different intensities ($x10^3$) of the peak at 1381 cm$^{-1}$ within mixtures of naphthalene and calcite. 59

Figure 3.2.5 Scatter plot showing varying values for percentage concentration vs. intensity 59

Figure 3.2.6 Raman spectrum of solution-solution mixed calcite and naphthalene samples KP127-31 61

Figure 3.2.7 Raman spectrum of solution-solution mixed gypsum and naphthalene samples KP133-37 62

Figure 3.2.8. Raman spectrum of solid-solution mixed calcite-naphthalene samples KP115-19 63

Figure 3.2.9. Raman spectrum of solid-solution mixed gypsum-naphthalene samples KP138-42 64

Table 3.2.2 Peak assignments and structure of anthracene 65

Figure 3.2.10 Raman spectrum of solid-solution mixed calcite and anthracene samples KP145-49 66

Figure 3.2.11 Raman spectrum of solid-solution mixed gypsum and anthracene samples KP150-54 67
Table 3.3.1 Components of MRS07

Figure 3.3.1. Spectrum of Martian soil simulant MRS07 exposed for 10 seconds over 1 accumulation at 100% laser power

Figure 3.3.2. Raman spectra of MRS07 and beta-carotene mixtures

Figure 3.3.3. Raman spectra of goethite anthracene mixtures

Figure 3.3.4. Raman spectra of goethite and beta-carotene mixtures

Chapter 4

Table 4.1.1 Table showing the average noise intensities over several points and their standard deviations

Table 4.1.2 Table showing the RMS values obtained for different regions using one peak

Figure 4.1.1. Concentration vs. intensity plot for naphthalene in toluene solutions with limit of detection values calculated using RMS and point noise calculations at peaks a) 1378 cm\(^{-1}\) b) 759 cm\(^{-1}\) and c) 1461 cm\(^{-1}\)

Table 4.1.3. Limit of detection values obtained when calculating noise using 500 points and RMS over the range 1724-2448 cm\(^{-1}\)

Figure 4.1.2. Spectra of the naphthalene in acetone (left) with 2440 cm\(^{-1}\) and 1600 cm\(^{-1}\) region enhanced (right)

Table 4.2.1. Instrument validation parameters derived from naphthalene in toluene calibration curve.

Figure 4.2.1. Spectrum of toluene, 100% w/v naphthalene in toluene and pure naphthalene samples

Figure 4.2.2. Concentration vs. intensity plot for naphthalene in toluene solutions with the background subtracted a) 1378 cm\(^{-1}\) b) 759 cm\(^{-1}\) and c) 1461 cm\(^{-1}\)

Figure 4.2.3. Spectrum of acetone, 100% w/v naphthalene in acetone and pure naphthalene samples

Figure 4.2.4. Concentration vs. intensity plot for naphthalene in acetone solutions at peaks a) 1378 cm\(^{-1}\) b) 759 cm\(^{-1}\) and c) 1461 cm\(^{-1}\)

Table 4.2.2. Instrument validation parameters derived from naphthalene in acetone calibration curve.

Figure 4.3.1. Raman spectrum of trehalose standard

Figure 4.3.2. Raman spectra of calcite and trehalose 10% mixture using different accumulations

Figure 4.3.3. Raman spectra of calcite and trehalose 10% mixture using different accumulations over the 600 cm\(^{-1}\) to 350 cm\(^{-1}\) range
Figure 4.3.4. Raman spectra of calcite and trehalose 10% mixture with peaks at 540 cm\(^{-1}\) and 520 cm\(^{-1}\) fitted to spectrum. Original trace in red, fitted peaks in green, fitted trace in blue, baseline in brown and residual in violet.

Table 4.3.1. Height, width, area and Lorentz of 3 fitted peaks within the spectrum of 10% calcite and trehalose mixture at different accumulations

Figure 4.4.1 Raman spectra of calcite and trehalose mixtures analysed using different laser powers.

Figure 4.4.2. Raman spectra of naphthalene and acetone solution analysed using different laser powers with peaks relevant to this study highlighted.

Table 4.4.1. Peak intensities for the three largest peaks within the spectrum at the different laser powers. Numbers in italic are values below the noise threshold

Figure 4.4.3. Graph showing peak intensity against laser power for peaks at 787 cm\(^{-1}\), 1378 cm\(^{-1}\) and 2923 cm\(^{-1}\).

Table 4.5.1. Assignment of anthracene peaks

Table 4.5.2. Assignment of beta-carotene peaks

Table 4.5.3. Assignment of naphthalene peaks

Table 4.5.4. Assignment of phenanthracene peaks

Table 4.5.5. Assignment of phenylalanine peaks

Table 4.5.6. Table showing peak positions of the 5 most intense peaks in each organic compound

Table 4.5.7. Assignment of aragonite peaks

Table 4.5.8. Assignment of calcite peaks (T, translational lattice mode.)

Table 4.5.9. Assignment of gypsum peaks

Table 4.5.10. Assignment of jarosite peaks

Table 4.5.11. Table showing peak positions of the 5 most intense peaks in each inorganic compound

Table 4.5.12. Table of combined peak intensities for organic and inorganic samples

Figure 4.5.1. Flow diagram showing systematic identification of organic unknowns.

Figure 4.5.2. Flow diagram showing systematic identification of inorganic unknowns.

Chapter 5

Figure 5.1.1. Image showing slide produced for sample analysis

Figure 5.1.2. Image showing the grid system used in analysis

Figure 5.1.3. Raman spectra of calcite and trehalose 25% mixture at different locations
Figure 5.1.4 Raman spectra of calcite and trehalose 10% mixtures at different locations
Figure 5.1.5 Calcite trehalose Raman spectra averaged over all points at 5%, 10% and 25% concentrations
Figure 5.1.6 Image of the slide used in previous section and new mask covering
Figure 5.1.7 Map of silicon sample through the mask hole and spectra of mask, sample at the edge of the hole and sample at center of the hole.
Figure 5.1.8 Laser spot size with comparison to mask hole size.
Figure 5.1.9 Image of laser spot size on surface of mask.
Figure 5.1.10 Laser run along the edge of the sample at 10μm distances.
Figure 5.1.11 Laser spot on edge of mask sample hole
Figure 5.1.12 Stack plot of spectrum of 25% calcite trehalose a) without mask and b) with mask through x5 objective.
Figure 5.2.1 Image of the CCD from prototype Raman instrument produced from 1% gypsum and trehalose mixture
Figure 5.2.2 Spectrum derived from the CCD image of 1% gypsum and trehalose mixture
Figure 5.2.3 Raman spectrum of 25% mixture of gypsum and glucose
Figure 5.2.4 Raman spectrum of 1% mixture of gypsum and trehalose
Figure 5.2.5 Raman spectrum of 10% mixture of calcite and naphthalene
Figure 5.2.6 Peak fits of data obtained from InVia and prototype instruments. Original trace in red, fitted peaks in green, fitted trace in blue, baseline in brown and residual in violet.
Table 5.2.1 Peak fit data from the prototype and InVia instrument for the 1% and 10% calcite and naphthalene samples and 1% gypsum and trehalose sample.
Chapter 6
Figure 6.1.1 Raman spectrum of trona standard
Figure 6.1.2 Standard sodium bicarbonate (NaHCO₃) Raman spectrum
Figure 6.1.3 Standard thermonatrite (Na₂CO₃·H₂O) Raman spectrum
Figure 6.1.4 Raman spectra of proposed trona compound a) 1 accumulation 10% laser power, b) 1 accumulation 50% laser power, c) 1 accumulation 100% laser power, d) 10 accumulation 100% laser power
Figure 6.1.5 Raman spectra of a) standard trona, and b) suspected trona sample
Figure 6.2.1 Chemical structure of hopane