Neonatal Phencyclidine (PCP) induced deficits in rats: A behavioural investigation of relevance to schizophrenia

This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Lakshmi Rajagopal
School of Pharmacy
University of Bradford

2011
Abstract

Background: The main aim of the studies in this thesis is to provide insights into the neonatal phencyclidine (PCP) induced deficits in male and female rats as a neurodevelopmental animal model of schizophrenia.

Methods: Both male and female rats were treated with neonatal PCP on postnatal days (PNDs) 7, 9 and 11 or vehicle, followed by weaning on PND 21-22. The rats were then tested in behavioural paradigms such as novel object recognition, spatial memory and social interaction in their adolescent and adult stages and were also tested with acute treatment of typical and atypical antipsychotic agents.

Results: Neonatal PCP treatment (10 & 20 mg/kg in males and 10 mg/kg in females; once a day for 3 days on PND 7,9 and 11) caused novel object recognition and spatial memory impairment in male and female rats both in the adolescent (PND35-56) and in the adult stages (PND>56) (chapter 2) and robust deficits in social interaction behaviours in the adolescent stage. The SI deficits were observed in adulthood in female but not in male rats thereby establishing a sex-specific social behavioural deficit (chapter 3). The object memory and social interaction deficits induced by neonatal PCP treatment were reversed following acute risperidone but not haloperidol. Finally, the temporal profile of this treatment regime was investigated and the male and female animals were tested on PND 190 and PND 365. The animals did not have any challenge dose of PCP during their testing stage. The result showed that there was significant deficit in object and spatial recognition memory in both male and female animals at both time points, thereby establishing enduring deficits.

Conclusion: Given the heterogeneity of the schizophrenic disorder and its complex aetiology, it is understandably difficult to find animal models that completely mimic most or all of the symptoms associated with the disorder. However, data from the studies in this thesis support the use of neonatal PCP as a valid animal model of cognitive and negative symptoms, and explores the effect of antipsychotics in understanding the model. Also, in light of the efficacy of neonatal PCP to produce robust object, spatial memory and social interaction deficits in rats, it appears that this model may be a useful tool to investigate the potential of novel therapeutic candidates that may help improve therapy and understand the illness.
List of papers and refereed proceedings arising from this thesis

Table of content

Abstract
List of papers and refereed proceedings arising from this thesis
Table of content
Acknowledgment
List of abbreviations

Chapter 1

1. General Introduction... 2
1.1. Neurotransmitter systems ... 2
1.1.1. Dopamine hypothesis... 3
1.1.2. Serotonin (5-HT) hypothesis .. 6
1.1.3. Glutamate hypothesis... 7
1.1.4. Glutamate in schizophrenia... 8
1.1.5. GABAergic system... 10
1.1.6. Other biochemical hypotheses.. 11
1.2. Neuropathological factors in schizophrenia............................. 12
1.3. Genetics and Environmental risk factors.................................. 14
1.4. Cognitive and negative symptoms in schizophrenia............... 17
1.5. Modelling the symptoms of schizophrenia............................... 19
1.5.1. Pharmacological models... 21
1.5.2. Non-pharmacological models... 21
1.5.3. Genetic mouse models... 24
1.6. Behavioural assays of animal models (tests employed)............. 25
1.6.1. Prepulse Inhibition.. 26
1.6.2. Attentional set shifting.. 27
1.6.3. Reversal learning test.. 28
1.6.4. The novel object recognition paradigm............................. 29
1.6.5. Social withdrawal (Interaction)... 30
1.7. Phencyclidine (PCP)... 31
1.7.1. Acute PCP administration.. 33
1.7.2. Sub-chronic PCP treatment ... 34
1.7.3. Perinatal NMDA antagonism.. 36
1.8. Aims... 40
1.8.1. General aim... 40
1.8.2. Specific aims... 40
1.8.3. Significance... 40

Chapter 2

Effect of neonatal PCP on cognition using NOR, SMT and LMA in adolescent and adult male and female rats
2. Introduction.. 43
2.1. Neonatal PCP regime... 43
2.1.2. Gender differences in schizophrenia................................. 44
2.1.3. Behavioural tests.. 45
2.1.4. Aims.. 47
2.2. Methods and materials.. 48
2.2.1. Animals and housing... 48
2.2.2. Phencyclidine dosing regimens - Repeat administration to rat neonates........ 48
2.2.3. Behavioural testing... 50
2.2.3 (i). Novel Object Recognition (NOR).. 50
2.2.3(i)a Apparatus.. 50
2.2.3(i)b Habituation.. 51
2.2.3(i)c Behavioural testing... 51
2.2.3(i)d Statistical analysis... 53
2.2.4 (i) Spatial Memory task (SMT).. 53
2.2.4.(i)a Apparatus.. 53
2.2.4.(i)b Habituation.. 54
2.2.4.(i)c Statistical analysis... 55
2.2.5(i) Locomotor Activity... 55
2.2.5(i)a Apparatus.. 55
2.2.5(i)b Statistical analysis... 56
2.3. Results.. 57
2.3.0 Effect of neonatal PCP treatment on NOR in adolescent and adult rats in both sexes.. 57
Experiment 2.3.1: The effect of neonatal PCP treatment (10 mg/kg & 20 mg/kg in males and 10 mg/kg in females) on episodic memory at two different time points-i.e. adolescents and adults in both males and females using novel object recognition paradigm... 59
2.3.1a. Effect of neonatal PCP treatment on acquisition trial in adolescents and adults in both males and females. ... 59
2.3.1b. Effect of neonatal PCP treatment on retention trial in adolescents and adults in both males and females... 62
2.3.1c: Effect of neonatal PCP treatment on discrimination index (DI) in adolescents and adults in both males and females... 65
2.3.1d: Effect of neonatal PCP treatment on Line Crossings (LC) in adolescents and adults in both males and females... 68
Experiment 2.3.2: The effect of neonatal PCP treatment (10 mg/kg & 20 mg/kg in males and 10 mg/kg in females) on spatial memory at two different time points-i.e. adolescents and adults in both males and females using spatial memory task (SMT) 2.3.2a. Effect of neonatal PCP treatment on acquisition trial in adolescents and adults in both males and females using spatial memory task...................................... 72
2.3.2b. Effect of neonatal PCP treatment in the retention trial in adolescents and adults in both males and females using spatial memory task................................. 75
2.3.2c: Effect of neonatal PCP treatment on discrimination index (DI) in adolescents and adults in both males and females in a spatial memory task paradigm 2.3.2d: Effect of neonatal PCP treatment on Line Crossings in adolescents and adults in both males and females using spatial memory task... 82
Experiment 2.3.3: The effect of neonatal PCP treatment (10 mg/kg & 20 mg/kg in males and 10 mg/kg in females) on locomotor activity at two different time points-i.e. adolescents and adults in both males and females. 2.3.3a. Effect of neonatal PCP treatment on locomotor activity (LMA) in adolescents and adults in both males and females... 85
2.4. Discussion.. 88
Chapter 3
To investigate the sexually dimorphic effects of neonatal PCP on negative symptoms of schizophrenia in adolescent and adult rats using the social interaction paradigm

3
Introduction..100
3.2. Aims...104
3.3. Materials and methods...105
3.3.1. Animals and housing...105
3.3.2. Apparatus..106
3.3.3. Testing...106
3.3.4. Statistical analysis...109
3.4. Results..110
3.4.0. The effect of neonatal phencyclidine treatment (10 mg/kg) in adolescent and adult rats in both sexes...110
3.4.1. The effect of neonatal PCP treatment (10 mg/kg in males and females) on sniffing behaviour at two different time points-i.e. adolescents and adults in both males and females using social interaction paradigm..112
3.4.2. The effect of neonatal PCP treatment (10 mg/kg in males and females) on following behaviour at two different time points-i.e. adolescents and adults in both males and females using social interaction paradigm..115
3.4.3: The effect of neonatal PCP treatment (10 mg/kg in males and females) on avoiding behaviour at two different time points-i.e. adolescents and adults in both males and females using social interaction paradigm..118
3.4.4: The effect of neonatal PCP treatment (10 mg/kg in males and females) on object exploration behaviour at two different time points-i.e. adolescents and adults in both males and females using social interaction paradigm..121
3.4.5: The effect of neonatal PCP treatment (10 mg/kg in males and females) on fighting behaviour at two different time points-i.e. adolescents and adults in both males and females using social interaction paradigm..124
3.5. Discussion..127
3.6. Conclusion...137

Chapter 4
Investigating the effects of antipsychotic agents on cognitive and negative symptomatology using NOR and social interaction paradigms in neonatal PCP model.
4.1 Introduction...140
4.1.1 Receptor binding profiles...142
4.1.2 Aim..144
4.2 Methods and materials..145
4.2.1. Animals and housing...145
4.2.2a Phencyclidine dosing regimens - Repeat administration to rat neonates.....145
4.2.3. Behavioural testing

4.2.3(i). Novel Object Recognition (NOR)..146

4.2.3(i) a Apparatus..146

4.2.3(i) b Habituation...147

4.2.3(i)c Behavioural testing..147

4.2.3(i)d Drug phase...147

4.2.3(i)d Statistical analysis...149

4.3. Results...150

4.3.0. Effect of antipsychotic agents following neonatal PCP treatment using NOR paradigm in adult male and female rats...150

Experiment 4.3.1. The effect of haloperidol following neonatal PCP treatment (10 mg/kg) on episodic memory using NOR paradigm in male and female rats........151

4.3.1a. Effect of drug treatment on acquisition trial...151

4.3.1b. Effect of drug treatment on retention trial...151

4.3.1c. Effect of drug treatment on discrimination index (DI)............................152

4.3.1d. Effect of drug treatment on line crossings (LC)......................................152

Experiment 4.3.2. The effect of risperidone on the neonatal PCP induced deficit on episodic memory using NOR paradigm in male and female rats........159

4.3.2a. Effect of drug treatment on acquisition trial...159

4.3.2b. Effect of drug treatment on retention trial...159

4.3.2c. Effect of drug treatment on discrimination index (DI)............................160

4.3.2d. Effect of drug treatment on line crossings (LC)......................................160

4.3.3.0. The effect of haloperidol (0.05 mg/kg) and risperidone (0.2 mg/kg) on neonatal PCP-induced deficits in social interaction behaviours in adult female rats

4.3.3.1a(i). Effect of haloperidol (0.05 mg/kg) and risperidone (0.2 mg/kg) on neonatal PCP-induced deficits on sniffing behaviour in adult female rats using social interaction paradigm...166

4.3.3.1a(ii) Effect of haloperidol (0.05 mg/kg) and risperidone (0.2 mg/kg) on neonatal PCP-induced deficits on following behaviour in adult female rats using social interaction paradigm...166

4.3.3.1a(iii) Effect of haloperidol (0.05 mg/kg) and risperidone (0.2 mg/kg) on neonatal PCP-induced deficits on avoiding behaviour in adult female rats using social interaction paradigm...167

4.3.3.1b(i) Effect of haloperidol (0.05 mg/kg) and risperidone (0.2 mg/kg) on neonatal PCP-induced deficits on object exploration in adult female rats using social interaction paradigm...168

4.3.3.1b(ii) Effect of haloperidol (0.05 mg/kg) and risperidone (0.2 mg/kg) on neonatal PCP-induced deficits on fighting behaviour in adult female rats using social interaction paradigm...168

4.4. Discussion..172

4.4.1. Attenuation of neonatal PCP induced deficits in the novel object paradigm..172

4.4.2. Attenuation of neonatal PCP induced deficits in the social interaction paradigm..175

4.5. Conclusion..179

Chapter 5

Long-term effects of neonatal PCP administration on novel object and spatial memory task in male and female rats.

5. Introduction..181
5.1. Aim .. 183
5.2. Methods and materials .. 184
5.2.1. Animals and housing ... 184
5.2.2. Phencyclidine dosing regimens - Repeat administration to rat neonates 184
5.2.3. Behavioural testing .. 185
5.2.3 (i). Novel Object Recognition (NOR) and Spatial Memory Task (SMT) 185
5.2.3 (i).a. Drug phase ... 185
5.2.3 (i).b. Statistical analysis ... 186
5.3. Results .. 187
5.3.0. Effect of neonatal PCP treatment (10 mg/kg) on object recognition in adult rats (PND >180 and 1 year) in both sexes ... 187
5.3.1. The effect of neonatal PCP treatment (10 mg/kg in males and females) on episodic memory at two different time points -i.e. PND>180 days and PND>1 year in both males and females using novel object recognition paradigm.. 188
5.3.1a. Effect of neonatal PCP treatment on the acquisition trial in PND>180 days and PND>1 year old male and female adult animals ... 188
5.3.1b. Effect of neonatal PCP treatment on the retention trial in PND>180 and PND>1 year old male and female adult animals .. 190
5.3.1c. Effect of neonatal PCP treatment on discrimination index in PND>180 days and PND>1 year old male and female adult animals ... 192
5.3.1d. Effect of neonatal PCP treatment on line crossings in PND>180 and PND>1 year old male and female adult animals ... 194
5.3.2. The effect of neonatal PCP treatment (10 mg/kg in males and females) on spatial memory at two different time points -i.e. PND>180 and PND>1 year in both males and females using spatial memory task (SMT) 196
5.3.2a. Effect of neonatal PCP treatment on the acquisition trial on PND>180 and PND>1 year old male and female adult animals in a spatial memory task 197
5.3.2b. Effect of neonatal PCP treatment in the retention trial on PND>180 days and PND>1 year old male and female adult animals using a spatial memory task 199
5.3.2c. Effect of neonatal PCP treatment on discrimination index on PND>180 days and PND>1 year old male and female adult animals using spatial memory task 201
5.3.2d. Effect of neonatal PCP treatment on the line crossings on PND>180 and PND>1 year in male and female adult animals ... 203
5.4. Discussion .. 205
5.5. Conclusion ... 211
6.1. General Discussion .. 212
6.1.a. Mechanism of action of neonatal PCP treatment – A possible explanation. 224

7. Further studies ... 236

References ... 247
Acknowledgment

First and foremost, I would like to thank my supervisors, Prof Jo Neill and Dr. Mike Harte. It has been an honour to be their PhD student. I appreciate all their contributions of time and ideas to make my PhD experience stimulating. The joy and enthusiasm they have for research was contagious and motivational for me, even through tough times in my PhD pursuit.

I would also like to thank Mr. Ben Grayson, Dr. Samantha McLean & Dr. Nagi Idris for their immense professional and personal help during my time in the lab. The group has been a source of friendship and collaboration.

And finally I owe my deepest gratitude to my parents who stood by me and continue to do so throughout all my endeavours.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT:</td>
<td>5-hydroxytrytamine or serotonin</td>
</tr>
<tr>
<td>5-HT1-7:</td>
<td>5-hydroxytryptamine receptor subtypes 1-7</td>
</tr>
<tr>
<td>Acb:</td>
<td>Nucleus accumbens</td>
</tr>
<tr>
<td>AMPA:</td>
<td>Alpha amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid</td>
</tr>
<tr>
<td>AOB:</td>
<td>Accessory olfactory bulb</td>
</tr>
<tr>
<td>ANOVA:</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BDNF:</td>
<td>Brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>cAMP:</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CGP39551:</td>
<td>(E)-(±)-2-Amino-4-methyl-5-phosphono-3-pentenoic acid ethyl ester</td>
</tr>
<tr>
<td>CNS:</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>COMT:</td>
<td>Catechol-O-methyl transferase</td>
</tr>
<tr>
<td>CPu:</td>
<td>Caudate putamen</td>
</tr>
<tr>
<td>CT:</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>D1:</td>
<td>Dopamine receptor subtype 1</td>
</tr>
<tr>
<td>D2:</td>
<td>Dopamine receptor subtype 2</td>
</tr>
<tr>
<td>D3:</td>
<td>Dopamine receptor subtype 3</td>
</tr>
<tr>
<td>D4:</td>
<td>Dopamine receptor subtype 4</td>
</tr>
<tr>
<td>D5:</td>
<td>Dopamine receptor subtype 5</td>
</tr>
<tr>
<td>DA:</td>
<td>Dopamine</td>
</tr>
<tr>
<td>DAO:</td>
<td>D-amino acid oxidase</td>
</tr>
<tr>
<td>DAT:</td>
<td>Dopamine transporter</td>
</tr>
<tr>
<td>DI:</td>
<td>Discrimination index</td>
</tr>
<tr>
<td>DISC:</td>
<td>Disrupted in schizophrenia</td>
</tr>
<tr>
<td>EDS:</td>
<td>Extra-dimensional shift</td>
</tr>
<tr>
<td>FC:</td>
<td>Frontal cortex</td>
</tr>
<tr>
<td>G Proteins:</td>
<td>Guanine nucleotide binding proteins</td>
</tr>
<tr>
<td>GABA:</td>
<td>Gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GluR1-4:</td>
<td>Glutamate receptor subunits 1-4</td>
</tr>
<tr>
<td>HPA:</td>
<td>Hypothalamus-pituitary-adrenal axis</td>
</tr>
<tr>
<td>IEG:</td>
<td>Immediate early genes</td>
</tr>
<tr>
<td>ITI:</td>
<td>Intertrial interval</td>
</tr>
<tr>
<td>LC:</td>
<td>Line crossings</td>
</tr>
<tr>
<td>L-DOPA:</td>
<td>L-3,4Dihydroxyphenylalanine</td>
</tr>
<tr>
<td>LMA:</td>
<td>Locomotor activity</td>
</tr>
<tr>
<td>LSD:</td>
<td>Lysergic acid diethylamide</td>
</tr>
<tr>
<td>LTP:</td>
<td>Long-term potentiation</td>
</tr>
<tr>
<td>M1-4:</td>
<td>Muscarinic receptor subtypes 1-4</td>
</tr>
<tr>
<td>MAM:</td>
<td>Methylmethazoxymethyl</td>
</tr>
<tr>
<td>MATRICS:</td>
<td>Measurement and Treatment Research to Improve Cognition in schizophrenia.</td>
</tr>
<tr>
<td>MeA:</td>
<td>Medial Nucleus of the amygdala</td>
</tr>
<tr>
<td>MeApd:</td>
<td>posterodorsal subnucleus of the medial amygdala</td>
</tr>
<tr>
<td>mGLuR:</td>
<td>Metabotropic glutamate receptor</td>
</tr>
</tbody>
</table>
MK-801: (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-monooimine Maleate (or) Dizocilpine
MRI: Magnetic resonance imaging
mRNA: Messenger ribonucleic acid
NAA: N-acetylaspartate
NAAG: N-acetylaspartylglutamate
NDMC: N-desmethylclozapine
NGF: Nerve growth factor
NMDA: N-methyl-D-aspartate
NMDAR: N-methyl-D-aspartate receptor
NOR: Novel object recognition
NR1-4: NMDA receptor subunits 1-4
NRG: Neuregulin
NRHypo: NMDA receptor hypofunction
NS: Not significant
NVHL: Neonatal ventral hippocampus lesion
PCP: Phencyclidine
PET: Positron emission tomography
PFC: Prefrontal cortex
PND: Postnatal day
PPI: Prepulse inhibition
Prh: Perirhinal cortex
RELN: Reelin
RGS4: Regulator of G protein signalling
Schizophrenia
SEM: Standard error of mean
SI: Social interaction
SMT: Spatial memory task
TH-Mrna: Tyrosine hydroxylase mRNA
TURNS: Treatment Units for Research in Neurocognition in Schizophrenia
VTA: Ventral tegmental area
WCST: Wisconsin Card Sorting Test