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Abstract—Voltage instability problems in power system is an 
important issue that should be taken into consideration during 
the planning and operation stages of modern power system 
networks. The system operators always need to know when and 
where the voltage stability problem can occur in order to apply 
suitable action to avoid unexpected results. In this paper, a study 
has been conducted to identify the weakest bus in the power 
system based on multi-variable control, modal analysis, and 
Singular Value Decomposition (SVD) techniques for both static 
and dynamic voltage stability analysis. A typical IEEE 3-
machine, 9-bus test power system is used to validate these 
techniques, for which the test results are presented and 
discussed. 

Keywords: Voltage stability, multi-variable control, modal 
analysis, singular value decomposition, power system dynamics. 

I. INTRODUCTION 
      During the last decades, many of researches have been 
conducted in the area of voltage stability problems and their 
relation to the power system operation and control. These 
researches deal with the voltage stability problem as static 
and static analysis methods are used based on the study of the 
reduced (V-Q) Jacobian matrix, and by applying modal 
analysis [1-6]. As a result, the participation factors of bus, 
branch and generator on the static voltage stability can be 
obtained. In addition, the margin to voltage stability limit and 
the minimum distance to instability can also be obtained [6]. 
However, power system network is consists of a large 
number of dynamic system and its dynamic behavior has 
great influence on the voltage stability. Recently, the most 
blackouts have shown that voltage stability problems is 
associated with issues of frequency and angle stability [7,8]. 
Consequently, it is necessary to take the full dynamic 
system model of the power network into consideration in 
order to get more precise results. A few researchers have 
been conducted on the dynamic voltage stability analysis [1, 
5, 6, 9]. The common structure of the system model used is 
analogous to that used for transient stability analysis. The 
overall structure of the system equations of dynamic system 
under analysis consists of a set of first-order differential 
equations in addition to the algebraic equations (DAEs) [6]. 
On the other hand, for voltage stability study, particular 

interest should be given to issues of reactive power and 
voltage control and load actions. By minimizing oscillations 
of the state and network variables the function of dynamic 
voltage stability analysis is achieved [9]. Followed by, a 
parameter optimization method is applied for limiting the 
magnitude of oscillations. The voltage stability is decoupled 
from the angle dynamics as stated in [10]. The researchers are 
assuming that all electromechanical oscillations are 
considered to be stable, by neglecting the power-angle 
dynamics of the power system, the voltage response of the 
uncontrolled power system can be calculated by using the 
eigenvalue of the Voltage Stability Matrix.  
Nevertheless, in bulky power system networks, the dynamic 
voltage stability is coupled with different modes of 
oscillations such as exciter mode, local mode and inter-area 
mode of oscillations. While there is many study have been 
conducted on voltage stability problems, only some of them 
deal with this matter as dynamic. 
In this paper, an approach for the evaluation of dynamic 
voltage stability is proposed. The way takes the advantages 
of modern multi-variable control theory. Based on the 
Multi-Input Multi-Output (MIMO) transfer function, 
interactions between suitably defined input and output 
variables affecting dynamic voltage stability can be 
analyzed at different frequency modes. 
 

II. 2.1 SMALL SIGNAL VOLTAGE STABILITY ANALYSIS 
 
The mathematical model for the dynamic voltage stability 
study of a power system comprises a set of first order 
differential equations and a set of algebraic equations [1,6]: 

),( yxfx =  (1) 
),(0 yxg=  (2) 

Where x is the state vector of the system and y vector 
containing bus voltages 
The numerical integration and power flow analysis methods 
can be used to solve equations (1&2) in the time domain by 
[5, 6]. To evaluate the steady state equilibrium values (x0, y0) 
of the dynamic system, the derivatives in equation (1) equal is 
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set equals to zero. Through the linearization about (x0, y0), 
equation (1&2) are expressed as follows [1, 5]: 

yBxAdt
xd ∆+∆=∆  (3) 

 
 

yDxc ∆+∆=0  (4) 
Further, by eliminating y∆ , the linearised state equation can 
be rewritten as [1, 5]: 

xAxCBDAdt
xd ∆=∆−= −∆ ~)( 1  (5) 

The static bifurcation will occur when det (D) =0. In order to 
investigate the dynamic bifurcation occurrence, it is always 
assumed that det (D) ≠0 and that  matrix inverse is exists [1, 
5]. By analyzing the eigenvalue of A~ , dynamic voltage 
stability can be performed. 
 
Static Voltage Stability Analysis Based on Reduced Jacobian 
Matrix 
The static voltage stability analysis is based on the modal 
analysis of the power flow of the Jacobian matrix given by 
[16]: 
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Where 
PVPQP ,∆ : The incremental change in bus real power. 

PQQ∆      : The incremental change in bus reactive power. 
θ∆    : The incremental change in bus voltage angle. 

 V∆         : The incremental change in bus voltage magnitude. 
The elements of the Jacobian matrix represent the sensitivity 
between nodal power and bus voltage changes [11]. On the 
other hand, the phenomenon of power system voltage 
stability is mostly affected by the reactive power variation. 
By keeping real power invariable at each operating point, the 
Q-V analysis can be performed. Assuming 0, =∆ PVPQP , it 
follows from equation (6) [11, 12]: 

PQRPQPVPQQVPQ VJVJJJJQ ∆=∆−=∆ − **)**( 1
θθ

 

 
 
 

          (7) 
And: 

PQRPQ QJV ∆=∆ − *1  (8) 

                                                                                          

Based on the 1−
RJ , which is the reduced V-Q Jacobian matrix, 

the Q-V modal analysis can be performed. Consequently, the 
participation factors of bus, branch and generator are 
calculated. Moreover, the stability margin and the shortest 
distance to instability of power system under investigation 
will be determined [11-12].  
The application of singular value decomposition to the 

reduced Jacobian matrix 1−
RJ also allows the static voltage 

stability analysis [13, 14, 15]. 

Small signal stability analysis based on Multi-Variable 
control technique  
By a multivariable technique we mean a process with several 
inputs and several outputs as shown in Fig. (1). In general, 
every input is connected to every output through some 
dynamic coupling. We can pretend that the ith  output yi is 
connected to the jth input ui through a transfer function gij(s), 
we can write: 
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Where the notation )(sgij indicates the transfer function 
matrix, that is:  
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(11) 

 

 
Figure 1 A multivariable technique: a system with r inputs and m outputs 

 
In this paper, voltage dynamic stability analysis based on the 
Multi-Input Multi-Output (MIMO) transfer technique is 
carried out.  Fig. (2) Shows MIMO system which is widely 
used in control engineering. The requirements for this 
analysis detailed dynamic power system model including 
generators, governors, static exciter, power system stabilizer, 
and non-linear voltage and frequency load models is 
necessary. Furthermore, dynamic load models may also 
included. In general, the dynamic models described by 
equation (1&2) must consider all relaxant issues affecting 
voltage stability.  

 
Figure 2 Multi-Input Multi-Output (MIMO) for small signal stability 
modeling 
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Multi-Input Multi-output Techniques (MIMO model) 
As the first step, variables that affecting dynamic voltage 
stability must be selected as input variables to the MIMO 
system. These variables are the real and reactive power 
control functions of chosen generators and loads. Some other 
variables, such as the tap-changer position and FACTS 
control signals, can also be included as inputs. The output 
signals for a MIMO are the voltage magnitudes at the most 
critical buses. In this paper, the generation and load controls 
parameters were used as the input signals to a MIMO system 
transfer function matrix. Moreover, due to the small size of 
the simulated power system model, the set of output signals 
are extended to all bus voltages. The transfer function that 
corresponding to MIMO model shown in Fig. (2) is described 
by equation (13): 
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         (13) 
            

)(sJv is a inputoutput nn *  transfer function matrix.  

To obtain each sub-transfer function in the )(sJv a numerical 
methods can be applied to power system dynamic model. 
 
Small signal stability analysis based on singular value 
decomposition (SVD) Techniques 
In order to analyze the MIMO system, SVD of )(sJv  is 
carried out at every fixed frequency [14, 16, 18]: 

T
v USVsJ =)(  (14) 

 Where S is inputoutput nn *  matrix with k = min {

inputoutput nn * } non-negative singular values, σi are 
arranged in descending order along its main diagonal; the 
other entire’s are zero. The singular values are the positive 

square roots of the eigenvalue of )(*)( SJSJ v
T
v , where

)(SJT
v   is the complex conjugate transpose of )(SJv  [19]: 

))(*)(())(( SJSJSJ v
T
vivi λσ =  

(15) 

                                                            
U is inputoutput nn *  unitary matrix of output singular 
vectors, ui 
V is inputinput nn *  unitary matrix of input singular vectors, 

vi.  
 
Singular vectors analysis 
The column vectors of U, denoted ui, represent the 
directions of the output variables. They are orthogonal and 
of unit length. Likewise, the column vectors of V, denoted 
vi, represent the directions of input variables. These input 
and output variables are connected through the singular 
values [16].  
In the case of dynamic stability, the singular values and 
their associated directions vary with the frequency. Critical 
frequencies corresponding to poorly damped dominant 
modes must be taken into account in power system dynamic 
voltage stability analysis studies.  
 To obtain the relationship between input and output, the 
maximum singular values and their associated related input 
and output singular vectors are analyzed at each frequency. 
The output singular vector shows at which bus voltage 
magnitude is the most critical bus. The input singular 
vectors indicate which input has the greatest influence on 
the corresponding output. As a result, by means of the 
singular value analysis technique, the dynamic voltage 
stability of the power system can be conducted.  
 

III. SIMULATION RESULTS 
 

Test system description 
A typical IEEE 3- machine, 9-bus test power system model 
[6, 17], as shown in Fig (3).  is used for demonstration of 
the proposed MIMO system. The corresponding power 
system dynamic model consists of a set 3 generators each 
described by 6th order model, governors, static exciters, 
Power System Stabilizer (PSS) , 9 load buses and 6 
branches (transmission lines). The detailed generator, 
controller, branches and load model can be found in [6, 20]. 

                       

 
Figure 3 IEEE 3-machines, 9-bus test system 

 
Experiments 
To assess the dynamic voltage stability of the proposed test 
power system the flowing steps is performed: 

• Static voltage stability analysis based on singular 
value decomposition to observe the selected nodes 
and suitable control input variable for detailed 
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dynamic voltage stability analysis. 
• Modal analysis to find the critical modes of 

oscillations; the frequency range of critical modes 
is known, so that the detailed modal analysis can 
be omitted. 

• Transfer function matrix )(sJv  calculation and 
SVD at critical frequencies. 

• Find the critical buses, which have the most severe 
dynamic voltage stability problem 

• Find the best input variables allowing 
improvement of voltage dynamic stability. 
 

Weak bus identification by based on singular value 
decomposition (Static voltage stability) 

Since the reduced Jacobian matrix 1−
RJ , as given in equation 

(8), is a square matrix, therefore, both singular value 
analysis and modal analysis can be applied as a static 
indicator for voltage stability and weak bus identification. 
Based on the theory given in [13, 14, 15], the static voltage 
stability is analyzed based on the singular value technique 
in this paper. 
Applying the singular value analysis to IEEE 3- machine, 9-
bus test power system model, it found that the maximum 

singular value of the reduced Jacobian matrix 1−
RJ    is 0.16 

and the corresponding maximum output singular vector is 
0.68 and it associates with bus 8. This means the turbulence 
on the reactive loads power will cause the largest variation 
on the voltage magnitude at bus 8. As a result, bus 8 is 
ranked as the weakest bus in the test system. The simulation 
result is shown in Fig. (4). 

 
Figure 4 Plot of magnitude of the output singular vector vs bus number 
 

IV. WEAK BUS IDENTIFICATION BASED ON MODAL ANALYSIS 
AND SINGULAR VALUE TECHNIQUE  

 
Modal analysis technique 
Modal analysis is performed to find the critical modes of 
oscillations. It found that the exciter mode has a damping 
ratio of 11.93% and the oscillation frequency is about 2.82 
Hz. The inter-area mode has a damping ratio of 13.63% and 
the corresponding oscillation frequency is about 0.57 Hz. 

Singular value technique 
Detailed dynamic power system model is used to calculate 
the transfer function matrix )(sJv  based on the numerical 
method. The maximum singular value of )(sJv  provides 
the maximal gain between the input and output variables. It 
describes how the observed outputs can be influenced by 
the inputs [21]. The maximal singular value of the reduced 

Jacobian matrix 1−
RJ over the frequency range of [0.01 Hz 

to about 100Hz] is carried out. As a result, the peaks of the 
maximal singular value that correspond to the inter-area 
mode and exciter mode 1 were established respectively. 
According to the previous analysis, the singular value is 
performed for the two critical oscillation mode frequencies 
i.e. exciter mode and inter-area mode. 
 
Exciter Mode 
The results of singular value analysis shows that the output 
singular vectors that corresponding to the maximum 
singular value at the exciter mode frequency is given in Fig. 
(5). It can be seen that the buses 5, 6, and 8 are related to the 
dynamic voltage stability with bus 8 standing out as the 
most critical bus. The analysis of the input singular vector 
associated with this mode shows that the input signals of 
Q2, Q3, and Q1 (input number 16, 17 and 18) are the most 
suitable signals for this mode of dynamic voltage stability 
control. The other input signals have relative weak 
influences as can been seen in Fig. (6). 
 

 
Figure 5 Plot mode of magnitude of the output singular vector vs bus 
number 
 

Inter-area Mode    
The critical output singular vector associated with the inter-
area mode oscillation mode is shown in Fig. (7). From the 
figure, it is clear that the bus 8 is the most critical bus. In 
comparison with exciter mode 1, the inter-area mode has 
larger output singular vectors. 
Fig. (8) Shows the analysis of the input singular vector 
associated with inter-area mode. It is clear that the input 
signal of Q2, Q3 and Q1 are the most suitable signals for 
dynamic stability analysis and control (input number 16, 17 
and 18) 
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V. CONCLUSIONS 
 
This paper presents the application of multi-variable control 
(MIMO), modal analysis, and singular value decomposition 
to study the static and dynamic voltage stability in order to 
identify the weakest bus in the power system. The singular 
value technique was to analyze the MIMO.  
 

 
Figure 6 Plot of input singular vector associated with exciter mode 1 
 
The elements of the input singular vectors indicate the impact 
of the input variables on the output variables, and the output 
singular vectors can be used to evaluate the influence of 
voltage stability on the selected buses. Moreover, the input 
singular vector can be used for choosing the most suitable 
control action to improve voltage stability, and the output 
singular vector can provide information about the weakest 
buses that affected by voltage stability. A typical IEEE 3- 
machine, 9-bus test power system is used to validate these 
techniques and the results were presented. 
 
 

 
Figure 7 Plot of magnitude of the output singular vector vs bus number 

 

REFERENCES 
 

[1] IEEE Power Engineering Society/ CIGRE, FACTS Overview, Publication 

95TP108, IEEE Press, New York, 1995. 

[2] N. G. Hingorani and L. Gyugyi, Understanding FACTS, IEEE Press, New 

York, 1999. 

 

 
Figure 8 Plot of magnitude input singular vector vs input number 
 
 
 [3] Qiu Xiaoyan; Li Xingyuan; Xu Jian; Xia Lili; , "AC/DC Hybrid 

Transmission System Voltage Stability Analysis Based on Singular 

Value Decomposition Method," Power and Energy Engineering 

Conference (APPEEC), 2010 Asia-Pacific , vol., no., pp.1-4, 28-31 

March 2010. 

[4] Avalos, R.J.; Canizares, C.A.; Anjos, M.F.; , "A practical voltage-

stability-constrained optimal power flow," Power and Energy Society 

General Meeting - Conversion and Delivery of Electrical Energy in the 

21st Century, 2008 IEEE , vol., no., pp.1-6, 20-24 July 2008. 

 [5] W. H. Litzenberger, Ed., “An Annotated Bibliography of High-Voltage 

Direct-Current Transmission, 1989–1991,” Published by the Bonneville 

Power Administration (BPA) and the Western Area Power 

Administration, Portland, OR, 1992. 

[6] W. H. Litzenberger, Ed., “An Annotated Bibliography of High-Voltage 

Direct-Current Transmission and Flexible AC Transmission (FACTS) 

Devices, 1991–1993,” Published by the Bonneville Power 

Administration (BPA) and the Western Area Power Administration, 

Portland, OR, 1994. 

[7] W. H. Litzenberger and R. K. Varma, Eds., “An Annotated Bibliography 

of High- Voltage Direct-Current Transmission and FACTS Devices, 

1994–1995,” Published by the Bonneville Power Administration (BPA) 

and the U.S. Department of Energy, Portland, OR, 1996. 

[8] W. H. Litzenberger, R. K. Varma, and J. D. Flanagan, Eds., “An 

Annotated Bibliography of High-Voltage Direct-Current Transmission 

and FACTS Devices, 1996–1997,” Published by the Electric Power 

Research Institute (EPRI) and the Bonneville Power Administration 

(BPA), Portland, OR, 1998. 

[9] CIGRE Task Force 14-27, “Unified Power Flow Controller,” CIGRE 

Technical Brochure, 1998. 

[10] L. Gyugyi, “A Unified Power Flow Control Concept for Flexible AC 

Transmission Systems,” IEE Proceedings–C, Vol. 139, No. 4, July 1992. 

[11] B. A. Renz et al., “AEP Unified Power Flow Controller Performance,” 

IEEE Transactions on Power Delivery, Paper 1998. [40] B. A. Renz et 

al., “World’s First Unified Power Flow Controller on the AEP System,” 

CIGRE Paper No. 14-107, 1998. 

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9M
ag

ni
tu

de
 o

f t
he

 
ou

tp
ut

 s
in

gu
la

r 
ve

ct
or

Bus number



6 
 

[12] K. K. Sen and E. J. Stacey, “UPFC—Unified Power Flow Controller: 

Theory,  Modelling, and Applications,” Presented at the IEEE/ PES 1998 

Winter Meeting, New York. 

[13] R. Mihalic, P. Zunko, and D. Povh, “Improvement of Transient Stability 

Using Unified Power Flow Controller,” IEEE Transactions on Power 

Delivery, Vol. 11, No. 1, 1996, pp. 485–491. 

[14] J. Y. Liu and Y. H. Song, “Comparison Studies of Unified Power Flow 

Controller With Static Var Compensators and Phase Shifters,” Electric 

Machines and Power Systems, Vol. 27, No. 3, 1999. 

[15] M. Noorozian, L. Angquist, M. Ghandhari, and G. Andersson, “Use of 

UPFC for Optimal Power Flow Control,” IEEE Transactions on Power 

Delivery, Vol. 12,No. 4, 1997, pp. 1629–1634. 

[16] S. Arabi and P. Kundur, “A Versatile FACTS Device Model for Power 

Flow and Stability Simulations,” IEEE Transactions on Power Systems, 

Vol. 11, No. 4, November 1996, pp. 1944–1950. 

[17] A. Nabavi-Niaki and M. R. Iravani, “Steady-State and Dynamic Models 

of Unified Power Flow Controller (UPFC) for Power System Studies,” 

IEEE Transactions on Power Systems, Vol. 4, 1996, pp. 1937–1943. 

[18] C. D. Schauder, L. Gyugyi, M. R. Lund, D. M. Hamai, T. R. Reitman, 

D. R. Torgerson, and A. Edris, “Operation of the Unified Power Flow 

Controller (UPFC) Under Practical Constraints,” IEEE Transactions on 

Power Delivery, Vol. 13, No. 2, April 1998. 

[19] G. Rogers, “ Power System Oscillations”, Kluwer Academic 

Publishers, Dec. 1999. 
[20] S. Skogestad and I. Potlethwaite, “Multivariable feedback control- 

Analysis and design”, John Wiley &Sons, July 1996. 

[21] M. Rahman et al., “UPFC Application on the AEP System: Planning 

Considerations,” IEEE Transactions on Power Systems, Vol. 12, No. 4, 

November 1997. 

 
 

 


	I. Introduction
	II. 2.1 Small signal voltage stability analysis
	Static Voltage Stability Analysis Based on Reduced Jacobian Matrix
	Small signal stability analysis based on Multi-Variable control technique
	Multi-Input Multi-output Techniques (MIMO model)
	Small signal stability analysis based on singular value decomposition (SVD) Techniques

	III. Simulation Results
	Test system description
	Experiments
	Weak bus identification by based on singular value decomposition (Static voltage stability)

	IV. Weak bus identification based on Modal analysis and singular value technique
	Modal analysis technique
	Singular value technique
	Exciter Mode
	Inter-area Mode

	V. Conclusions
	References


