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Abstract 

Scheduling large real world problems is a complex process and finding high quality 

solutions is not a trivial task. In cooperation with Trimble MRM Ltd., who provide 

scheduling solutions for many large companies, a problem is identified and modelled. It 

is a general model which encapsulates several important scheduling, routing and 

resource allocation problems in literature. Many of the state-of-the-art heuristics for 

solve scheduling problems and indeed other problems require specialised heuristics 

tailored for the problem they are to solve. While these provide good solutions a lot of 

expert time is needed to study the problem, and implement solutions. 

 This research investigates methods to enhance existing search based methods. 

We study hyperheuristic techniques as a general search based heuristic. Hyperheuristics 

raise the generality of the solution method by using a set of tools (low level heuristics) 

to work on the solution. These tools are problem specific and usually make small 

changes to the problem. It is the task of the hyperheuristic to determine which tool to 

use and when.  Low level heuristics using exact/heuristic hybrid method are used in this 

thesis along with a new Tabu based hyperheuristic which decreases the amount of CPU 

time required to produce good quality solutions. We also develop and investigate the 

Variable Fitness Function approach, which provides a new way of enhancing most 

search-based heuristics in terms of solution quality. If a fitness function is pushing hard 

in a certain direction, a heuristic may ultimately fail because it cannot escape local 

minima. The Variable Fitness Function allows the fitness function to change over the 

search and use objective measures not used in the fitness calculation. The Variable 

Fitness Function and its ability to generalise are extensively tested in this thesis. 

 The two aims of the thesis are achieved and the methods are analysed in depth. 

General conclusions and areas of future work are also identified. 
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Chapter 1  

Introduction 

Heuristic optimisation is used when an optimal solution is not required or exact methods 

are computationally intractable. Heuristics find good solutions that are not guaranteed to 

be optimal, however they are much quicker and usually find “good enough” solutions in 

a reasonable amount of time. Here the cost of solving the problem optimally in terms of 

CPU time is traded for the cost of a less than optimal solution. 

Heuristics are also used when an optimal solution is not important because the 

model itself is not accurate or is based on assumptions. In this case, an optimal solution 

to the model of the problem may not represent an optimal solution in the real world and 

so solving the modelled problem exactly may not mean the real world problem is solved 

exactly making heuristic solutions even more attractive. This is usually always the case 

when modelling real world problems. 

Over the years, as the problems we study get more complex and less easy to 

understand, heuristic solutions have become more and more attractive. The main focus 

of this thesis is a real world workforce scheduling problem which shares a lot of 

similarities with different scheduling problems in the literature and brings many features 

of the problems together into a single problem. Due to its complex and “messy” nature, 
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heuristic optimisation is ideal. A model for the problem was devised with the help of 

Trimble MRM and reflects the most important aspects of scheduling problems they 

tackle daily. It involves assigning multiple resources to geographically dispersed tasks. 

Tasks may require multiple resources to be completed and the resources must have the 

correct skill to do the task. Further making this problem messy is the fact that the time 

for a task is not known until resources are assigned, as the duration of the task is a 

function of its requirements and the competency of the resources assigned to it. 

Many factors cannot be modelled accurately in this real world problem such as 

travel, the time it will take to complete a task, and the availability of resources and real 

world disturbances such as traffic for example. As such, exact methods are not always 

required. Furthermore, measuring the costs and the benefits of scheduling is an 

imprecise task as it involves human factors like customer satisfaction. These can only 

be estimated adding further inaccuracies to the calculation of a solution’s quality. In this 

thesis we build new heuristic solutions to this problem using local search and 

hyperheuristics. We develop a hyperheuristic framework and a methodology for 

generating many low level heuristics combining exact and heuristic methods.  

Complex heuristic solutions usually require a lot of expert time to implement 

and modify. If the problem of a heuristic solution to a complex problem changes 

slightly, then the heuristic may be inefficient and require changes. We aim to develop 

methods which can modify existing heuristics and potentially save a lot of this expert 

time whilst increasing performance in terms of CPU time and solution quality.  
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1.1. Aims 

The overall aim of this research is to investigate new techniques for enhancing existing 

search based optimisation techniques. We have identified two key ways in which a 

search based optimisation technique can be enhanced:  

i) decreasing the CPU time required to run 

ii) improve final solution quality 

The first aim is achieved with a new Tabu search method called Binary Exponential 

Back-Off which is addressed in Chapter 4. Decreasing the amount of CPU time required 

to produce a good solution to a problem means that problems can be solved quicker or 

larger problems can be solved without the need for better hardware. We aim to reduce 

the CPU time required without a large loss on solution quality. 

The second aim is achieved with the Variable Fitness Function described in Chapter 5 

and tested in Chapter 6 and 7. This aim requires the enhancement of existing solution 

methods to provide a better solution, in a similar amount of CPU time. 

1.2. Contributions 

 Recent works related to heuristic solutions of combinatorial problems especially 

relating to scheduling have been reviewed (Chapter 2). 

 A real world scheduling problem has been identified and modelled including the 

dynamic side where disruption to the schedules are modelled (Chapter 3). 

 Local search heuristics have been developed to greater understand the dynamic 

workforce scheduling problem in this thesis (Chapter 4). 

 Methods of splitting problems into smaller problems to be solved exactly have 

been identified and heuristic methods for choosing which to subproblem solve 
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have been used resulting in Exact/Heuristic Hybrids (Section 4.1-4.4, Published 

in (Remde et al., 2007)) . 

 New method for dynamically adjusting individual low level heuristics Tabu 

tenures in a hyperheuristic framework using Binary Exponential Back Off ideas 

are shown to be very effective (Section 4.5, Published in (Remde et al., 2009), 

Submitted to (Remde et al., Submitted)). 

 The Variable Fitness Function methodology is detailed and motivated as a new 

method for guiding search based heuristics (Chapter 5, Published in (Remde et 

al., 2008) (Dahal et al., 2008) (Cowling et al., Submitted)). 

 The Variable Fitness Function is used to solve various problems with different 

characteristics (Chapter 6 and 7, Published in (Remde et al., 2008) (Dahal et al., 

2008) (Cowling et al., Submitted)). 

 Methods are developed to try and anticipate bottlenecks when using constructive 

scheduling in order to avoid them (Section 6.3, Submitted to (Cowling et al., 

Submitted)).  

 

 

 

Authored Academic Papers 

 

The following papers were derived directly from the work in this thesis. The 

experimentation, analysis and write up were done by me, with brainstorming and 

corrections were done with the co-authors. Where applicable I presented the work at the 

conference. 

 



CHAPTER 1. INTRODUCTION  9 

 

S. M. Remde, P. I. Cowling, K. P. Dahal, N. J. Colledge, “Exact/Heuristic Hybrids 

Using rVNS and Hyperheuristics for Workforce Scheduling” in Proceedings of 

EvoCOP 2007, Springer LNCS 4446, 2007, pp. 188-197. (One of three papers of 81 

nominated for the best in the conference) 

 

S. M. Remde, P. I. Cowling, K. P. Dahal, N. J. Colledge, “Evolution of Fitness 

Function to Improve Heuristic Performance” in proceedings of Learning and 

Intelligent Optimization (LION) II, Springer LNCS 5313, 2008, pp 206-219. 

 

K. P. Dahal, S. M. Remde, P. I. Cowling, N. J. Colledge, “Improving Metaheuristic 

Performance by Evolving a Variable Fitness Function” in Proceedings of EvoCOP 

2008, Springer LNCS 4972, 2008, pp. 170-181. 

 

S. M. Remde, P. I. Cowling, K. P. Dahal, N. J. Colledge. “Binary Exponential Back 

Off for Tabu Tenure in Hyperheuristics” in Proceedings of EvoCOP 2009, Springer 

LNCS 5482, 2009. 

 

P. I. Cowling, S. M. Remde, K. P. Dahal, N. J. Colledge, “Evolution of Fitness 

Functions to Improve Optimisation” Submitted to Journal of Heuristics. 

 

S. M. Remde, P. I. Cowling, K. P. Dahal, N. J. Colledge. Binary Exponential Back 

Off Experimental Investigation and Comparison Submitted to the Special issue of 

the Journal of the Operational Research Society on Heuristic Optimisation. 

 



CHAPTER 1. INTRODUCTION  10 

 

Co-Authored Academic Papers 

 

In the following papers I was involved in creative input, brainstorming, 

experimentation, software development and/or proof reading. This work is not included 

in this thesis. 

 

P. I. Cowling, N. J. Colledge, K. P. Dahal, and S. M. Remde, "The Trade Off between 

Diversity and Quality for Multi-objective Workforce Scheduling" in Proceedings of 

EvoCOP 2006, Springer LNCS 3906, 2006, pp. 13-24. (One of three best paper 

nominations) 

 

P. I. Cowling, S. M. Remde, K. P. Dahal, N. J. Colledge, “Evolution of Fitness 

Functions to Enhance Heuristics” Extended abstract in proceedings of Graph and 

Optimization Meeting 2008 (GOM 2008), 2008. 

 

N. J. Colledge, P. I. Cowling, K. P. Dahal, S. M. Remde, E. Selensky, “A Comparison 

of Multiobjective and Weighted-Sum Genetic Algorithms for Dynamic Scheduling 

planned for submission to Evolutionary Computation, 2010. 

 

N.  J. Colledge, K. P. Dahal, P. I. Cowling, S. M. Remde, E. Selensky, “The Value of 

Slack Time in Mobile Dynamic Workforce Scheduling” planned for submission to 

the European Journal of Operational Research, 2009. 



CHAPTER 1. INTRODUCTION  11 

 

1.2. Thesis Outline 

Chapter 2 contains literature relating to scheduling problems in the literature and 

solution methods.   

Chapter 3 details the mathematical model we will use to model the dynamic workforce 

scheduling problem studied in this thesis and similarities and differences with problems 

in the literature are identified.  

Chapter 4 describes the preliminary work we did with this model, using local search 

based methods to solve the dynamic workforce scheduling problem. Exact/Hybrid low 

level heuristics are generated and binary exponential back off Tabu search is explored 

as a way of reducing neighbourhood sizes and search time. 

Chapter 5 identifies the need for the Variable Fitness Function and defines how to use 

and evolve them. The way it works is compared to common metaheuristics.  

In Chapter 6 we present three case studies of the Variable Fitness Function where it has 

been used to enhance local search based optimisation heuristics for the TSP, a board 

game (Virus) and the Workforce Scheduling problem. Good evidence of how the 

Variable Fitness Function enhances the search is shown in the TSP case study. The 

multi objective nature of the virus game is exploited by the Variable Fitness Function 

when players are evolved with to change strategy over the course of the game. The 

workforce scheduling case study showed that some of the evolved Variable Fitness 

Function made the search exhibit characteristics of the well known right-left shift 

heuristic, showing that it could be used to evolve new unknown heuristics. 

Chapter 7 uses the Variable Fitness Function to enhance metaheuristics for the static 

and dynamic aspect of the scheduling problem and identifies a case where Variable 

Fitness Functions may not be ideal.  

Finally, in Chapter 8 we discuss the conclusions of this thesis and outline further work 



 

Chapter 2  

Literature Review 

This section of the thesis reviews related problem literature and methods used to solve 

these problems. First, literature related to the Resource Constrained Project Scheduling 

Problem is presented as this problem is one of the closest to ours in the literature. 

A brief discussion of solution fitness evaluation is discussed and then selected 

solution methods split into search based approaches, population based approaches and 

hyperheuristic approaches. 
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2.1. Resource Constrained Project 

Scheduling Problem 

The problem we consider is a combination of many of the scheduling problems in 

literature and reflects the real work situation identified by our industrial sponsor. This 

section describes some of the relevant scheduling problems in literature.  

For the Resource Constrained Project Scheduling Problem (RCPSP) we refer to 

Pinedo and Chao (1999). The RCPSP is a generalisation of many common scheduling 

problems including job-shop, open-shop and flow-shop scheduling problems 

(Hartmann, 1999). Activities have to be scheduled under resource and precedence 

constraints. Precedence constraints require that a task may not start until all its 

preceding tasks have finished. Resource constraints require that the resources an activity 

needs are available when the activity is scheduled. Scheduling an RCPSP involves 

assigning start times to each of the activities. This problem is Non-deterministic 

Polynomial-time hard (NP-Hard) (Garey and Johnson, 1979). Literature introducing 

solution methods for the RCPSP can be found later in this chapter. 

The Multiple-mode RCPSP (MRCPSP) (Bouleimen and Lecocq, 2003) extends 

the RCPSP. In MRCPSP, there is the option of having non renewable resources and 

resources that are only available during certain periods. In addition, the duration of a 

task is dependent on the resource that is used during the task, much like the problem we 

study. As this is a generalisation of an NP-Hard problem, it is itself NP-Hard. Less work 

has been done for the MRCPSP than the RCPSP and usually involves problems with a 

small number of modes. This makes the problem slightly harder to solve than the 

RCPSP. If the dynamic workforce scheduling problem we study was simplified to an 

MRCPSP then there would be hundreds to thousands of modes for each task which 
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would grow exponentially with the number of resources – this will be seen later. Mori 

and Tseng (1997) use a genetic algorithm to solve the MRCPSP. They use a direct 

representation to encode the solution, storing the order in which the activity should be 

scheduled and the mode it is to use in the chromosome. They compare the method with 

a stochastic construction method (STOCON) of Drexl and Gruenewald (1993) for 600 

problems of different sizes and complexities. The results suggest that for very small 

problems, the random stochastic construction is better however with 30 or more tasks, 

the GA is far superior.  

Both the RCPSP and MRCPSP are well studied in literature and an extensive 

invited review can be found in Brucker et al. (1999) with a more up to date 

experimental review in Hartmann and Kolisch (2000) and Kolisch  and Hartmann 

(2006). 

2.1.1. Solution Representations 

Heuristics that gradually improve a schedule into a fitter one generally require two 

things: a schedule representation scheme and a schedule evaluation procedure. When 

representing the schedule indirectly, a schedule generation scheme is needed to turn the 

representation into a schedule. Heuristics that use these representations do not operate 

directly on a schedule but instead modifies the schedule representation (SR) of the 

schedule for convenience (Kolisch and Hartmann, 1999).  

2.1.2. Schedule Generation Scheme 

A Schedule Generation Scheme is an algorithm for creating a schedule given a schedule 

representation. With the problems discussed the solutions are not usually directly 

represented. This is usually because the direct representations are harder to manipulate. 
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There are two main types of schedule generation scheme (and these are adapted for 

specific Schedule Representations).  

A parallel schedule generation scheme operates by starting at time t=0. All 

activities that have not been inserted into the schedule and whose precedence and time 

constraints are valid are considered to be scheduled. If more than one activity meets 

these criteria some method of tie breaking is used (usually from information in the SR). 

When no more schedules can be inserted into the schedule at the current start time, t is 

incremented and the process is repeated until all activities have been inserted. A parallel 

schedule generation scheme is used to solve the Multi Mode RCPSP in Ozdamar 

(1999). 

A serial schedule generation scheme works by considering one task at a time. 

The order is that of the SR and each activity is scheduled in turn as early as possible 

considering time and precedence constraints.  

Kolisch (1996) found that both are able to provide optimal feasible solutions 

when there are no constraints on resources, however a serial schedule generation 

scheme produced active schedules (a schedule where no task can start any earlier 

without changing another tasks start time) and a parallel schedule generation scheme 

produced non-delay schedules (in Job shop scheduling this is defined as a schedule 

where no machine is idle when it could be doing something - see (Sprecher, Kolisch and 

Drexl, 1995) for definitions). 

2.1.3. Schedule Representation 

Kolisch and Hartmann (1999) discuss various schedule representation schemes for the 

RCPSP of which the two most important are Activity List (AL) and Random Key (RK). 

In a working paper (Debels et al., 2004), a new SR to overcome some of the weaknesses 
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of RK and calls this the Standardised Random Key (SRK), these will be discussed later. 

An AL representation of a schedule is a vector that specifies the order of the activity, 

naaa ,...,, 21 . This can be used in a serial schedule generation scheme naturally or 

can be used to break ties in a parallel schedule generation scheme. A study (Hartmann 

and Kolisch, 2000) found that, heuristics that make use of AL generally perform better 

than those that use RK. This is based on computational evidence and no discussion was 

given as to why this might be, however we discuss some reasons later.  

In RK form, the schedule is represented as a vector with n elements and a 

solution corresponds to a point in Euclidian (n+1)-space, such that the i-th element of 

the vector represents the priority of the i-th activity. nrrr ,...,, 21 . An RK can easily 

be transformed into an AL by sorting the tasks by their priority values. The priority 

values are usually real numbers which means that this representation can be easily 

manipulated mathematically. For example, say we have two good solutions, 1  and 2 , 

drawing a line between these points and bisecting it to get a new point 
2

21
3

 

may be a good place to look for a new solution. 

Priority rule representation is based on a list of priority rules n,...,, 21  

where i is a priority value used to determine the i-th activity to be scheduled. Priority 

Rule representation has been first used by (Dorndorf and Pesch, 1995) and adapted for 

the RCPSP by (Hartmann, 1997) and by (Kolisch, 1996). Some priority rules are shown 

here in Table 2.1. When this representation is used to build a schedule, the schedule 

generation scheme determines the i-th activity to be scheduled using the i-priority rule. 

This is similar to Hyper-heuristic work reviewed later in this chapter. 
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Table 2.1. Sample Priority Rules 

Rule Description 

LFT Latest finish time 

LST Latest start time 

MTS Most total successors 

MSLK Minimum Slack 

WRUP Weighted resource utilization and precedence  

GRPW Greatest rank positional weight 

  

see (Hartmann, 1997) (Ulusoy and Ozdamar, 1989) (Kolisch, 1996)   

 

Debels et al.(2004) discusses the reasons why heuristics using AL form might perform 

better than those using RK form and proposes a new representation, the Standardised 

Random Key (SRK). The benefit of the SRK is it reduces the search space as there are 

less schedule representations thus speeding up the search process. The main 

disadvantage (present in both AL and RK) overcome using this method, is the fact that 

multiple SRs map to the same schedule. There are 4 reasons this happens: 

Scaling of the Euclidean Space (RK only) 

In RK form, scaling points can result in the same schedule. For example 8,6,41 ,

80,60,402 , 4,3,13  would all produce the same schedule, as would many others. 

For this reason there is an infinite to one mapping of RK SRs to schedules. This is 

overcome by replacing the priority values with the activities rank. In our example, 

3,2,1321  

Precedence constraints (RK only) 

In RK form, priority values are not constrained by precedence. This is not a huge 

problem as the schedule generation scheme should account for this; however it is still 

increasing the SR to a single schedules ratio. To eliminate this problem, the SRK values 

of each activity is set to the ranked order of the activities obtained from the schedule 

generation scheme. 

Timing anomalies (RK and AL) 
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In RK and AL form, activities earlier in the AL (or with a higher priority in the RK) can 

be scheduled after than those later in the AL (or those with a lower priority in the RK) 

due to precedence, time or resource constraints. This could result in more than one AL 

or RK mapping to a single schedule. SRK uses a “topological” ordering 

Activities with the same starting times (RK and AL) 

There exists two ALs or RKs that will produce the same schedule due to two activities 

being scheduled at the same time. For a very simple example, say we had two resources 

and two tasks (that can be done by either resource), with no precedence or time 

constraints. The two AL representations of this are: 

2,11  and 1,22  

These represent the same schedule. In SRK format, schedules with the same starting 

time are given the same rank. Thus, these would become 1,1'  

2.2. Solution Evaluation 

When modelling a real-world decision problem as a problem of combinatorial 

optimisation, it is usually assumed that that there is a single underlying objective 

(fitness) measure to allow automatic comparison between candidate solutions. In real 

problems, this objective measure is almost always a function of several underlying sub-

objectives relating to revenue, cost, staff (Thiagarajan and Rajendran, 2005) and 

customer satisfaction, sustainability (Viana and de Sousa, 2000) etc., and solution 

heuristics are often highly tailored to deal with complex problem-specific decision 

rules. In commercial computerised decision support systems a weight is usually 

assigned to each sub-objective to reflect its relative importance, and the objective 
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consists of a weighted sum of sub-objectives (Thiagarajan and Rajendran, 2005). 

Allowing the user to make these choices of relative importance up front often works 

well in practice, since it allows (and empowers) users to make difficult a priori 

decisions of importance as a decision support system is implemented, and potentially to 

engage in “what if?” analysis of different sub-objective weights, when time allows 

(MacCarthy and Wilson, 2001). The Valuated State Space method (Vanesian et al., 

2007) further empowers users by reducing the problem of choosing weights to one of 

ranking solutions. Multiobjective approaches (Deb, 2004) offer an interesting way 

forward that does not require the user to consider weights directly, although the issue of 

effectively comparing many different Pareto optimal solutions have generally prevented 

their application in problem areas where understanding a single solution is already a 

significant challenge for the user (Josephson, 1998). 

2.3. Search Based Solution Methods 

2.3.1. Local Search Methods 

Local search (Aarts and Lenstra, 2003) methods operate on a schedule or schedule 

representation known as the candidate solution. It requires the definition of a 

neighbourhood of a solution that defines solutions in the search space which are 

neighbours. The search is made by moving from one candidate solution to another 

candidate solution from its direct neighbourhood. A neighbourhood defines solutions 

which can be obtained by making (usually a small) change to the current solution. 

Simple moves for combinatorial optimisation problems include 2-opt (where 2 

components of the solution are “swapped” or changed), k-opt (where k components of 
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the solution are changed), insert (where a new component is inserted into the solution) 

and remove (where a component is removed from the solution). The moves are based on 

local information, and continue until a termination condition is met (usually a certain 

number of iterations or a certain amount of CPU time spent). Figure 2.1 shows a simple 

improvement only local search for a minimisation problem. At each iteration a new 

solution is picked from the current solutions neighbourhood if it improves the fitness. 

terminate

s's:sfsf

sNs

shLocalSearc

ssf

sN(s

 until loop

 then )()'( if

)(' choose

do

)(

solution  of fitness  thedefines   )(

solution  of oodneighbourh  thedefines   )

 

Figure 2.1. A Simple Greedy local search 

2.3.2. Fast Local Search 

Fast Local Search (FLS) along with Guided Local Search (GLS) (Tsang and Voudouris, 

1997) has been used to solve British Telecom’s Workforce Scheduling problem which 

is a lot like the one studied in this thesis. The schedule is represented by an activity list 

and the neighbourhood is a defined as swapping two tasks.  

Fast Local Search (Burke, Cowling and Keuthen, 2001) enhances local search 

by associating an activation bit with each position in the permutation. Initially all these 

bits are set to 1 (or “on”). The activation bit is set to 0 (or “off”) if every possible swap 

has been made involving that position without an improvement. When one is found the 

activation bits of the two positions swapped are set back to 1. Only positions with 

activation bits of 1 are considered in the neighbourhood, which has the advantage of 

speeding up the search as repeated bad moves are not tried. 
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2.3.3. Guided Local Search  

Simple local search algorithms like this suffer from settling in local optima – a state 

where no neighbouring solution has a better fitness. The Guided Local Search 

(Voudouris and Tsang, 1999) (GLS) is a method for overcoming this problem. Guided 

Local Search attempts to modify the fitness function to change the direction the search 

heads when a local optima has been found. Features are identified and penalties for 

solutions exhibiting these features are increased when the solution is headed toward 

local optima. It redefines the objective function thusly 
Fi

ii sIpsfsf
,1

)()()('  where 

is the weighting for the GLS, F is the number of features, ip is the penalty value for 

the i-th feature and 1)(sI i  when s exhibits feature i, otherwise 0. 

When the search settles on a local optima the utility of penalising each feature is 

calculated and the feature or features with the largest utility will be penalised by 

increasing their penalty values. This has the effect of changing the fitness function and 

forcing the search to move in another direction away from the local optima. 

2.2.4. Simulated Annealing 

Simulated Annealing (SA) is a local search method that was inspired by the physical 

annealing process studied in statistical annealing (Aarts and Korst, 1989). SA was first 

applied to the RCPSP by Boctor (1996). The process uses an iterative neighbourhood 

generation procedure that follows search directions which improve the fitness function 

value. The difference being, that while exploring the solution space the SA method 

offers the possibility to accept worse solutions. This helps the search have a chance to 

escape local optima.  
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Figure 2.2. Simulated Annealing Pseudo Code 

 Figure 2.2 shows that the probability of accepting a worse solution decreases as the 

temperature (T) decreases and that this probability is also proportional to how bad the 

move is. The temperature is decreased at each iteration which helps diversity at the 

beginning and helps intensify the search toward the end. 

Bouleimen and Lecocq (2003) apply this method to the RCPSP and the 

MRCPSP. For the multimode version, the neighbourhood also includes mutation of an 

activity’s mode. In the survey the heuristic was shown to be competitive and performed 

well ranking about midway of the tested heuristics (Kolisch and Hartmann, 2006). 

2.2.5. Tabu-Search 

Tabu search (Glover, Taillard and De Werra, 1993) is a method to help guide a local 

search process. Modern Tabu search is based on the seminal work by Glover (1986) and 

Hansen (1986). Tabu search works by restricting and guiding the search from the 
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history of the search, exploiting good moves and avoiding bad ones. In order to do this, 

Tabu search stores information about the search.  

The following section will discuss the features of Tabu search with an example of how 

they could be used in a combinatorial problem and how they have been used in 

literature. Next uses of Modifications of the Tabu search framework will be discussed 

and finally its similarity with other meta-heuristics. Pseudo code for a simple Tabu 

search is given in Figure 2.3. 

1. Initialisation 

a. xcurrent - random starting solution is generated 

b. Initialise H (the memory of the seach) 

2. Choice and termination 

a. Generate the subset CandN(xcurrent) := {x’ belongs to N(xcurrent) : the 

move from xcurrent to x’ is not Tabu or it satisfies an aspiration criteria} 

b. Choose xnext from CandN such f(xnext) is minimised (for a minimisation 

problem) 

c. Make the move from xcurrent to xnext Tabu 

d. Terminate is maximum number of iterations has been reached. 

3. Update 

a. Set xcurrent = xnext 

b. If c(xcurrent)>c(xbest) set xbest=xcurrent 

c. Repeat step 2. 

Figure 2.3. Tabu Search Pseudo Code 

Features 

This section discusses the features of Tabu search and illustrates the memories of Tabu 

search and how they can be used. A simple combinatorial optimisation problem is used 

to illustrate the features. Neighbourhoods in Tabu search are generated by performing 

moves on the current solution. This is easily defined as the swapping of two elements in 

an Activity List:  
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Here we can see that the move “Swap 4,5” will the result in the order (5, 2, 4, 1, 3) 

changing to (4, 2, 5, 1, 3). Tabu search uses a memory (or history) of the search. The 

key features of Tabu search will be discussed next. 

Recency 

Recency is a short term memory and records how long moves are Tabu for. This can be 

used to avoid undoing a recent move or stopping the repetition of bad moves.  

For our combinatorial optimisation example, a simple table can be constructed to store 

recency. The following diagram shows how the table will be updated after a swap (with 

a Tabu tenure of 3): 

The above diagram shows that “Swap 2, 5” was used most recent (and has a Tabu 

tenure of 3) and “Swap 1, 4” was used before that (and has a Tabu tenure of 2). After 

the move “Swap 4, 5” has been made, we can see the effects it has had on the Tabu 

memories. The move now has a Tabu tenure of 3 (and the other Tabu tenures have been 

decreased by 1).  

Choosing a Tabu tenure is a problem in itself. These are usually done statically or 

dynamically, or attribute dependant dynamically.  

 Static rules usually define the Tabu tenure as fixed (e.g. t=7) or as a function of 

the problem size (e.g. t=n
½

 – where n is an measure of the problem size). 

1 2 3 4 5 

1    2  

2    3 

3    

4   

5  

Recency 

1 2 3 4 5 

1    1  

2    2 

3    

4  3 

5  

Recency 

Swap 4,5 

4 2 5 1 3 5 2 4 1 3 Swap 4,5 
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Abdulah et. al. (2007) uses simple Tabu search for capacitated examination 

timetabling. The neighbourhoods are very large and so improvement graphs 

(Thompson and Orlin, 1989) are used to first cull bad solutions before the Tabu 

search is used to evaluate the neighbourhood. Recency information is used and 

Tabu tenures of t=2, t=4 and t=6 are experimented with and benchmarked 

against commonly used timetabling problems in (Carter and Laporte, 1996). The 

method provides competitive results and in two of the six instances, the best 

results (in these cases a Tabu tenure of t=2 and t=4 both got the same result). 

From my analysis of the results it is clear to see that the objective value (which 

is to be minimised) is proportional to the Tabu tenure. Work complementary to 

this would be to try Tabu tenure of 1 and 0, as these results suggest the local 

search may be better than Tabu search. Laugna et. al. (1999) did experiments to 

find optimal Tabu tenure. A Tabu tenure of 2n
½
 is found to be optimal for the 

linear ordering problem they studied. 

 Simple dynamic rules pick may pick t randomly each time between two bounds 

tmin and tmax. (e.g. tmin=1 and tmax=5 or tmin=0.9 n
½
 and tmax=1.1 n

½
). Tailard et. al. 

(1991) uses this method to solve the quadratic assignment problem and 

recalculates the Tabu list size every 2tmax iterations. 

 An attribute dependant dynamic Tabu tenure selection, the Tabu tenure is 

determined as in the simple dynamic method above, except that the bounds are 

determined by an attribute of the move (e.g. Quality or influence). This is very 

true for difficult problems such as scheduling (Dell’Amico and Trubian, 1993) 

where Tabu tenures are given relating to the quality of move performed; longer 

Tabu tenures are given to the reverse move of high quality moves. 

Research (Glover and Taillard, 1993) (where Tabu search is applied to a quadratic 

assignment problem), (Taillard, 1991) and (Dell’Amico and Trubian, 1993) show that 

dynamic rules tend to work better than static rules where they use Tabu search to solve.  

Frequency 

Frequency records how frequently a move has been made. This can be used to try those 

moves that have not been used much (to try new search directions). Frequency is a long 



CHAPTER 2. LITERATURE REVIEW  26 

 

term memory and is less often used. Laguna et. al. (1999) and Glover et. al. (1993) use 

the frequency memory as follows: The move evaluation function is adjusted to by a 

weight frequency of the move. They note that the weight is dependent on move type and 

on the neighbourhood, however in the quadratic assignment problem, it is 

approximately proportional to m
½
θ where m is the size of the neighbourhood and θ is 

the standard deviation of the frequencies. 

A outcome of using such an adjustment was that the optimal Tabu list size did not grow 

with the problem size and that dynamic Tabu list sizes became less important. 

Quality 

The Quality of a move indicates how good the move is or how well it performed. This is 

a useful indicator to how well it will perform in future. The Quality of a move in 

(Dell’Amico and Trubian, 1993) is used to determine the Tabu tenure applied in a job 

shop scheduling problem. They use 3 rules to determine how the Tabu tenure is adjusted 

depending on how the move affects the search. If after the move: 

 The objective value is better than the best, the Tabu length is set to 1. 

 The objective value is better than the previous iteration (we are in an improving 

phase) and the Tabu length is greater than a threshold min then decrease the 

Tabu tenure. 

 The objective value is worse than the previous iteration (we are in an improving 

phase) and the Tabu length is greater than a threshold max then increase the 

Tabu tenure. 

min and max are chosen randomly every 800 iterations. A similar method where min 

and max are fixed to solve the 2-dimensional orthogonal packing problem in (Harwig, 

Barnes and Moore, n.d.). This involves packing 2-dimensional orthogonal objects into 

bins as optimally as possible (without wasted space). A solution is first built using a 

greedy method and then an adaptive Tabu search is used to improve it. The adaptive 
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Tabu search works with a dynamic Tabu tenure, adjusting the tenure making it short if 

there is an improvement, and longer if there is not. Ejection chains are also used to 

make infeasible moves feasible. Say, for example putting an item in a bin was 

impossible (because there is no room), an item in the bin maybe moved to another bin to 

make this move possible (in which doing so might need to move another item, thus 

creating an ejection chain). In their words, “an ejection chain is an imbedded 

neighbourhood construction that compounds the neighbourhoods of simple moves to 

create more complex and powerful moves”. The results are compared to literature and 

improve previous results by an average of 25%. 

Influence 

Influence records how a move influenced the search (usually a measure of how much 

change in the solution the move will make). In our combinatorial optimisation, 

influence is easily defined as the number of positions the elements have moved.  In the 

“Swap 4, 5” example, the influence is 2. 

 

If our moves were more complex, for example we could consider all n-opt moves where 

1<n<5, then we would sum the absolute difference in the positions of all the elements. 

For example: 

 

would have an influence of 2+2+4=8. Influence is used in (Laguna, Marti and Campos, 

1999) for intensification and diversification purposes. Moves with high influence can be 

seen as moves which will diversify the solution (as it will move to a region of the search 

3 2 5 1 4 5 2 4 1 3 3-opt (4, 5, 3) 

4 2 5 1 3 5 2 4 1 3 Swap 4,5 
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space far from the current solution) and results with low influence will intensify the 

search. 

Aspiration  

Another feature of Tabu search is Aspiration criteria. Aspiration criteria are introduced 

to allow exceptions where Tabu moves could be considered. The most commonly used 

aspiration criteria is to remove the Tabu restriction if a Tabu move yields a better 

solution than the best found so far (used by for example (Dell’Amico and Trubian, 

1993), (Glover and Taillard, 1993)). This can be useful when a recent move has made a 

Tabu move desirable again. Aspiration criteria are not always used. 

Intensification and Diversification 

The features described so far have shown how TS intensifies the search, using 

aspiration criteria and Tabu restrictions to guide the search to good solutions and avoid 

undoing good moves respectively. Good search strategies need diversification methods 

too. This can be done by using the frequency and influence memories of Tabu search to 

try moves not yet tried or those which will change the solution greatly. Much work has 

been done on Tabu search but rarely are all the features used. This may be as the some 

features maybe problem dependant and thus not applicable or no advantage would be 

gained by using them. 

A linear ordering problem is solved in Laguna et. al. (1999) using a Tabu-search with 

intensification and diversification strategies. Diversification and intensification are done 

in two ways. Firstly a Tabu search is used and switches between intensification and 

diversification phases. During an intensification phase, moves are selected with a 

probability proportional to its influence. During a diversification phase, the Tabu search 

uses the frequency memory to make moves that are likely to explore areas of the search 

space previously unexplored. Secondly, long term intensification is achieved using path 
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relinking (Glover, 1998) (at the end of an intensification stage, path relinking is used in 

the direction of other elite solutions found so far in the attempt to find better solutions) 

and long term diversification is achieved by trying to construct solutions that are “far 

away” from the elite set of solutions found so far. The long term methods are used when 

the Tabu search converges. The method is used as stated, but also variations where long 

term intensification/long term diversification/long term intensification and 

diversification are not used. Experiments are done to good values of Tabu tenure and 

length of the intensification and diversification phases. These are found to be 2n
½
, n and 

0.5n respectively (where n is the problem size). Using all the diversification and 

intensification methods was shown to be the best method when it was compared to state 

of the art methods used in Chanas and Kobylanski (1996) and Becker (1967). It produce 

the fittest results and although it was not the fastest (and not the slowest), when all the 

methods are given the same amount of CPU time (0.5 seconds, 1 second, 20 

seconds…), it still produced the fittest results. 

Hybrid Tabu search Methods 

In Burke, De Causmaecker and Berghe (1999) they attempt to tackle a nurse rostering 

problem in Belgian hospitals with a hybrid Tabu search. This problem is highly 

constrained and usually solved manually. It involves assigning duties to people with 

different qualifications, regulations and preferences. The approach they use is a hybrid 

approach using heuristics to create and repair schedules. The Tabu search performs the 

main search processes (using an accent/decent search – accepting both positive and 

negative changes) with a heuristics to try and fill in gaps (e.g., scheduling of weekends 

is done ignoring some constraints – specific details of these heuristics are not given). 

The Tabu search only uses the first Tabu memory – recency and the Tabu list length is 

not revealed. The results are compared to those produced by hand and variations of their 
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search method and a steepest descent algorithm. They show that their heuristic is 

superior to the other methods and (when compared to manually scheduling the 

workforce) faster. 

Verhoeven (1998) uses Tabu search to solve the resource constrained scheduling 

problem. Only recency is used and a simple neighbourhood function is defined. The 

heuristic also implements a simple restart method, which upon finding no improvements 

for a certain number of iterations, restarts from the best solution found so far. The 

results were competitive. No comparison between using the method with and without 

the restart was made, so its effectiveness can not be derived. 

Tabu search Hyper-heuristics 

Burke et al. use Tabu search again, but this time as a hyper-heuristic (Burke, Kendall 

and Soubeiga, 2003) to show that a Tabu search based hyper-heuristic can be used to 

solve different types of scheduling problem with good results. In their hyper-heuristic, 

the Tabu search is used to Tabu a low level heuristic when it performs badly. 

Associated with each low level heuristic is a rank and the rank is adjusted depending on 

how it performs. At each iteration, out of the non Tabu low level heuristics it selects the 

one with the highest rank. It actions the low level heuristic and, 

 If it improves, its rank is increased 

 If it makes no change, its rank is decreased and it is made Tabu 

 If it makes worse the solution, its rank is decreased and the Tabu list emptied 

Six low level heuristics are used which are 3 variations of a “swap” move and “move” 

move where which slots are chosen by different heuristics. The technique is applied to 

nurse rostering and university timetabling and compared to a Genetic Algorithm. For 

the rostering, the hyper-heuristic outperformed Genetic Algorithm in some criteria but 

not others; however the hyper-heuristic results were still competitive. In the time tabling 
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experiments, the Tabu search did very well and in the majority of instances, beat or 

equalled the Genetic Algorithm. Perhaps  

The is a choice function like hyper heuristic, and in work extending this (Burke 

and Soubeiga, 2003), they compare it to a Choice Function hyper heuristic and use the 

methods to solve the nurse scheduling problems Different Tabu tenures and negative 

reinforcement learning methods for adjusting the rank of the low level heuristics are 

experimented with (Tabu Tenures or 2, 3 or 4 and negative reinforcement learning 

values of 2, 3 or 4). The resulting hyperheuristic was able to produce similar quality 

results with half the CPU time. 

(Kendall and Mohd Hussin, 2005) use a method similar to the Tabu search 

hyper-heuristics described above. Instead of using a choice function or reinforcement 

learning mechanism to choose the next low level heuristic to apply at every iteration, 

every low level heuristic (that is not Tabu) is considered and the best improvement only 

solution is accepted. They believe that “by allowing the low level heuristics to compete 

at each iteration and selecting the heuristic with the best performance will help to 

balance intensification and diversification”. They use their method on an examination 

timetabling problem (with standard datasets used in literature). Tabu durations between 

0 and 4 (using around 13 low level heuristics) are tested for 10 minute runs. The Tabu 

duration of 2 is shown to be optimal and a 4 hour long run is done to compare 

improvement over a long period. The results are compared to literature and shown to be 

competitive, some of the runs coming very close to the best in literature, however some 

deviate by a large amount. The longer runs produced results approx 4-14% fitter than 

the short run. Such a varied range could be a result of incorrect low level heuristics – 

there are the correct ones to deal with some instances, but not others. In (Kendall and 

Hussin, 2005) they apply the above method to a timetabling problem in the MARA 
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University of Technology. In addition to the 0-4 Tabu tenure lengths they use a dynamic 

Tabu tenure length that is picked at random between 0-4 at every iteration. It is shown 

that the results are at least 80% better than manually created ones. 

2.2.6. Variable Neighbourhood Search 

Variable Neighbourhood Search (Mladenovic and Hansen, 1997) (VNS) is based on the 

idea of systematically changing the neighbourhood of a local search algorithm. Variable 

Neighbourhood Search enhances local search using a variety of neighbourhoods to 

“shake” the search into a new position after it reaches a local optimum. Several variants 

of VNS exist as extensions to the VNS framework (Hansen and Mladenovic, 2001) 

which have been shown to work well on various optimization problems. Variable 

neighbourhood search is relatively easy to implement. The shake moves can simply be 

“chained” random local search moves as in (Lin, 1965) but if this is not adequate, new 

shake moves may have to be implemented. 

Reduced Variable Neighbourhood search (rVNS) (Hansen and Mladenovic, 

2001) is an attempt to improve the speed of variable neighbourhood search (with the 

possibility of a worse solution). Usually, the most time consuming part of VNS is the 

local search. rVNS picks solutions randomly from neighbourhoods which provide 

progressively larger moves. rVNS is targeted at large problems where computational 

time is more important than the quality of the result. In combinatorial optimisation 

problems, local search moves like “swap two elements” are frequently used, and 

(Fleszar and Hindi, 2004) for RCPSP as well as others such as (Garcia et al., 2006) 

apply VNS by having the neighbourhoods make an increasing number of consecutive 

local search moves. Sevkli et. al. (2006) however defines only two neighbourhoods for 
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VNS applied to the Job Shop Scheduling Problem, a swap move and an insert move, 

which proves to be effective. 

 Interest in VNS is growing and a recent survey by Hansen et. al. (Hansen, 

Mladenović and Moreno Pérez, 2008) states "Interest in VNS is clearly increasing. This 

is evidenced by the increasing number of papers on that topic (just a few ten years ago, 

about a dozen five years ago, and about 50 in 2007”. 

2.4. Population Based Solution Methods 

2.4.1. Genetic Algorithms 

Since their introduction by Bremermann (1958) and Fraser (1957) and the seminal work 

done by Holland (1975), genetic algorithms (GAs) have been developed extensively to 

tackle problems including the travelling salesman problem (for example (Whitley, 

Starkweather and Shaner, 1991)), bin packing problems (for example (Falkenauer, 

1996)) and scheduling problems (for example (Terashima-Marin, Ross and Valenzuela-

Rendon, 1999)). A Genetic Algorithm tries to evolve a population to a higher level of 

fitness by a process analogous to evolution in nature. With GAs, the genotype of a 

problem to be solved are stored in a chromosome. Initially, a population is generated 

either randomly or with some knowledge (for example, for the RCPSP problem, 

random, precedence valid, chromosomes could be generated (Hartmann, 1997)). 

At each generation (iteration) of the GA, the entire population is evaluated using 

the schedule evaluation function. A new population is created from the existing 

population using selection, crossover and mutation. The new population is then 
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recombined with the old population using a replacement strategy. The process is 

repeated until a termination condition which is usually a certain number of generations. 

Crossover 

Crossover takes two parent chromosomes and combines them to create one or more 

children. There are several crossover operators (Hartmann, 1997). The three generic 

popular crossover operators are described here. 

Uniform Crossover - This is usually used to create two children. Each gene of the first 

(second) child is taken from the father (mother) with probability p, otherwise it comes 

from the mother.  

Mother a b c d e f g 

Random 0.1 0.5 0.3 0.8 0.3 0.4 0.9 

Father A B C D E F G 

 

With a p=0.4 

Daughter A b C d E f g 

Random 0.1 0.5 0.3 0.8 0.3 0.4 0.9 

Son a B c D e F G 

 

Changing the value of p changes the magnitude of effect the crossover has. Low values 

means that the son and daughter are similar to the mother and father and values close to 

0.5 mean they are more of a combination. This is more suited to problems which do not 

have a clear structure in chromosome, for example Random Key or Priority Rule 

representations, or the representation for the knapsack problem used by (Chu and 

Beasley (1998). 

One Point Crossover – One point crossover again creates two offspring. The mother 

and father are both split at the same random point, and then the different sections 

swapped to make two children. 
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Mother a b c d e f g 

        

Father A B C D E F G 

 

With a split after the 3
rd

 gene: 

Daughter a b c D E F G 

        

Son A B C d e f g 

 

This method keeps chains of genes together so is good for representations where order 

of the genes has an effect on solution quality. 

Two Point Crossover – Two point crossover is similar to one point except that there 

are two points where the chromosome is split: 

Mother a b c d e f g 

        

Father A B C D E F G 

 

With a split after the 3
rd

 and 5
th
 gene: 

Daughter a b c D E f g 

        

Son A B C d e F G 

 

In a study done by Hartman (1997) on the RCPSP, the two point crossover was shown 

to be the most effective, with uniform and one-point coming second and third. Hartman 

notes that “The two-point crossover operator appears to be capable of inheriting 

building blocks that contributed to the parents’ fitness (for much larger projects, even 

more than two cuts may probably be advisable).” indicating that a k-point crossover 

might be an interesting area of research as this allows more “blocks” to be considered. 
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Mutation 

To help diversification, GAs have a fixed, small probability of mutation ( mP ) of perhaps 

0.01 or less. During mutation, each “bit” of the chromosome has mP  probability of 

being changed. With RK chromosomes, this could simply mean generating a new 

random key number for that bit. In a permutation based AL chromosome this becomes 

more tricky as it needs to keep a valid chromosome. This is usually overcome by mP  

becoming the probability of swapping the activity with the one to the right of it. For all 

positions 1,...,1 Ji   iI  and 1iI  are swapped with probability mP . 

Lower mutation rates can lead to genetic drift (unless using replacement methods that 

favour diverse methods). This is where all the individuals’ genes become the same and 

converge on an optima (not necessarily the global optima). 

Selection (Replacement Strategies) 

When the new pool of offspring has been created, the original population and the new 

offspring need to be combined and reduced to keep the population size fixed. 

Full Replacement – the population is replaced by offspring and the parents discarded.  

Ranked – the parent and the offspring population are combined and ranked by their 

fitness and we keep the best ones. 

Proportional Selection – this is analogous to a roulette wheel, where all the population 

has a section of the wheel and the size of that section is proportional to the deviation 

from the best individual. The wheel is spun and the one it lands on is removed from the 

population. This is repeated until the population is at its correct size. More formally, 

)(IF  is the fitness of individual I  and P is our population. If )|)(min( PIIffbest , 
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the probability that an individual will die (and thus will not be moved to the next 

generation) is defined by

PI best

best
death

fIf

fIf
Ip

'

2

2

)1)'((

)1)((
)( . 

2-Tournament – two different individuals are chosen at random and the weaker of the 

two is removed until the population is back to normal size. 

3-Tournament – three different individuals are chosen at random and the weakest of 

the three is removed until the population is back to normal size. 

Elitism – elitism keeps a number of the best solutions. This is to make sure the 

population keeps good results and can be combined with another method of 

replacement. 

The best parameters 

Hartman experimentally tests the three main types of GA different mutation rates (0.01, 

0.05, 0.10), selection methods and different crossover operators to see which 

combination works the best (Hartmann, 1997). He found that Permutation GAs using 

ranked selection, two-point crossover and a mutation rate of 0.05 worked best. The 

“best parameters” of course are problem dependant, which self adapting GAs try to 

overcome. 

Self adapting Genetic Algorithms 

Self adapting Genetic Algorithms are those which tune their parameters automatically to 

achieve better results for a given problem. The idea was first developed by Degris et al. 

(1999) (though not applied to the RCPSP). Hartman (2002) first developed this method 

for the RCPSP and used a GA to optimise the order of the activities scheduled. He also 

added a gene which represented a bit which if set to 1, a serial schedule generation 

scheme is used, otherwise a parallel schedule generation scheme was used and the 
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results are competitive with other state-of-the-art heuristics evaluated by Kolish and 

Hartmann (2006).  

 

Figure 2.4. Average percentage of the population using Serial schedule generation scheme over 

generations (created from the data in (Hartmann, 2002)) 

Interesting to note were the statistics of the schedule generation scheme usage presented 

as a graph in Figure 2.4. From this graph we can see that with scarcer resources (lower 

values of RS) the parallel schedule generation scheme is favoured over the serial and 

with more resources available the serial schedule generation scheme is favourable. It is 

interesting to note that the only the RS=0.7 favours serial schedule generation scheme 

when it has been suggested in literature that serial is superior to parallel. This would 

imply that most of the literature has used problems with high resource availability. 

Another method is adaptive crossover and mutation rates. With this method, the 

crossover and mutation rates adapt depending on the performance of the GA. 

 When there is no improvement in the average fitness over three generations, the 

mutation rate and crossover rate are modified as follows: 

New Mutation Rate = (Old Mutation Rate + 1) / 2 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 5 10 15 20 25 30 35 40 45 50 
Generation 

P
e
rc

e
n

ta
g

e
 

RS=0.3 

RS=0.5 

RS=0.7 



CHAPTER 2. LITERATURE REVIEW  39 

 

New Crossover Rate = Old Crossover Rate / 2 

If the average fitness rate over the last 3 generations has improved, they are modified as 

follows: 

New Mutation Rate = Old Mutation Rate / 2 

New Crossover Rate = (Old Crossover Rate + 1) / 2 

This helps intensification and also stops the genetic drift by increasing the crossover 

rate when little improvements are found. This does not usually perform as well as fixed 

crossover and mutation rates. Having said this, finding the optimal crossover and 

mutation rates is hard and usually problem specific and having adaptive rates eliminates 

this time consuming process. 

2.4.2. Scatter Search 

Laguna et. al. (1999) discuses the basic scatter search heuristic and shows its application 

a 0-1 knapsack problem. To apply scatter search to an RCPSP one would need to use a 

RK. Like a GA, a scatter search works on a population (known as the reference set) but 

where a GA uses a larger populations, SS works best with a population of around 10 

(the population size is known as b). The reference set is split into two, a good set and a 

diverse set. There are 5 basic functions that need defining to implement a scatter search. 

Diversification Generation Method - This function is like the initial population 

generation of a GA. Its function is to create a diverse range of trial solutions from an 

arbitrary solution (or seed solution). In the 0-1 knapsack problem, random bits are used 

and then the complement of these is also used. 

Improvement Method - This function should improve an individual. It also should be 

able to make invalid individuals valid. For example, in the knapsack problem, if the 
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knapsack was too full, items were removed one by one and if the knapsack wasn’t full, 

items were added one by one. 

Reference Set Update Method – this method builds and maintains the reference set. 

Solutions maybe considered good either because of their quality or their diversity. This 

is analogous to selection in GAs. In the 0-1 knapsack problem, the best solutions by 

their fitness are put in the best set. Diverse solutions are those defined as having as 

many bits set different to the best, and the most diverse are put in the diverse set. These 

are combined to create a new reference set. 

Subset Generation Method – This method creates subsets of the reference set, which 

will be used in the solution combination method to make new solutions. Typically, all 

2-element subsets of the reference set are picked. Then 3 element subsets are generated 

taking all the 2 element subsets and adding the next best solution (measured by the 

fitness value). 4 element subsets are then created in the same way and finally subsets 

consisting of the I best solutions for I = 5 to b. 

Solution Combination Method – This method combines the elements in the subsets 

generated in the previous step to create a new solution(s). In the 0-1 knapsack problem, 

the solutions to be combined are combined with a weighted sum and then rounded to the 

nearest whole number.  

For example p1=0,1,1,0, p2=1,1,0,0, p3=0,1,1,1, f(p1)=3, f(p2)=5, f(p3)=2 

The new solution would be  

p4=(0*3+1*5+0*2)/10, (1*3+1*5+1*2)/10, (1*3+0*5+1*2)/10, (0*3+0*5+1*2)/10 

p4=0.1, 1, 0.5, 0.2 = 0, 1, 1, 0  

Permutation based problems could use crossover operators as in the GA. 

The following pseudo code shows how the heuristic works. 

1. Initially use the Diversification Generation Method to generate a pool of 

solutions. 
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2. Use the Improvement Method to improve these solutions. 

3. Use the Reference Set Update Method to sort these solutions. 

4. Use the Subset Generation Method to create subsets of solutions. 

5. Use the Solution Combination Method to create new solutions from the subsets. 

6. Use the Improvement Method to improve the new solutions. 

7. While the stopping criteria are not met, go to step 3. 

2.4.3. Scatter Search/Electromagnetism Hybrid 

The SS/EM hybrid (Debels et al., 2006) uses the scatter search hyper-heuristic with a 

few modifications. First of all it uses the Standardised Random Key representation to 

reduce the search space. The Solution combination method is modified for 

electromagnetism. The solution generation method creates pairs of solution for the 

“good” set, and pairs from the “good” and the “diverse” set. Solutions sets from the 

“good” set are combined using 2-point crossover as in GAs and solutions sets 

containing a solution from the “good” and one from the “diverse” are combined using 

EM. 

In EM, a charge is associated with each solution. A fit solution will produce a 

positive attracting charge and an unfit solution will produce a negative repelling charge. 

In the SS/EM hybrid, only one force is used (this was found to be the best way 

experimentally). An attracting force is applied to the “diverse” solution from the “good” 

solution in an attempt to pull it into an area of the solution space that is fitter. 

This method performs extremely well for the RCPSP problem and it should be noted 

that this method consistently came top three in the experimental investigation (Kolisch 

and Hartmann, 2006). 
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2.4.4. Sawing Evolutionary Algorithms 

“SAWing” Evolutionary Algorithms are the evolutionary equivalent of Guided Local 

Search. “SAWing” or Stepwise Adaptation of Weights, takes an existing EA with a 

weighted sum fitness function alters the weights every n chromosome evaluations 

(usually n is the population size.). When applied to genetic programming for data 

mining (Eggermont, Eiben and van Hemert, 1999) mixed results were reported. 

SAWing EAs were then used to solve Constraint Satisfaction Problems (CSP) (Eiben 

and van Hemert, 2001) with more consistent results. Stepwise Adaptation of Weights 

were used in conjugation with standard EAs and compared results to the standard EAs. 

A weight was given to each constraint of the CSP and these were adjusted by the SAW 

EAs in response to the search process. This leads to worse results in the short term but 

is beneficial in the long run.  

 Precision SAW is introduced in (Eggermont and van Hemert, 2000) in an 

attempt to improve performance on problems with real valued variables (CSP use 1/0 

for true/false) when applied to symbolic regression. Here the weights of are adapted in 

response to the error in an attempt to speed up the process and indeed this was the case. 

This work is further refined in (Eggermont and van Hemert, 2001).  

2.5. Hyper Heuristics 

Most meta-heuristics have to be tailored to a specific problem and are too problem 

specific or require a lot of knowledge and this can often be expensive and time 

consuming especially when trying to find the right parameters for these meta-heuristics. 

Hyper-heuristics raise the level of generality to a heuristic which allows it to be applied 

to many different optimisation tasks with little modification. Broadly speaking, the term 
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hyper-heuristics describes the process of (meta-)heuristics that choose (low level) 

(meta-)heuristics to the problem in hand.  

 

Figure 2.5. Hyper Heuristic Framework 

The term hyper-heuristics was first coined in 1997 by Denzinger, Fuchs and Fuchs 

(1997) as a protocol that chooses and combines several AI methods. The term “hyper-

heuristic” was reintroduced by Cowling et.al (2001) and is described as a heuristic 

which “… is able to choose between low-level heuristics without the need to use 

domain knowledge, by using performance indicators which are not specific to the 

problem each time a low-level heuristic is called, in order to decide which heuristic to 

use at a particular point in the search space.”  

Evolutionary approaches to scheduling would generally involve populations of 

schedules which are to be evolved over time into better, fitter schedules. A hyper-

heuristic evolutionary approach to scheduling would use a population of low level 

heuristics and it is these which would evolve.  

Hyper Heuristic 

LLH1 LLH2 LLH3 LLH4 LLHn 

Problem 

… 
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2.5.1. Evolving heuristic choice 

Before the term hyper-heuristics was used there was work done in literature with the 

same principal idea. A genetic algorithm was developed which has hyper-heuristic 

characteristics to solve an open shop scheduling problem (OSSP) (Fang, Ross and 

Corne, 1994). They test three methods. OSSP involves a collection of machines and a 

collection of jobs and each job is comprised of operations. An operation is an ordered 

pair (a, b) in which a is the machine on which the operation must be performed, and b is 

the time it will take to process this operation on machine a. A feasible OSSP schedule 

assigns a start time to each operation, satisfying the constraints that a machine can only 

do one operation at once and that two or more operations of the same job cannot be 

processed at the same time.  

They develop four GAs, the most significant of which is the fourth one which 

they call “evolving heuristic choice”. It uses a chromosome double the length of the 

number of jobs, where the chromosome “abcd…” tells the schedule generation scheme 

to try to use the a-th heuristic to choose an operation from the b-th unscheduled job and 

insert it as early as possible, then use the c-th heuristic to choose an operation from the 

d-th unscheduled job and insert it as early as possible…, etc. In this heuristic the hyper 

heuristic is the GA and the low level heuristics are the operation choosing heuristics. 

This could be taken further to have another heuristic choose which job to pick as well. 

2.5.2. Choice Function 

The choice function (Cowling, Kendall and Soubeiga, 2001) is a method for choosing 

which low level heuristic to apply. Which LLH to use is determined by a weighted sum 

of various performance indicators of each LLH. The choice function is as follows: 

)(hδf),h(hβf)(hαf)f(h jjkjj 321  
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where )(1 jhf  is a measure of the improvement that was gained last time the heuristic j 

was used and maybe negative if the solution quality decreased. This helps favour LLH’s 

that are improving the solution. 

),(2 jk hhf  is a measure of the improvement that was gained last time the heuristic j was 

used after the heuristic k and again may also be negative if the solution quality 

decreased. 

)(3 jhf  is the amount of time since the heuristic j was applied last. This helps when the 

search settles on a local optima and improvements are not being found. It could be that a 

heuristic that has not been applied for a while may help, but because it has only ever 

before been found to produce bad results, it would not normally be applied. This also 

can help with diversification, as sometimes making a bad move will help in the long 

run. 

Cowling, Kendall and Soubeiga (2001) use the choice function with a local 

search and applied to a sales summit scheduling problem. They use 4 different methods 

for choosing the LLH depending on the choice function. Firstly, “StraightChoice” 

simply chooses the LLH with the highest value of f. Secondly, “RankedChoice” ranks 

the LLHs according to their Choice Function and evaluates a proportion of the best and 

apply the one which yields the best result. Thirdly, “RouletteChoice” uses a roulette 

style selection with the chances of each proportional to their relative Choice Function 

values. Fourthly, “DeCompChoice” tries (up to four) LLHs which maximise f1, f2, f3 

and F and then chooses the one which yields the greatest improvement. 

For a benchmark to test these against, they use some other methods for picking 

the LLH. “SimpleRandom” simply picks an LLH at random each iteration. 

“RandomDecent” which picks an LLH and applies it until no further improvements can 

be made, then chooses another one and repeats the process. “RandomPermDecent” is 
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similar to “RandomDecent” except the permutation of LLHs is already determined. 

“Greedy” simply evaluates the improvement for using each heuristic at each iteration 

and then chooses the best. Their experimental results show that all the hyper heuristics 

beat the normal heuristics and that DeCompChoice provides the best results of the 

tested high level heuristics with over a 9% improvement on the worst hyper heuristic. 

These methods have been applied to personnel scheduling (Cowling, Kendall and 

Soubeiga, 2001) (Cowling, Kendall and Soubeiga, 2002) with similar results. 

2.5.3. Well known Meta-Heuristics as High Level Heuristics 

A lot of work recently has been done which uses well known meta-heuristics to 

decide which low level heuristic to use or whether or not to accept a solution. For 

example, (Bai and Kendall, 2003) uses simulated annealing to determine whether or not 

to accept a new solution. At each iteration a new candidate solution is generated by 

applying a low level heuristic. The low level heuristic used is determined by the choice 

function and then simulated annealing is used to decide if we should keep the new 

solution. They apply the hyper heuristic to a shelf space allocation problem (an 

extension of the multi-knapsack problem (Yang, 2001)) and it performs better the other 

hyper heuristics they tested, however they did not benchmark it against ordinary meta-

heuristics so a comparison cannot be made. More recently (Burke et al., 2008) provided 

a study of simulated annealing based hyperheuristics with different applications. 

Özcan et al. (2009) compare the Choice Function Simulated Annealing hyper 

heuristic to a new acceptance method called “Late Acceptance”. This deffers the 

acceptance of a local move until k steps after it has been made. This allows they 

hyperheuristic to see what long term effects the application of a low level heuristic has. 
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In all of the test cases Late Acceptance performed better except in two of the problems 

where the methods were statistically equivalent. 

Ayob (2003) uses a Monte Carlo based hyperheuristic to solve a Component 

placement sequencing for multi head placement optimisation problem. Like the 

Simulated Annealing based hyper heuristic above, the choice function is used to 

determine which low level heuristic to use then the Monte Carlo algorithm is used to 

determine whether or not to accept the new solution. Again the benchmarks in this 

paper only test very similar or simple hyper-heuristics against theirs and this paper 

shows that theirs is the superior.  

2.5.4. Genetic Algorithm based Hyper-heuristics 

Genetic Algorithm based hyper-heuristic developed in (Cowling, Kendall, and Han, 

2002) called hyper-GA evolves a chromosome (usually a small length of about 10-20 

genes) which consists of a set of genes which are numbers which in turn related to 

which low level heuristic to apply. This order is evolved over generations using normal 

GA methods including mutation and a two-point crossover. The best sequence is 

applied at each generation and the sequence will evolve depending on the state of the 

problem. They apply their method to a trainer scheduling problem and compare its 

results with other methods including a mimetic heuristic (a GA/Local search hybrid 

heuristic) and show that it outperforms these other methods. Like with any other hyper-

heuristic, this method can be applied to any problem given the right set of low level 

heuristics. 

This is developed further  to include a variable length chromosome which they 

call ALChypher-GA (Han, Kendall and Cowling, 2002). In this hyperheuristic the same 

principles as the hyper-GA apply however the length of the chromosome can change or 
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“adapt” to suit the problem in hand. The ALChypher-GA uses specially designed 

crossover and mutation operators to insert or remove groups of genes. They also 

implement a penalty function to penalise the length of the chromosome where the 

increased length of the chromosome increases the run times due to additional 

calculation and evaluation required by these longer chromosomes. This is defined by 

(Length of chromosome * CPU time to evaluate chromosome) / (Improvement in 

objective function). 

As performance of individual genes of the chromosome can be evaluated, a 

clever crossover operator is used which swaps the best parts of each chromosome over. 

For example, if in parent one, genes 4-7 make the most improvement, and in parent 2 

genes 8-10 make the most improvement, these sets of genes will be swapped. Here you 

can see how the length of the chromosome may change. The hyper-heuristic uses two 

new crossover operators, removing-worst and inserting-good. As the names suggest, 

these remove bad genes that make little or negative improvement, and insert good genes 

that make good improvements respectively. 

From their experimental results we see that the chromosome length changes 

quite vastly in the first 25 generations while it is finding the optimal length. We can see 

that this method does work as with the two of problems they illustrate different average 

lengths of chromosome are settled upon. This can be advantageous when the problems 

are of different sizes or unknown a priori. 

Guided Operators for the hyper-GA are introduced in (Han and Kendall, 2003) 

which aim to aid the hyper-GA in finding the optimal length for the chromosome and to 

do this more effectively and efficiently. There are two ways it does this; if the 

chromosome is longer than the average length of the chromosomes in the population, 

the worst genes are removed during mutation. If the average length is less than the 
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average, good genes will be inserted. Experimental results show that the guided 

adaptive length chromosome hyper-GA performs better than the adaptive length 

chromosome hyper-GA. This new method also decreases CPU time. In all these papers, 

no comparison is made to meta-heuristics. 

The Tabu assisted hyper-GA (hyper-TGA) (Han and Kendall, 2003) improves 

the hyper-GA by using Tabu methods. The problem with the hyper-GA is that 

determining the good and bad genes is computationally expensive. Instead of removing 

bad or poorly performing genes, they are made Tabu for a certain period of time. The 

idea is to Tabu genes which do not affect the objective function. For example if a gene 

4’s low level heuristic was applied and no (positive) change was observed, gene 4 

would be made Tabu for n generations. At each generation, when a gene is tabooed the 

low level it is skipped when applying the chromosome and its tenure (the remaining 

Tabu time) is decreased by 1. An optimal Tabu length of five was found experimentally. 

The pseudo code for the hyper-TGA is outlined here: 

1. Generate an initial solution S (randomly or greedily) 

2. Generate P initial chromosomes; initialise the Tabu tenure tjk (j is the position in 

chromosome k) for each gene to 0. Store these chromosomes in a pool. 

3. For each chromosome k (0<=k<=P) 

a. Apply the low-level heuristic to S according to the order of the 

chromosome when tjk=0 

b. Record the new solution Sk 

c. Record the change in the objective function each low level heuristic makes 

Cj 

d. If tjk>0 then tjk = tjk -1 

e. If Cj =0 then tjk =n (n is the Tabu length) 

4. Compare each Sk to S: if Sk>S then S= Sk 

5. Apply crossover and mutation 

6. Add the new chromosomes and the 10 best chromosomes from the current pool to 

a new pool. If the stopping criteria are not met, go to step 3. 
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From their experimental results and comparing it to those of their previous work, the 

hyper-TGA is found to be an improvement on the hyper-GA not only in computational 

time but also it produces better solutions. Once again, this method has not been 

compared with any meta-heuristics and so its performance cannot be compared. 

2.5.5 Adaptive Memory Programming 

Various works have analysed similarities and differences of optimisation heuristics. 

(Taillard et al., 2001) describes recent developments in some of these heuristics and 

present a unified approach called Adaptive Memory Programming (AMP). The method 

tries to unify meta-heuristics with memory, specifically Tabu search, Genetic 

Algorithms, Ant Colony Optimisation and Scatter Search. All these methods have the 

same characteristics: 

1. A set of solutions or a special data structure that aggregates the particularities of 

the solutions produced by the search is memorized 

2. A provisional solution is constructed using the data in memory 

3. The provisional solution is improved using local search algorithms or a more 

sophisticated meta-heuristic. 

4. The new solution is included in the memory or is used to update the data 

structure that memorizes the search history. 

The paper then goes on to explain how several hybrid methods can be fit into the AMP 

methodology and in turn shows that metaheuristics are evolving toward a unified 

problem solving approach. It also notes advantages of the AMP methodology: 

 AMP is highly distributable. As the local search takes the bulk of the time, this 

can be parallelised with each processor working on a different provisional 

solution.  
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 AMP is also able to work with dynamic problems as well as it is able to adapt to 

modified data.  

 AMP can offer a set of high quality solutions for the user to choose from. 

 

AMP has similarities with the hyperheuristic framework. Hyperheuristics, in theory, can 

be used to solve any problem given the right set of heuristics. An “AMP” method can be 

used to solve a problem give heuristics to construct provisional solutions and use local 

search on them. In fact, a hyperheuristic can be expressed in the AMP format. Step 2 

would create a new solution using a low level heuristic chosen using the data in 

memory. Step 3 would be ignored (or incorporated into the low level heuristic) 

Meta/hyper heuristics and other methods of using existing heuristics to create 

better one, seems to be a very interesting area of research. Object-Orientated 

Programming and Design revolutionised programming by allowing reuse of code. These 

methods are doing the same for optimisation. 

2.5.6 No Free Lunch Theorem 

The no free lunch theorem (Wolpert and Macready, 1997) is informally described  as 

stating that “any two algorithms are equivalent when their performance is averaged 

across all possible problems” (Wolpert and Macready, 2005). That is to say any two 

algorithms, when applied to all problems, will perform equally as bad or good as each 

other irrespective of the evaluation method and hence applying a fixed algorithm to 

each a problem is worse than matching a tailored solution to the problem.  

 Since hyperheuristics use a tailored set of low level heuristics to solve a 

problem, it may be argued that they may perform better (given the right set of low level 

heuristics for the problem.) There has been a variety of results that have refined the no 
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free lunch theorem (see (Whitley and Watson, 2005) for a comprehensive review). Poli 

and Graff (2009) use the connection between function closure and the NFL being if-

and-only-if from (Schumacher, Vose and Whitley, 2001) to prove that the no free lunch 

theorem does not automatically apply to hyperheuristics. They make two key 

conclusions: “... in practice, when a hyper-heuristic approach is applied to finding a 

solver for a specific problem, there can be a free lunch” and “... in practice, when a 

hyper-heuristic approach is applied to finding a solver for a not-too-large set of 

problems, there will likely be a free lunch”. 

2.6. Enhancement Methods 

There are some methods in literature which work with an existing optimisation method 

to improve the performance. Most of the metaheuristics described so far, take a standard 

local search and modify it in a problem specific way to help it escape local minima. 

These methods usually require knowledge of the problem to make them effective 

however not all of them do. For example, Guided Local Search requires a user to define 

features of problems which requires a good understanding of the problem. Sawing EAs 

on the other hand modify the penalty/fitness function which has the advantage that you 

don’t need to understand the problem, however, this can only enhance an existing EA. 

Forward-Backward Improvement (FBI) is a problem specific improvement 

algorithm. The idea was developed by (Valls, Ballestin and Quintanilla, 2003) and 

(Tormos and Lova, 2001) independently. Valls calls it (double) justification and Tormos 

and Lova call their method a forward backward improvement (FBI) pass. Valls et al. 

method is simple and they demonstrate that it improves the results of 15 out of the 22 

state of the art heuristics they tested (Valls, Ballestin and Quintanilla, 2003).  An active 
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schedule (see (Sprecher, Kolisch and Drexl, 1995) for definitions of active schedules) is 

justified to the right. That is, all activities, starting with the latest end times, are 

scheduled as late as possible, without violating resource, precedence or time constraints. 

Similarly the schedule is left justified, in which all activities, starting with the earliest 

start times, are scheduled as early as possible, without breaking and resource, 

precedence or time constraints. This results in what Valls calls a double justified 

schedule. 

In (Tormos and Lova, 2003) they only apply FBI if the fitness is already better 

than the average fitness of the population before FBI. This helps prevent processing that 

is most likely unnecessary. In (Tormos and Lova, 2003) the process is refined further so 

that a backward-forward pass can be applied as well as a forward-backward pass. This 

can also be applied more than once depending on the quality of the schedule. 

Forward-backward improvement can be applied to any solution and it will never 

make a solution worse (in terms of FBI’s objective which is to minimise make span). 

This makes it ideal for using in combination with another method. 

2.7. Summary 

This chapter reviewed literature relating to the Resource Constrained Project Scheduling 

problem and its variants as it is a well studied problem and the most relevant to the 

scheduling problem we will study. Unfortunately it is less complex than the problem we 

study so many of the solution methods will not be directly applicable nor results 

comparable. 

 Different methods for evaluating solutions were shown and some methods 

which manipulate the evaluation method to better solve the problem.  
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The solution methods reviewed fell into 4 categories: Local Search Based, 

Population Based, Hyper-heuristics and Problem Specific. Local Search based 

approaches in general are fast, working on a single solution and quickly evaluating 

small changes to it in an attempt to find a change which will make an improvement. 

When local optima occur the search has to find a way out and this is where many of the 

solution methods differ. 

Population based approaches do not generally have this problem as they keep a 

set of solutions which influence each other. These solutions try to keep diverse sets 

which aim to help other individuals to escape from local minima, whilst smaller 

mutations try and make the individuals fitter. 

Hyperheuristics aim to abstract the problem specific information from the 

solution method. In theory, a Hyperheuristic could solve any problem given the right set 

of Low Level Heuristics to work on the problem. It is the hyperheuristics job to work 

out which Low Level Heuristic to use at a given point in time. These again can be 

classified into search based and population based approaches. 

Finally a problem specific method was reviewed which exploits problem 

specific ideas to improve the solution. 

 



 

 

Chapter 3  

Problem Description 

The scheduling problem we consider is complex and “messy”. It contains many of the 

features of scheduling problems in literature and thus has many of them as sub-

problems. This model was created in collaboration with Trimble MRM Ltd to precisely 

model aspects of scheduling problems seen in the real world. It provides us with a hard 

to solve multi-objective problem which when simplified resembles many problems in 

literature. 

It is split into two parts: the static part, which is concerned with build schedules 

meeting certain criteria, and the dynamic part, which involves responding to events that 

happen during the course of a schedule. 
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3.1. Static Scheduling Problem 

The workforce scheduling problem that we consider consists of four main components: 

Tasks, Resources, Skills and Locations. A task Ti is a job or part of a job that needs to 

be completed. Each task must start and end at a specified location. Usually the start and 

end locations are the same but they may be different. Each task has one or more time 

windows. Some time windows which are an inconvenience for the customer have an 

associated penalty. We have a set {T1,T2,…,Tn} of tasks to be completed. Each task is 

undertaken by one or more resources. We have set of resources {R1,R2,…,Rm}. A task 

requires resources with the appropriate skills. We have a set {S1,S2,…,Sk} of skills. Task 

Ti requires skills ],...,,[TS )(21

i

it

ii TSTS  with work requirements ],...,, [ )(21

i

it

ii www where i

qw  is the 

amount of skill i

qTS  required. Task Ti also has an associated priority p(Ti). Resources are 

the components that undertake the work and possess skills. Resource Rj possesses skills 

],...,,[RS )(21

j

jr

jj RSRS . A function c(R,S) expresses the competence of resource R at skill S, 

relative to an average competency. Each resource R travels from location to location at 

speed v(R). For tasks T1, T2, d(T1, T2) measures the distance between the end location of 

T1 and the start location of T2. There are three main groups of hard constraints: task 

constraints, resource constraints and location constraints and they are described below.  

3.1.1. Task constraints 

 Each task can be worked on only within specified time windows.  

 Some tasks require other tasks to have been completed before they can begin 

(precedence constraints). 

 Some tasks require other tasks to be started at the same time (assist constraints). 
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 Tasks may be split across breaks within a working day. No tasks may take more 

than one day. 

 For a task to be scheduled it must have exactly one resource assigned to it for 

each of the skills it requires. 

 All assigned resources have to be present at a task for its whole duration 

regardless of their skill competency and task skill work requirement. 

 If a task Ti with skill requirements ],...,,[TS )(21

i

it

ii TSTS  and amounts 
],...,, [ )(21

i

it

ii www
 is 

carried out by resources ],...,,[R )(21
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ii RR  then the time taken is 
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max
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q

i
q

i
q

itq TSRc

w

 

i.e. the greatest time taken for any single resource to complete a skill requirement 

3.1.2. Resource constraints 

 A resource R travels from location to location at a fixed speed v(R). 

 Resources may only work during specified time windows. 

 Resources can only work on one task at once and only apply one skill at a time. 

3.1.3. Location constraints 

 Resources must travel to the location of each task they work on, and are 

unavailable during this travel time. 

 Resources must start and end each day at a specified “home” location and must 

have sufficient time to travel to and from their home location at the start and end 

of each day. 
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3.1.4. Objectives 

When building a schedule many different and often contradictory business objectives 

are possible. In this thesis we consider three objectives. The first objective is Schedule 

Priority (SP), given by 

 

}scheduled is :{

)(
iTi

iTpSP  

 

Maximising Schedule Priority maximises the value of the tasks scheduled (and 

implicitly minimises the value of tasks unscheduled).  

The second objective measures Travel Time (TT) across all resources. Define 

A={(i1,i2,j):task Ti1 comes immediately before Ti2 in the schedule of resource Rj}. Then, 
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Travel to and from home locations is handled by considering dummy tasks fixed at the 

start and end of the working day, at the home location of each resource.  

The third objective measures the inconvenience associated with completing 

tasks or using resources at an inconvenient time, which we have labelled Schedule Cost 

(SC). In order to express this accurately we express the time windows for Resource R 

using a function τ where τ(R,t) is the cost per unit time for resource R working at time t. 

We introduce a variable 

                                                                    otherwise0

 at time ng)or traveli task a(on busy  is  resource if1
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Similarly we introduce τ’ where τ’(T,t) is the cost per unit time for task T being 

executed at time t and  
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Other objectives are possible but these three objectives express most of the primary 

concerns of the users in this case, at a high level. Considering lower level objectives at 

regional and resource group level could, however, give in many more objectives for this 

problem. 

3.2. Dynamic Repair Problem 

This problem is “messy” (and realistic) as it contains dynamic events which disrupt the 

pre-planned schedule during its execution. In this work the dynamic events are 

stochastically generated, following a detailed study of the nature of the events that occur 

in practice, and simulation is used to pass the new problem information on to a 

rescheduling / schedule repair mechanism. s(Ti) gives the start time of a task Ti in the 

“static” predictive schedule generated before consideration of dynamic events and e(Ti) 

gives the start time of a task Ti at the end of the schedule’s execution (after all schedule 

repair events have occurred). If a task is not scheduled the time representing the end of 

the schedule is used for both s(Ti) and e(Ti). The four types of dynamic events 

considered in this work are perturbation of task time, task overruns, travel overruns and 

task on-site cancellations. 

The perturbation of task time event models the fact that the forecast duration of 

each task is incorrect by some small amount (generated by a normal distribution with a 

mean of its current duration and a standard deviation of a few minutes). When a task’s 

duration is to increase this event occurs when the task reaches the end of its planned 
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duration, if the task’s duration is to decrease the event occurs when the task reaches its 

new (earlier) end time. The overrun event (for both travel and tasks) causes significant 

change in the travel or task duration (increase or decrease), and the on-site cancellation 

event is used to model a real-world phenomenon whereby an engineer (resource) arrives 

at a task location and discovers that the task cannot be completed for some reason (often 

due to no access). In this case the task ends after ten minutes and all resources pre-

planned for work on that task are free to do other work.  

3.2.1. Dynamic Objectives 

Schedule stability (ΔST) is a standard objective and is measured by considering absolute 

change in start times of all tasks (Cowling and Johansson, 2002): 

 

The equation above represents the absolute change in start times for all tasks, we wish 

to minimise this value.  

As with the static aspects of the problem several other objectives are possible 

however we chose to include only change in start times as we believe it is of most 

concern to both businesses and customers. Other possible objectives studied for other 

problems are discussed in literature. Vieira (Vieira, Herrmann and Lin, 2003) discusses 

several stability / robustness measures including absolute change in start times as well 

as schedule nervousness which measures how likely things are to change in the future. 

Nervousness is not relevant here since tasks are communicated one by one to resources 

in the field. Considering these and other lower level objectives at regional and resource 

group level is realistic and useful and would give many more objectives for this 

problem. 



CHAPTER 3. PROBLEM DESSCRIPTION  61 

 

3.3. Summary 

The problem we study has been formed with our industrial sponsor and shares many of 

the features of literature reviewed in the previous chapter, however it encompasses more 

features than any of the single problems. As such, certain parts of the problem can be 

excluded to reduce our problem into those studied in literature.  

 Generating test instance for a problem is done using the problem generator of 

(Cowling et al., 2006), which is explained in more detail in (Colledge, 2009). This 

provided us with an easy way to produce problem instances with specific parameters. 

Generating problems by hand of the size required to involve all complexities of the 

problem would be impossible. 

 The problem was formulated with Nicolas Colledge and is also published in his 

thesis (Colledge, 2009). Both our works use this problem as a case study however the 

solution methods and the research areas investigated are different. Colledge investigates 

the effects of multi-objective algorithms on diversity and quality of solutions. He also 

develops hyperheuristic solutions to the dynamic aspect of the problem including the 

low level heuristics used later in my thesis. However, since his work is multi-objective 

and he is interested in studying a diverse set of pareto optimal solutions, no direct 

comparison between the methods he uses and the results obtained in this thesis can be 

made. 



 

 

Chapter 4  

Search in Scheduling 

Our initial work looked at local search with respect to scheduling. Initially we took 

schedules produced by a genetic algorithm and tried to improve them using exact search 

on small sub problems. It was clear the schedules produced by the genetic algorithm 

were not optimal and so we went on to produce constructive scheduling heuristics from 

scratch. This chapter details this process and the results and conclusions found. 
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4.1. Improving GA Generated Schedules 

with Exact Search 

The Genetic Algorithm of our initial work (Cowling et al., 2006) for the Workforce 

Scheduling Problem we study, was quick and provided good results. The reason it is 

quick is that it uses a naive method of inserting tasks. 

The chromosome represents the order of tasks to be scheduled, like an Activity 

List for the RCPSP. However, tasks in the Workforce Scheduling problem may require 

more than one resource and rarely are there homogenous resources, so selecting the 

appropriate resources is not as straight forward. The genetic algorithm uses a simple 

method for selecting resources. For each skill required by the resource it draws up a list 

of resources that possess the skill. It then calculates for each resource the available time 

multiplied by the resource’s skill competency and chooses the resources with the 

highest availability. In effect, this weights those that are good at the skill higher. The 

GA then finds the time the selected resources have in common and insert the task as 

early as possible. This provides good results in a reasonable amount of time. 

We then took this idea of enumerating resources further to see how good the GA 

was at choosing resources. We took schedules generated by the genetic algorithm and 

tried to improve them, similar to how a mimetic algorithm does, although we only use 

local search after the evolution has stopped. To improve them, we went through each 

scheduled task and tried to assign different resources to it with the aim of improving the 

quality of the schedule. Observed results showed that there was plenty of room for 

improvements in the genetic algorithm, but more likely that a constructive local search 

would be a better place to start. 
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4.2. Constructing Schedules using Local 

Search 

In this section, a hyperheuristic framework is developed for the workforce scheduling 

problem and is used in many subsequent chapters and publications (Remde et al., 2007) 

(Dahal et al., 2008). 

Most meta-heuristics have to be tailored to a specific problem and are problem 

specific or require a lot of knowledge and this can often be expensive and time 

consuming especially when trying to find the right parameters for these meta-heuristics. 

Hyper-heuristics raise the level of generality of a heuristic which allows it to be applied 

to many different optimisation tasks with little modification.  

For any hyper-heuristic, low level heuristics (LLHs) need to be developed to be 

used by the hyper-heuristic. The first LLH we created simply inserted a task at the most 

optimal time into a schedule using selected resources (low level heuristics would be 

made from this by having lots of different ways to select a task to be scheduled, and lots 

of ways of choosing the resources to assign to the task). To test this insertion heuristic, 

we will use an exhaustive search to calculate the change in fitness observed after 

scheduling a task, for all combinations of resources. Once the best assignment of 

resources has been found the task will be scheduled using those resources. This 

exhaustive search will then be used to schedule as many tasks as possible. 
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current, test, best : Solution 

 

while (Some tasks can be scheduled) 

 for each Unscheduled Task T 

  for each Resource Combination R 

   test:=Insert T into current using the resources R 

   if (test is fitter than best) then best:=test 

  end for 

  current:=best 

 end for 

end while 

Figure 4.1. Local Search Heuristic 

4.2.1. Experimental Results 

The problem instance has 1000 tasks, 200 resources and 20 skills. Four methods were 

used to solve the problem. The first was a Genetic Algorithm (similar to the one used in 

(Cowling et al., 2006)) which evolves an order of tasks to be scheduled (using good 

parameters from the paper with crossover rate 5%, population size 50 and 100 

generations). The other 3 are variations of the exhaustive local search starting from an 

empty schedule and use variations of the heuristic in Figure 4.1. “LS one pass 2 skills” 

tries to insert all tasks with a maximum of 2 skills once and stops. “LS multi pass 2 

skills”, tries to insert all tasks with a maximum of 2 skills and keeps trying until no 

more tasks can be inserted into the schedule. “LS multi pass 3 skills”, tries to insert all 

tasks with a maximum of 3 skills and keeps trying until no more tasks can be inserted 

into the schedule. The local search is limited to scheduling tasks with 3 skills as 

exhaustively searching 4 (or more) skills would take too long. The fitness function that 
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will be used is Fitness=SP-4SC-2TT (as described in (Cowling et al., 2006)), where SP 

is the sum of the priorities of all the scheduled tasks, SC is sum of all the costs 

associated with scheduled tasks and TT is the total travel time on the schedule. The 

results of a single run are shown in Table 4.1 and Figure 4.1 shows a graph of the 

results.  

Table 4.1. Test Results and Approximate CPU Time Used 

Method FITNESS SP SC TT CPU TIME 

Genetic Algorithm 10891 17357 1528 177 8 h 

LS one pass 2 skill 15145 20663 1344 71 2 m 

LS multi pass 2 skill 19055 26313 1766 97 4 m 

LS multi pass 3 skill 19308 30356 2703 118 9 m 

 

Figure 4.2. Graph of results from Table 4.1 
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4.2.2. Analysis 

From the results we can clearly see that the schedules produced from the local search 

are far superior to those of the GA and were produced in far less time. The results show 

that there is little change between “LS multi pass 2 skills” and “LS multi pass 3 skills”. 

This may be due to the fact that priority values of tasks are not proportionate to the 

number of resources needed (this means inserting tasks which require fewer resources 

generally leads to greater increases in fitness than inserting those requiring more 

resources). The difference between “LS multi pass 2 skills” and “LS one pass 2 skills” 

indicates that multiple passes are beneficial. This is because after one pass, 

improvements will have been made (freeing up resources including time) and so further 

improvements can be made in later passes.  

Even though there is no statistical significance measure, the results suggest the 

local search techniques are much more favourable than the GA. The GA uses a very 

simple heuristic to insert tasks which often makes less than optimal decisions. This 

quick approach is needed because of the large number of times it is done when 

evaluating an individual. 

4.3. Experimental Framework 

In the previous section a modest amount of CPU time was required to obtain the 

results. To get statistically meaningful results heuristics must be run multiple times on 

multiple problem instances and an average taken. These individual runs are isolated and 

can be executed in parallel on multiple machines. Henceforward a parallel framework 

for running multiple experiments will be designed and implemented and used 

throughout the rest of the thesis. Similarly when parameter tuning the optimal value for 
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multiple different parameters needs to be determined. We often end up with a scenario 

shown in Figure 4.3. This code parallelises very well as each run is independent of the 

others.  

for (run=1..10) 

   for (a in A) 

      for (b in B) 

         for (c in C) 

            Solve(run,a,b,c) 

Figure 4.3. Pseudo code for parameter tuning 

To run this code on multiple machines a method of dealing out work to each 

machine is required. Without writing complex network code, this can be achieved by 

using a shared file system. For this method we map each set of parameters onto a 

filename. Since file systems are designed for allowing exclusive access to files it is easy 

to use this to deal out the work. Figure 4.4 shows how we determine if we should work 

on a file and Figure 4.5 shows how this method can be used to parallelise the pseudo 

code in Figure 4.3.  

The implementation and presentation on this framework has been made freely 

available at (http://inf.brad.ac.uk/~smremde/parallel). 

ShouldIWorkOn(file) 

   if (FileExists(file)) 

      if (FileIsReadOnly(file)) 

         return false 

      else if (Lock(file)) 

         return true 

      else 

         return false 

      end if 

   else if (CreateAndLock(file)) 

      return true 

   else 

      return false 

    end if 

Figure 4.4. Determining if the computer should work on a specific file. 
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for (run=1..10) 

   for (a in A) 

      for (b in B) 

         for (c in C) 

            file = MakeFilename(run,a,b,c) 

            if (ShouldIWorkOn(file)) 

               Solve(run,a,b,c) 

               MarkAsReadOnly(file)  

               Unlock(file) 

            end if 

Figure 4.5. Parallelising Figure 4.3  

4.3.1. Speed-Ups 

Although no numerical data on the speed ups can be given it can be estimated and 

approximations made from experience. When the part being parallelised takes a decent 

amount of time (for example most of the experiments in this chapter took over 20 

minutes) then the speed up is close to linear. A good approximation can be calculated 

using: 

 

 

 

 

Where  is the time it takes to check is an experiment needs doing,  is the number of 

experiments to be done,  is the average time required to do an experiment and  is the 

number of computers to be parallelised on. When is very small compared to   (in our 

case a fraction of a second compared to 30-60 minutes of experiments),  becomes 

insignificant: 
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4.4. Using Exact Search in Local Moves 

In this section we propose a method of splitting the complex real-world workforce 

scheduling problem into smaller parts and solving each part using exhaustive search. 

These smaller parts comprise a combination of choosing a method to select a task to be 

scheduled and a method to allocate resources, including time, to the selected task. We 

use reduced Variable Neighbourhood Search (rVNS) and hyperheuristic approaches to 

decide which sub problems to tackle. The resulting methods are compared to local 

search and Genetic Algorithm approaches. Parallelisation is used to perform nearly one 

CPU-year of experiments. The results show that the new methods can produce results 

fitter than the Genetic Algorithm in less time and that they are far superior to any of 

their component techniques. The method used to split up the problem is generalisable 

and could be applied to a wide range of optimisation problems. 

4.4.1. Introduction 

The fitness of a schedule used here is given by one of the single weighted objective 

functions used in (Cowling et al., 2006) and previously, f = SP - 4SC - 2TT, where SP is 

the sum of the priority of scheduled tasks, SC is the sum of the time window costs in the 

schedule (both resource and task) and TT is the total amount of travel time. This 

objective is to maximise the total priority of tasks scheduled while minimising travel 

time and cost. In this section we will compare the Genetic Algorithm method with a 

new reduced Variable Neighbourhood Search and hyperheuristic methods. 

We propose a method to break down this “messy” problem by splitting it into 

smaller parts and solving each part using exact enumerative approaches. Hence each 

part consists of finding the optimal member of a local search neighbourhood. We then 
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design ways to decide which part to tackle at each stage in the solution process. These 

smaller parts are the combination of a method to select a task and a method to select 

resources for the task. We will take these smaller parts and use reduced Variable 

Neighbourhood Search and hyperheuristics to decide the order in which to solve them. 

4.4.3. Heuristic Solution Methods 

Our proposed framework splits the problem into (1) selecting a task to be scheduled and 

(2) selecting potential resources for that task. A task is randomly chosen from the top 

two tasks which we have not tried to schedule ranked by the task order, to make the 

search stochastic, to ensure that running it multiple times will produce different results. 

We have implemented 8 task selection methods given in table 4.2. Note that some of 

our task orders are deliberately counterintuitive to give us a basis for comparison. 

PriorityDesc, PriOverReq, PriOverMaxReq and PriOverAvgReq are attempts to identify 

the tasks which will give us the most reward and schedule them first. They estimate the 

task duration differently and use this estimate to calculate priority per hour. 

PrecedenceDesc attempts to schedule those tasks with the largest number of succeeding 

tasks first. PrecedenceAsc, PriorityAsc and Random give us some indication of the 

effect of task orders since intuition would suggest that they should give poor results.  

We then define Resource Selectors which select a set of potential resources for 

each skill required by the selected task. The Resource Selectors first sort the resources 

by their competencies at the skill required and then select a subset of them. This could 

be, for example, the top five or the top six to ten etc. The subsets of resources are then 

enumerated and exhaustive search used to find the insertion which will yield the lowest 

time window and travel penalties subject to precedence constraints. Figure 4.6 

illustrates this. 
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Table 4.2. Task sorting methods 

Method Description 

Random Tasks are ordered at random. 

PriorityDesc Tasks are ordered by their priority in descending order 

PriorityAsc Tasks are ordered by their priority in ascending order 

PrecedenceAsc Tasks are ordered by their number of precedences ascending  

PrecedenceDesc Tasks are ordered by their number of precedences descending  

PriOverReq 

  

Tasks are ordered by their estimated priority per hour assuming 

the task will take as long as the total skill requirement 

PriOverMaxReq 

  

Tasks are ordered by their estimated priority per hour assuming 

the task will take as long as the maximum skill requirement 

PriOverAvgReq 

  

Tasks are ordered by their estimated priority per hour assuming 

the task will take as long as the average skill requirement 

 

 

Figure 4.6. Resource Selector. The dotted subset of resources possessing the required skill is chosen 

by a Resource Selector. The assignment (R2, R1) is chosen as the best insertion. 

The neighborhoods of our rVNS insert tasks selected by a task order using a given 

resource selector. If an insertion is not possible, because of resource or task constraints, 

we try the next resource selector and so on. We consider several sequences of resource 

selection neighborhoods, or “chains”, as shown in Figure 4.7.  
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R3 
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Figure 4.7. Resource selection “chains” for the rVNS. For example, chain number 6 implies we will 

consider the top 5 resources first, then the top 6-10, then the top 11-20. 

 

Figure 4.8. Pseudo code for our rVNS method. 

These neighbourhoods show a progression of increasingly larger ranges and 

smaller splits. Figure 4.8 shows the pseudo code for our rVNS method. Allowing search 

to restart at the start of the chain allows the search to retry insertions that may have 

k is the index of the resource selector in use 

(N1, N2, … 
maxkN ) is our chain of resource selectors 

Sort tasks using the chosen task order 

k:=1 

while (k<kmax) 

 for each Unscheduled Task T 
  Select Sets of Resources Using Nk for Task T 

  Exhaustively Search the selected sets of resources to find the optimal 

insertion I which maximises the change in fitness. 

  Insert task T into the schedule using I 

 next 

 if some tasks were inserted then k:=1  

 else k:=k+1 

 end if 

end while 
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failed before because of resource or task constraints. With the 16 resource selection 

chains and the 8 task orders we have defined, we have 128 different rVNS methods. 

Our first hyperheuristic, HyperRandom, selects at random a Low Level Heuristic (i.e. a 

(task order, resource selector) pair) to use at each iteration and applies it if its 

application will result in a positive improvement. This continues until no improvement 

has been found for a certain number of iterations. The second, HyperGreedy, evaluates 

all the Low Level Heuristics at each iteration and applies the best if it makes an 

improvement. This continues until no improvement is found. The low level heuristics 

are the combination of a task selector and a resource selector. 

The genetic algorithm we will use is that of (Cowling et al., 2006). The 

chromosome represents an order of tasks to be scheduled by a serial scheduler. The 

initial population is generated randomly and the task order is evolved. The way in which 

the tasks are inserted into the schedule is a fast naïve approach as schedule must be 

generated many times per generation. The serial scheduler takes the next task from the 

chromosome and allocates resources to it greedily skill by skill. A resource is selected 

by finding the resource which has the greatest amount of available time in common with 

the task’s time windows and any other resources already selected. After each skill has 

been allocated a resource, it is inserted into the schedule as early as possible. We use a 

population size of 50, mutation rate of 1%, and a crossover rate of 25% using Uniform 

Crossover. The GA is run for 100 generations (or for a maximum of 2.5 hours) and the 

result is the fittest individual in the final population. 

4.4.4. Computational Experiments 

To compare the methods for solving the problem, we use each method (one Genetic 

Algorithm, 128 rVNS and two hyperheuristics) on five different problem instances. The 
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five new problem instances require the scheduling of 400 tasks using 100 resources over 

one day using five different skills. Tasks require between one and three skills and 

resources possess between one and five skills. The problems are made to reflect realistic 

problems Trimble have identified and are generated using the problem generator used in 

(Cowling et al., 2006). 

Each method is used for five runs of the five instances and an average taken of 

the 25 results. Five runs were chosen to give some statistical significance within a 

reasonable amount of time. To ensure fairness, each method is also run for a 2.5 hour 

“long-run” where the 25 results are repeatedly generated and the best average over all 

their repeated runs is reported. As these experiments require nearly a CPU year to 

complete (five runs of five instances using 131 different methods lasting 2.5 hours each 

= 8187.5 CPU hours) they were run in parallel on 60 identical 3.0 GHz Pentium 4 

machines. Implementation was in C# .NET under Windows XP. 

Figure 4.9 shows the results of the 2.5 hour “long run” for each rVNS approach. 

Results for a single run of each approach were 1-4% worse on average. The intuitively 

“bad” task orders, PriorityAsc and Random are clearly shown to be worse than the 

intuitively reasonable orders such as PriorityDesc. It would also appear that the good 

chain is more important than a good order. Measures based on decreasing priority or 

priority per hour (PriorityDesc, PriOverReq, PriOverAvgReq, PriOverMaxReq) are 

superior to other measures. Figure 4.10 compares the best approaches in detail. Chain 

12 produces the best results for all task orders. It is clear to see the correlation between 

results with common chains or task orders. Chain 4 demonstrates that trying to estimate 

priority per hour is superior to PriorityDesc. This is probably because with a limited 

amount of free time in the schedule, using tasks that have lower priority but can be 

completed in a shorter time is more beneficial. 
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Figure 4.9. Heat graph of the performance of rVNS methods for 2.5 hour “long run”. Black = 4472, 

White =26525 

 

Figure 4.10. Heat graph of the performance of selected rVNS methods for 2.5 hour  

“long run”. Black = 25398, White =26525 

Figure 4.11 compares the CPU time for a single run of rVNS using each chain. It is 

clear that the approach would scale to very large problems using small resource 

selection sets such as for chains 1, 5, 6, 8, 11 and 13. Moreover, it appears that little 

solution quality is lost when covering the resources with small subsets rather than larger 

ones as in chain 4, but the CPU times are significantly reduced. Chain 12 yields the best 

results of the chains which take reasonable amounts of CPU time, and clearly 

outperform chain 2 and chain 7 which do not consider the whole set of resources. It 

seems that resources of poor competence must be considered to get the best possible 

results. 
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Figure 4.11. Average CPU time taken by each chain used in the rVNS methods. Average of 25 runs. 

Table 4.3 shows the best result from the rVNS (Chain 12, Task Order PriOverReq) 

compared with GA and the hyperheuristic methods. They quite clearly show that 

HyperGreedy provided the fittest results on average while using more CPU time. The 

GA provided the worst result and in the slowest time. This may result from its insertion 

heuristic, however implementing a better one would make it even slower. The rVNS is 

the fastest method we have tested and provides results nearly 20% better than the GA in 

less than 1/350 of the CPU time required. Exactly solving small sub problems appears 

very effective in this case. 

Table 4.3. GA, rVNS and Hyper-Heuristic Results for one run and long run (average of 25 runs). 

Method 

Fitness 

(single run average) CPU Time (s) 

Fitness 

(after 2.5 hours) 

GA 21401.3 9000.0 21401.3 

rVNS (Best) 25662.5 25.1 26215.1 

HyperRandom 24525.4 78.3 25645.4 

HyperGreedy 26523.6 419.2 27103.1 
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HyperRandom performs poorly compared to the best rVNS method. rVNS task selectors 

and resource selectors are s ensible guesses which significantly improve on the random 

approach of HyperRandom. The resource selectors of the rVNS tend to select resources 

which are of similar competence, so that a high competence resource is not combined 

with a low-competence resource (which might tie up the time of a high-competence 

resource). 

The HyperRandom, and the HyperGreedy heuristics try significant numbers of 

bad low level heuristics which make local improvements which in the long run are far 

from optimal. In the case of the HyperGreedy method, the bad low level heuristics are 

evaluated every iteration which wastes CPU time. Analysis of the low level heuristics 

used in the HyperGreedy method was performed and show that 19 (26.4%) of the low 

level heuristics were never used and 56 (77.7%) of the low level heuristics were used 

less than one percent of the time.  Figure 4.12 analyses the low level heuristics (LLHs) 

used. It shows the top 20 LLHs used together with when they are used in schedule 

generation. First third, middle third and last third show the usage at different stages in 

the scheduling process – from when the schedule is empty and unconstrained to when 

the schedule is almost full and inserting a task is more difficult. From these results it is 

clear that different LLHs contribute at different stages of the solution process, and that 

many different LLHs provide a contribution. For example, LLH 32 is more effective at 

the start of scheduling, LLH 12 is more effective in the middle and LLH 64 is more 

effective at the end. Without access to a large number of LLHs it seems that solution 

quality would be much reduced. 
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Figure 4.12. Usage of low level heuristics throughout the HyperGreedy search 

4.4.5. Analysis 

In this section we have compared a large number (128) of reduced Variable 

Neighbourhood Search (rVNS) approaches to hyperheuristics and Genetic Algorithm 

approaches for workforce scheduling problem. We have demonstrated the effectiveness 

of heuristic/exact hybrids which find optimal sub problem solutions using an 

enumerative approach. Our rVNS method can produce good results to large problems in 

low CPU time. Our hyperheuristics produce even better results using more CPU time 

and we showed that the hyperheuristic uses a range of low level heuristics throughout 

the search process.  

The hyperheuristics we used are simple and learning could potentially decrease 

CPU time and increase fitness. In the next section we intend to implement a learning 

mechanism. We have seen from the analysis that many low level heuristics were never 

used and some used mainly at the end or beginning. Learning the low level heuristics 

behaviour could potentially lead to better solutions in less time.  
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4.5. Binary Exponential Back Off 

Hyperheuristics (Chakhlevitch and Cowling, 2008) (Burke, 2003) reflect 

problem knowledge using a number of (usually simple) low level heuristics and 

objective measure(s). The hyperheuristic uses information about the performance of 

each low level heuristic (CPU time and objective measures) to determine which low 

level heuristics to apply at each decision point. The hypothesis of the hyperheuristic 

method is that some combination of these low level heuristics will prove effective in 

escaping any poor quality local optimum/basin of attraction (Chakhlevitch and Cowling, 

2008). However, the method which decides which low level heuristics to choose need 

not be problem specific, and hence a single hyperheuristic method can work generally 

across many problem models and instances. In some cases low level heuristics are 

parameterised, or composed by “multiplying” together components (Remde et al., 2007) 

(Chakhlevitch and Cowling, 2005), which can give rise to hundreds or even thousands 

of heuristics (Cowling and Chakhlevitch, 2003). In such a case, deciding in reasonable 

time which heuristics to use may be difficult. However, there is evidence that having 

such a rich selection of low level heuristics may yield better results for complex 

problems in the long run (Chakhlevitch and Cowling, 2005).  

Using the hyperheuristic framework introduced earlier, we create more low level 

heuristics and implement a new Tabu based hyperheuristic with dynamic Tabu tenures 

designed with large neighbourhoods in mind. HyperRandom and HyperGreedy 

heuristics try significant numbers of bad low level heuristics and hence waste CPU 

time, which may be highly significant for complex instances requiring CPU-hours or -

days to solve. Analysis of the low level heuristics used in the HyperGreedy method 

showed that 26.4% of the low level heuristics were never used and 51.2% of the low 

level heuristics were used less than one percent of the time.  An approach which more 



CHAPTER 4. SEARCH IN SCHEDULING  81 

 

aggressively prunes poor low level heuristics could result in large CPU savings in this 

case, with little or no impact on solution quality. This impact would increase with 

increasing numbers of low level heuristics.  

The method we propose is a Tabu based hyperheuristic with dynamically 

adapting Tabu tenures designed for very large neighbourhoods. In a variety of computer 

networks, binary exponential back off or truncated binary exponential back-off is a 

randomized protocol for regulating transmission on a multiple access broadcast channel 

(Metcalfe and Boggs, 1976). This algorithm is used to spread out repeated 

retransmissions of the same block of data and to increase overall efficiency. Data needs 

to be retransmitted when a collision occurs. This happens when two (or more) 

computers try to transmit information on the same medium (a wire, a wireless 

frequency, etc) at the same time. When a computer transmits information, it also 

“listens” to see whether received information is what has been transmitted. If it detects 

anomalies it assumes that there is interference (probably from another computer trying 

to transmit at the same time). When a collision occurs, the computer will increase its 

backoff value by 1, and wait a random amount of time between 0 and 2
backoff

-1 before 

trying to retransmit. If the transmission is successful, the back off value is reset to 0, 

otherwise the back-off value is increased by 1 again and the process is repeated. 

Truncated binary exponential back-off (Kwak, Song and Miller, 2005) works in a 

similar way, but also sets a ceiling on the maximum back-off time. This is the industry 

standard for many computer networks including Ethernet. 

Binary exponential back off seems like a promising approach to adjust 

individual Tabu tenures in a Tabu-search hyperheuristic (Burke, Kendall and Soubeiga, 

2003) or metaheuristic, where the neighbourhood size is large. For low level heuristics 

that perform poorly, the Tabu tenure would increase exponentially with each poor 
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application and thus minimise wasted CPU time. For low level heuristics that perform 

badly at the start of the search and well at the end, little time would be wasted at the 

start but when the low level heuristic starts performing well, it will not be penalised for 

doing badly at the start. This could focus a very large set of low level heuristics down to 

a smaller set of low level heuristics which are effective at a particular point in the 

search.  

Tabu search (Burke, Kendall and Soubeiga, 2003) can be used to make 

undesirable moves unusable for a certain number of iterations (the Tabu tenure). This is 

usually used to stop poorly performing moves being tried in succession or to stop the 

undoing of good moves. The optimal duration of a Tabu tenure has been tested in 

several papers and it is most likely a function of the neighbourhood size and the 

problem size (Laguna, Marti and Campos, 1999). Random Tabu tenures are used in 

(Rolland, Schilling and Current, 1996) where a move is made Tabu for a period 

randomly chosen between 1 and the maximum Tabu tenure and was found to be 

superior to fixed Tabu tenures. Much work has been done on Tabu search and related 

choice function methods (Chakhlevitch and Cowling, 2008).  

Several papers have investigated Tabu-based and related choice function 

(Cowling, Kendall and Soubeiga, 2001) based hyperheuristics. (Kendall and Mohd 

Hussin, 2005) uses a simple Tabu mechanism where good and bad low level heuristics 

are made Tabu for a fixed Tabu tenure. A small number of low level heuristics are used 

(13) with short Tabu tenures (1-4 iterations) and good results are obtained in a large 

amount of CPU time. This is extended in (Kendall and Hussin, 2005) where the low 

level heuristic is repeated until no further improvements can be found before being 

made Tabu and random Tabu tenures are utilised. Random Tabu tenures provide results 

of similar quality to those with fixed tenure equal to the expected random tenure on the 
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two problem instances they consider. The repeated application of a low level heuristics 

does not increase solution quality considerably. (Burke, Kendall and Soubeiga, 2003) 

uses a ranking system for non Tabu low level heuristics. When a non-Tabu low level 

heuristic performs well its rank is increased, when it does not make a positive change its 

rank is decreased and the low level heuristic is put in the Tabu list on a first in first out 

basis. If it makes a negative change the Tabu list is emptied as it may have reached. At 

each iteration the low level heuristic with the highest rank that is not Tabu is used. The 

number of low level heuristics is again small, and the maximum size of the Tabu list is 

between 2 and 4. (Cowling and Chakhlevitch, 2003) use a Tabu hyperheuristic to 

manage a large set (95) of low level heuristics. The hyperheuristic allows the use of 

Tabu low level heuristics if it makes the best improvement (and then stops the low level 

heuristic from being Tabu). If no improving low level heuristics are available, a non 

improving non Tabu low level heuristic is used and made Tabu. Fixed Tabu tenures of 

10, 30, 60 and 100 and adaptive Tabu tenures are investigated, but results provide no 

clear advantage of using adaptive Tabu tenures over fixed ones. 

4.5.1. Hyperheuristic Approaches 

Papers such as (Remde et al., 2007) (Chakhlevitch and Cowling, 2005) generate 

possible LLHs by considering separately (1) selecting a task to be scheduled and (2) 

allocating potential resources (including time) for that task. The task selector chooses a 

task and the resource allocator assigns resources for each skill required by the task, so 

that the total number of LLHs is the number of task selectors multiplied by the number 

of resource allocators. In the previous section resource selectors order the resources by 

their competency at the skill (as more competent resources can complete the task 

quicker) and then pick a range of these resources (Top 5, Top 10, etc). In addition to 
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these approaches, here we add more low level heuristics in an attempt to yield better 

results, by improving the likelihood of there being at least one good LLH in every 

situation. Table 4.4 describes the new resource allocators. Combining each of the 9 task 

selector with each of the 27 resource allocators gives a total of 243 Low Level 

Heuristics. Note that for this problem it is usually better to choose a group of uniformly 

poor competence resources for a task (so that they complete at about the same time) 

rather than a heterogeneous set (where fast, effective, resources have to wait for slower 

resources to finish when they could be completing other tasks). 

Table 4.4. New Resource Selectors. 

Name Description 

Deviation x Resources complete a skill in a time dependent upon their competence. This 

selector attempts to find resources that will complete the different skills of 

task in the same amount of time by selecting resources with competencies 

that deviate x={50%, 25%, 12.5%, 6.25%} from the task’s skill requirement.  

x
th
 Quarter This picks the x={1,2,3,4} quarter of task ranked by skill. Unlike the “Top x” 

task selectors, the number chosen is proportionate to the number of resources 

who can do the task. 

x
th
 Eighth This picks the x={1…8} eighth of task ranked by skill.  

Dynamic x This selector picks larger sets of resources for the skills requiring more effort 

and less to those requiring less effort. It will create x={10, 50, 100, 1000}  

combinations when enumerating the resulting sets. 

All Resources Considers all possible resources (and hence is very slow). 

 

The hyperheuristic HyperRandom, selects at random a Low Level Heuristic (i.e. 

a (task order, resource selector) pair) to use at each iteration and applies it if the 

application will result in a positive improvement. This continues until no improvement 

has been found for a certain number of iterations. HyperGreedy evaluates all the Low 

Level Heuristics at each iteration and applies the best if it makes an improvement. This 

continues until no improvement is found. As might be expected, HyperGreedy is very 
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CPU-intensive, and generates good quality results, but is inefficient. For example, over 

one quarter of the low level heuristics were never applied in experimental trials in the 

previous section and over half of them were only applied once.  

Here we propose a Tabu based hyperheuristic with dynamically adapting Tabu 

tenures designed for very large neighbourhoods, inspired by the binary exponential 

back-off algorithm used in networking (Metcalfe and Boggs, 1976). We use an 

analogous backing off method to exponentially increase the Tabu tenure of low level 

heuristics which repeatedly yield no improvements, meaning the time between trials of 

bad heuristics gets exponentially greater. The heuristic is given in Figure 4.13. We use 

two methods to decide which of the low level heuristics, which were tried, to back off 

(those “deemed bad”):  

1) “Best x”: only the best x improving low level heuristics are not backed off.  

2) “Prop x”: all non improving low level heuristics and those improving low 

level heuristics not in the top x% of the range of the fitness are backed off. 
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Define: 

backoff_min is the minimum backoff value (we choose 4) 

LLHi is Low level heuristic i 

Tabui is the Tabu value of LLHi (0≤ Tabui≤Backoffi)  

backoffi is the backoff value of LLHi (Backoff_min≤ Backoffi) 

Eligible = {LLHi: Tabui=0} 

Δ(S,LLHi) is the change in the objective function which would result from applying low 

level heuristic LLHi to solution S. 

apply(S,LLHi) is the new solution we get after applying low level heuristic LLHi to 

solution S. 

 

Initialise: 

create an initial solution S (often the solution S is the empty solution). 

for all i: 

      backoffi ← backoff_min 

     choose Tabui uniformly at random in {0,1,2,…, backoffi} 

Iterate: 

     while (Eligible ≠ {}) 

          bestΔ = 0 

          for each low level heuristic LLHi Eligible 

               if Δ(S,LLHi) > 0 

                    backoffi ← backoff_min 

                    if Δ(S,LLHi) > bestΔ 

                         bestΔ ← Δ(S,LLHi)   

                         besti ← i   

               else 

                    if LLHi is “deemed bad” (see text)  

                         backoffi ← 2 * backoffi  

                         choose Tabui uniformly at random in {0,1,2,…, backoffi} 

          for each low level heuristic LLHi Eligible 

               Tabui ← Tabui – 1 

          if bestΔ > 0 

               S ← apply(S,LLHbesti)  

Terminate: 

          for each low level heuristic LLHi 

               if Δ(S,LLHi) > 0 

                    S ← apply(S,LLHbesti) 

                    go to Initialise 

Figure 4.13. The Binary Exponential Back Off (BEBO) hyperheuristic. 
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4.5.2. Computational Experiments 

We compare several hyperheuristic methods (rVNS, HyperGreedy, 

HyperGreedyMore, HyperRandom, HyperRandomMore, 9 BEBO “Best x”, 7 BEBO 

“Prop x”, and 15 “standard” Tabu Hyperheuristics) ten times on five different problem 

instances and averaged the 50 results. The five problem instances require the scheduling 

of 400 tasks using 100 resources over one day using five different skills. Tasks require 

between one and three skills and resources possess between one and five skills. The 

problems reflect realistic problems Trimble MRM have identified and are generated 

using the problem generator used in (Cowling et al., 2006). The complexity of dealing 

with these real-world problem instances means that these experiments require over 155 

CPU days to complete, so they were run in parallel on 88 cores of 22 identical 4 core 

2.0 GHz Machines. Implementation was in C# .NET under Windows. 

rVNS is best rVNS method taken from the previous section. HyperRandom and 

HyperRandomMore are the random hyperheuristics from the previous section with the 

latter including the additional low level heuristics introduced in this section. 

HyperGreedy and HyperGreedyMore are the greedy hyperheuristics from the previous 

section with the latter including the additional low level heuristics introduced in this 

paper. HyperGreedyMore will be the benchmark for all the tests as this is the most 

CPU-intensive approach and produces the best result.  

The BEBO hyperheuristics are described in the above section. We try both of the 

proposed back-off methods with various sets of parameters. We also compare with a 

“standard” Tabu hyperheuristic, setting the Tabu tenure to t=5, 7, 10, 25, 50 each time a 

low level heuristic is tried and fails to give an improvement. We also investigate 

different methods of deciding which LLHs to make Tabu. TabuBest y t=x signifies that 

all but the top y improving low level heuristics will not be made Tabu with tenure x at 
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each iteration. This is similar to the method used in (Burke, Kendall and Soubeiga, 

2003) however we experiment with larger Tabu tenures as we use more low level 

heuristics. We also investigated making all non improving low level heuristics Tabu 

however the results for these were very poor in terms of CPU time (as nearly all of the 

low level heuristics make a positive improvement early in the search even if this 

improvement is very small) and these results are not reported below. In addition to these 

fixed tenures, we try random tenures as used in (Kendall and Hussin, 2005): rTabu Best 

y t=x is similar to Tabu Best y t=x, but with a random tenure between 0 and x each time 

a low level heuristic is made Tabu. 

The results are presented in Table 4.5. We see that the availability of additional 

LLHs significantly improves the performance of HyperGreedyMore relative to 

HyperGreedy and HyperRandomMore relative to HyperRandom. The best BEBO 

method in terms of fitness is BEBO Best 20, which is also one of the slowest since it 

maintains a relatively large set of Eligible low level heuristics. Even so, the worst 

performing hyperheuristic BEBO Best 1 got an average fitness of 97.64% of the average 

fitness of HyperGreedyMore in only 18.52% of the CPU time. Unsurprisingly, the size 

of the set of heuristics considered bad appears to determine the trade-off between 

solution quality and time reduction, although the reduction in solution quality is modest 

given the large reduction in CPU time. In all cases, random Tabu tenures improved 

Tabu search, further supporting previous work (Rolland, Schilling and Current, 1996). 

The fastest “standard” Tabu hyperheuristic rTabu was not as quick as the fastest BEBO 

method and also resulted in poorer quality solutions. The best rTabu hyperheuristic (in 

terms of solution quality) took much more CPU time than BEBO methods which gave 

similar quality.  
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To see how the time reduction scales with the number of low level heuristics, 

HyperGreedy and Best 10 experiments were repeated 10 times with randomly chosen 

subsets of low level heuristics. The results, shown in Figure 4.14, compare BEBO Best 

10 with HyperGreedy with different numbers of low level heuristics. We can see that 

fitness of the two approaches remains very close (none of the results for BEBO Best 10 

dropped below 99.3% of the HyperGreedy fitness). As the number of low level 

heuristics decreases, the time savings for BEBO Best 10 reduce.  When 80 or 90% of 

heuristics have been removed, results are erratic (since the small set of low level 

heuristics is not guaranteed to be rich enough to yield good results). In this case BEBO 

Best 10 deals better with the erratic nature and produces better fitness that HyperGreedy 

on average. 
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Table 4.5. Fitness and Time of individual instances for new hyperheuristic (average of 50 runs). 

Method 
Average 

Fitness 

Average 

Time (s) 

Fitness % of 

HyperGreedy
More 

Time % of 

HyperGreedy
More 

rVNS 21974.9 19.3 88.21% 0.25% 

HyperRandom 19326.7 18.5 77.58% 0.24% 

HyperGreedy 22084.0 233.0 88.65% 2.98% 

HyperRandomMore 20553.8 176.3 82.51% 2.26% 

HyperGreedyMore 24911.3 7807.2 100.00% 100.00% 

BEBO Best 1 24324.6 1446.1 97.64% 18.52% 

BEBO Best 2 24588.6 1775.4 98.70% 22.74% 

BEBO Best 3 24774.3 2043.6 99.45% 26.18% 

BEBO Best 4 24693.9 2077.5 99.13% 26.61% 

BEBO Best 5 24734.6 2209.5 99.29% 28.30% 

BEBO Best 10 24782.8 2572.5 99.48% 32.95% 

BEBO Best 15 24869.3 2825.4 99.83% 36.19% 

BEBO Best 20 24993.8 3150.9 100.33% 40.36% 

BEBO Best 25 24927.1 3261.1 100.06% 41.77% 

BEBO Prop 0.01% 24756.3 2341.1 99.38% 29.99% 

BEBO Prop 0.05% 24737.2 2260.3 99.30% 28.95% 

BEBO Prop 0.1% 24670.5 2295.6 99.03% 29.40% 

BEBO Prop 0.5% 24753.3 2434.1 99.37% 31.18% 

BEBO Prop 1% 24685.3 2278.6 99.09% 29.19% 

BEBO Prop 5% 24543.7 2453.7 98.52% 31.43% 

BEBO Prop 10% 24429.5 2507.3 98.07% 32.12% 

rTabu Best 5 t=5 24420.5 4818.5 98.03% 61.72% 

rTabu Best 5 t=7 24307.0 4151.0 97.57% 53.17% 

rTabu Best 5 t=10 24121.2 3572.1 96.83% 45.75% 

rTabu Best 5 t=25 23976.3 2663.8 96.25% 34.12% 

rTabu Best 5 t=50 22872.2 2271.5 91.81% 29.10% 

rTabu Best 10 t=5 24415.1 5305.6 98.01% 67.96% 

rTabu Best 10 t=7 24459.0 4834.1 98.18% 61.92% 

rTabu Best 10 t=10 24235.2 4251.3 97.29% 54.45% 

rTabu Best 10 t=25 24149.5 3448.7 96.94% 44.17% 

rTabu Best 10 t=50 24014.8 3047.5 96.40% 39.03% 

Tabu Best 5 t=5 18104.2 2641.1 72.67% 33.83% 

Tabu Best 5 t=7 19141.0 2577.4 76.84% 33.01% 

Tabu Best 5 t=10 19364.5 2419.1 77.73% 30.99% 

Tabu Best 5 t=25 18714.3 1968.9 75.12% 25.22% 

Tabu Best 5 t=50 19139.1 1784.8 76.83% 22.86% 

Tabu Best 10 t=5 20085.0 3443.8 80.63% 44.11% 

Tabu Best 10 t=7 19246.5 3028.4 77.26% 38.79% 

Tabu Best 10 t=10 19648.4 2675.3 78.87% 34.27% 

Tabu Best 10 t=25 20143.4 2534.1 80.86% 32.46% 

Tabu Best 10 t=50 20087.3 2351.1 80.64% 30.12% 
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Figure 4.14. Graph showing the relative performance of BEBO Best 10 to HyperGreedyMore with 

different neighborhood sizes. 

 

Figure 4.15. Graph showing the relative performance of each hyperheuristic without resetting 

compared to the performance of using the same hyperheuristic with resetting. 

When the search finds no positive moves in the Eligible set of low level 

heuristics the Tabu tenures of the low level heuristics are reset and all low level 

heuristics are tried again. This is potentially a waste of time, if after resetting and trying 
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all the low level heuristics again no improvement is found. To see the impact this has on 

fitness and CPU time, the methods were tried with and without the reset. Figure 4.15 

shows the relative performance of each hyperheuristic without resetting compared to the 

performance of using the same hyperheuristic with resetting in terms of time and 

fitness. Here 100% would denote that not resetting was equally as good as resetting – 

since all values are below 100%, and some are well below 100% these results indicate 

that resetting is essential, and its effects on the time used are modest. 

 

 

Figure 4.16. Graph showing the fitness against CPU time of the BEBO Best 20 and 

HyperGreedyMore heuristics. 

Figure 4.16 shows the difference in the evolution of fitness through time for BEBO Best 

20 and HyperGreedy More. The curve for BEBO Best 20 stays well ahead of the 

corresponding curve for HyperGreedy More, until very late in the search process. There 

is good evidence here of the efficiency savings resulting from exponential back-off, 

which waste far less function calls to poor LLHs. 
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Figure 4.17. Graph showing the Tabu Tenure and Backoff of a two different low level heuristics 

over the iterations of the search. 

Figure 4.17 shows how the BEBO Tabu tenures change over the search for two 

typical low level heuristics with very different properties. The plot shows Backoffi  and 

Tabui at each iteration of a BEBO Best 20 run for LLH0 and LLH23. LLH0 is used 

towards the end of the search and as we can see, BEBO is very efficient only trying the 

low level heuristic about 7 times in the first 150 iterations. Later in the search LLH0 

maintains a low back-off value, and produces useful solution improvements. LLH23 

performs well at the beginning of the search but after about 96 iteration it no longer 

serves a useful purpose. Hence Figure 4.17 clearly shows the back off value and the 

Tabu tenure increasing so that little time is wasted with the low level heuristic later in 
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the search. These behaviours are typical of the BEBO approach, as is the (less 

interesting, and very common) behaviour where a consistently poor heuristic is called 

only rarely right throughout the search. 

4.5.3. Analysis 

This section investigates the use of Binary Exponential Back-Off (as used in computer 

and telecommunications networks) to set the Tabu tenure for low level heuristics in a 

hyperheuristic framework. The approach has been empirically tested on a complex, real-

world workforce scheduling problem. The results have shown the potential of the new 

method to generate good solutions much more quickly than exhaustive (greedy) 

approaches and standard Tabu approaches. In particular, the benefits of the approach 

increase with increasing neighbourhood size (i.e. with an increased number of low level 

heuristics). Binary Exponential Back-Off is able to produce results very close to a 

highly CPU intensive greedy heuristic which investigates a much larger set of low level 

heuristics at each iteration, in terms of fitness, and is able to do so in a fraction of the 

CPU time. BEBO performs much better than “standard” fixed and random Tabu tenure 

hyperheuristics. Different method for deciding which heuristics to back off were tested, 

since adjusting the number of low level heuristics backed off determines the trade-off 

between CPU time used and solution quality. We have shown that modifying the 

number of low level heuristics backed off may be used to adjust the search and trade off 

time available against solution quality. 

In principle our exponential back-off methods could be used in any Tabu 

implementation with large neighbourhoods, which provides a promising possible 

direction for further research. 
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4.6. Summary 

In this chapter, first search based heuristic were used to improve schedules produced by 

a genetic algorithm. The results showed that solutions generated by the simple 

construction heuristic in the genetic algorithm were poor and could easily be improved 

with local search. Various methods were used and the results compared showing local 

search as a promising technique for the problem. 

Then, a hyperheuristic framework was investigated and low level heuristics were 

created using exact/heuristic hybrids. These low level heuristics worked on a specific 

part of the problem and solved it exactly. The heuristic part picked a task to be inserted 

next and the potential resources to do the task. The exact part then enumerated every 

possible insert using that task and a subset of the potential resources to find the best 

insertion. 

Experimentation was done using over 100 of these low level heuristics. Results 

showed that using them in a greedy search, though time consuming, produced better 

results than a reduced Variable Neighbourhood Search method. The reduced Variable 

Neighbourhood search was the best of many hand crafted heuristics created using 

selected low level heuristics as neighbourhood functions.  

Analysis of the low level heuristic usage in the greed hyperheuristic showed that 

about a quarter of the low level heuristics were never used and 50% were used less that 

1% of the time. This suggests that the greedy hyper heuristic could be sped up by not 

wasting time trying these poorly performing low level heuristics (if they could be 

identified). 

Binary Exponential Back-off was used as a method to control Tabu tenures in a 

Tabu hyperheuristic based on the greedy hyperheuristic. The aim was to exponentially 

decrease the time you spend trying bad heuristics without penalising them if they do 
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start performing well. Many variations were tried and the results compared to the 

unmodified greedy hyperheuristic and standard Tabu based hyperheuristics. The results 

showed that using binary exponential back-off gave the ability to trade of solution 

quality for CPU time, depending on the parameters used. Even so, the loss in solution 

quality was extremely small compared to the savings in CPU time. Selected parameters 

produced results of 97.64% fitness using 18.52% of the CPU time and 100.33% fitness 

in 40.36% of the CPU time when compared to the greedy hyperheuristic. 

Analysis of the back-off of some of the low level heuristics showed that the 

back-off was working as intended and that low level heuristics which performed well 

were not backed off and these that performed repeatedly poor were backed of 

exponentially until they started performing well. These results show Binary Exponential 

Back-Off to be a very useful method for decreasing CPU time in hyperheuristics and 

potentially other search based heuristics with large neighbourhoods. 

 

 



 

 

Chapter 5  

The Variable Fitness Function 

In this chapter a new search technique called the Variable Fitness Function will be 

defined and analysed. The Variable Fitness Function can be used to enhance a search 

based optimisation method if the method uses a weighted sum fitness function (or can 

be made to do so) and extra CPU time is available. 
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5.1. Motivation 

When modelling a real-world decision problem as a problem of combinatorial 

optimisation, it is usually assumed that there is a single underlying objective (fitness) 

measure to allow automatic comparison between candidate solutions. In real problems, 

this objective measure is almost always a function of several underlying sub-objectives 

relating to revenue, cost, staff and customer satisfaction, sustainability etc. (Viana and 

de Sousa, n.d.) (Thiagarajan and Rajendran, 2005), and solution heuristics are often 

highly tailored to deal with complex problem-specific decision rules. In commercial 

computerised decision support systems a weight is usually assigned to each sub-

objective to reflect its relative importance, and the objective consists of a weighted sum 

of sub-objectives (Thiagarajan and Rajendran, 2005). Allowing the user to make these 

choices of relative importance up front often works well in practice, since it allows (and 

empowers) users to make difficult a priori decisions of importance as a decision support 

system is implemented, and potentially to engage in “what if?” analysis of different sub-

objective weights, when time allows (MacCarthy and Wilson, 2001). The weighted sum 

objective reflects the relative importance of sub-objectives in a “finished” solution. This 

is not an issue for exact approaches which guarantee to find an optimal solution (e.g. 

(Albiach, Sanchis and Soler, n.d.)), but since heuristic approaches are usually used for 

hard combinatorial optimisation problems (Kolisch and Hartmann, 2006), the objective 

weights for a “finished” solution may be a poor reflection of the objective weights 

which would provide the best local decision for a heuristic, working on a partial or 

poor-quality solution. Designing an objective function which varies from iteration to 

iteration, and takes account of the features of the current solution and the heuristic 

method(s) used to solve it appears to be a very difficult task. 
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Local search and other search based heuristics have the problem of local 

minima. That is solutions to which there are no better neighbouring solution but which 

the solution is not globally optimal. Metaheuristics attempt to overcome this, generally 

by giving the search the ability to accept a worse solution in the hope of finding a better 

solution, however due to the nature of the fitness function, they may fail. Consider 

Figure 5.1 where the grey areas are infeasible solutions and the star marks the 

incumbent solution. 

 

 

Figure 5.1. Sample minimisation problem for a greedy steepest descent search 

The arrow here indicates the search direction and the dotted line shows the tangent to 

the search direction. A greedy hill climbing/or steepest decent search would only accept 

solutions to the left of this line, so it is clear from this example that a local search using 

one of these techniques would fail to find the global optima, as it could never leave the 

local optima it is heading for. Metaheuristics provide a solution for this by allowing the 

acceptance of inferior solutions. For example, VNS makes kick moves when local 

optima are reached. These kicks get increasingly bigger. But if these kicks get too big, 

y 
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then it becomes like a random restart, and if too small, the local optima can’t be 

escaped. Figure 5.2 shows an example of this. 

 

 

Figure 5.2. Example moves the kick method of a Variable Neighbourhood Search may make 

Designing neighbourhood functions, or modifying existing ones to try and overcome 

these problems (to which identifying the problem may be half the task), may be 

impossible, hard or require a lot of work. A simple way to achieve the same task is to 

modify the problem. Instead of modifying the problem, which could be as hard as 

designing new heuristics/neighbourhoods and is specific to the given problem, we 

decide to modify something common in all optimisation problems: the fitness function. 

Because of this, the Variable Fitness Function can also be used to enhance searches that 

are bespoke or too complex to improve and this can be done without problem 

knowledge. This could potentially save a lot of expert time trying to create new 

heuristics for a new problem and indeed from our experimental results we have evolved 

variable fitness functions which have observed behaviour similar to well known 

heuristics. 
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If in the problem given above, the fitness function was modified to min f = y – x 

at the start and then changed back to min f = x + y, we might see a search move as in 

figure 5.3. In general, we cannot see the shape of the fitness landscape and so defining 

these changes becomes the problem. For this we use an evolutionary algorithm defined 

in the next section. 

 

 

Figure 5.3. Example of how changing the fitness function can lead to escaping a local optima 

5.2. Definition 

The Variable Fitness Function approaches describe how the weights of a weighted sum 

fitness function change over the iterations of a search process, although other 

approaches are possible where the VFF modifies a nonlinear combination of objectives, 

or adjusts weights dependent upon other factors than time. The Variable Fitness 

Function in this case is piecewise linear, describing the relative importance of objectives 

at each iteration. We consider two alternatives: the standard Variable Fitness Function 

fixes the number of discontinuities and the number of iterations between them. The 

y 
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adaptive Variable Fitness Function allows the points of discontinuity to evolve along 

with the Variable Fitness Function objective weights (These two methods will be 

described in detail in the next sub sections.)  

5.2.1. Standard Variable Fitness Function 

We define a set of weights {Wa,b} where a indexes the weight set (a=0…A-1) and b 

indexes the objective (b=1…B). We define I, the number of iterations between the 

weight sets. The Variable Fitness Function is now defined as:  

 

 

 

 

 

where s is the solution to be evaluated and i is the iteration, Ob(s) is the value of 

objective b for solution s, and  

 

 
 

 

 

(i.e. the linear interpolation of the weight of objective b for iteration i) 
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Figure 5.4. An example standard Variable Fitness Function. The number of weight sets (3) and the 

number of iterations between them (100) are fixed. 

Figure 5.4 shows how the weights of an example Variable Fitness Function change over 

iterations. The final set of weights are evolved like the rest of the weights and are not 

fixed as the global fitness function, however, observations of evolved variable fitness 

functions show that these weights are often similar to the global fitness function. 

5.2.2. Adaptive Variable Fitness Function 

Initial experiments with the standard Variable Fitness Function quickly showed its 

weakness. If the number of iterations between discontinuities was too small, the 

solution quality would suffer due to the unstable nature of the objective weights. If the 

number of iterations was to large, CPU time would be wasted while stuck in local 

optima waiting for a change of objectives. The adaptive Variable Fitness Function does 

not require an effective number of weight sets and iterations between them to be known. 

These are evolved along with the weight data to find appropriate values, which can lead 
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to more complex Variable Fitness Functions. For the adaptive version we define a set of 

“gaps” Ia such that weight set a starts at Ia-1 iterations after the previous weight set (or at 

iteration 0 if it is the first weight set). We then redefine Wb(i) as 
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where iteration i occurs in the range from weight set c (starting at iteration j) to weight 

set c+1 (starting at iteration k). 

 

 

Figure 5.5. An example adaptive Variable Fitness Function. In this example, the number of 

iterations between the weight sets and the number of weight sets may vary. 

Figure 5.5 illustrates an adaptive Variable Fitness Function, showing how the weights 

change over the iterations, for example, that the weight of objective 1 (W1) starts at 2 

(hence the objective is to be maximized) and then after iteration 200 its importance 
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starts to decrease. This if often useful for objectives which are high level (such as the 

priority of scheduled tasks) but which become less important later, during schedule 

refinement Objective 3 (that has weight W3) is to be minimized, and its importance is 

higher at the start and end of the search process. This can be useful for objectives 

related to schedule stability, when repairing a schedule, which must be taken into 

account while major changes are being made, early in repair, but can then assume less 

importance during a period of diversification to avoid local optima, before being “fixed” 

at the end of the process. 

5.2.3. Evolution 

Little work has been done in encoding piecewise linear functions such as these into 

chromosomes. A complex encoding for polynomial expressions is proposed in 

(Potgieter and Engelbrecht, 2007), where an encoding is used to optimize a curve to fit a 

function described by a set of data points and is not an appropriate method in this case. 

The evolution here is actually more similar to work done on tuning of parameters for 

another algorithm using genetic algorithms (Shimojika, Fukuda and T., 1995). 

When optimizing the weights of the Variable Fitness Function, each weight in 

the Variable Fitness Function appears as a gene in a GA chromosome. When the 

adaptive Variable Fitness Function is used, the iterations between the weight sets are 

also included. Figure 5.6 shows how the weight sets are mapped to the genes of a 

chromosome.  

A modified version of 1 point crossover (Reeves, 1995) will be used, where the 

crossover point may only be on a weight set boundary so as to keep mutually 

compatible weight sets together. The thick lines in Fig 5.6 show these crossover points. 

Each gene will have a chance to be mutated with a probability of pmut, the mutation rate. 
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Mutation will simply perturb the value of the gene by adding a random variable 

normally distributed around 0 and with the standard deviation defined for that weight. 

Hence Wa,b is perturbed by a value from the normal distribution N(0, Vb) with 

probability pmut. Where Vb is the standard deviation of mutation associated with 

objective b and pmut is the probability of mutation, which is the same for all alleles. This 

is similar to work done on mutation of artificial neural network weights evolved using 

GAs (Yao, 1999) where the network weight is mutated by a random number selected 

from a normal distribution. 

 

W0,1 … W0,B W1,1 … W1,B … WA-1,1 … WA-1,B 

(1) 

W0,1 … W0,B I0 W1,1 … W1,B I1 … WA-1,1 … WA-1,B 

(2) 

1 0 -1 0.5 0.75 1.25 0 0.5 0.8 -1 0 0.75 

(3) 

2.0 -2.95 -0.15 148 2.0 -0.3 -1.99 52 2.00 -0.51 -2.1 84 1.69 -0.81 -0.21 74 1.38 -3.07 1.39 

(4) 

Figure 5.6. Mapping the weights to a chromosome for a standard Variable Fitness Function (1) and 

an adaptive Variable Fitness Function (2). (3) shows chromosome representing the fixed length 

Variable Fitness Function in Figure 5.4. (4) shows chromosome representing the adaptive length 

Variable Fitness Function in Figure 5.5. 

The initial population of Variable Fitness Functions is generated at random. We may 

also seed the initial population with the global fitness function. These seeds are Variable 

Fitness Functions where the weights are constant over all iterations and equivalent to 

the global fitness function, and we insert suitable break points to allow for later 

mutation. This may give the genetic algorithm a good individual to work from or 

provide good genetic material to create other individuals. For the random individuals 

Wa,b is picked uniformly at random out of the interval [Lb, Ub], where Lb and Ub are 
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parameters which may be different for each objective b. Seeding the initial population 

with the global fitness function and using an elitist replacement scheme would ensure 

that in a worst case scenario, the best individual of the final population is a Variable 

Fitness Function representing the global fitness function. In cases where the global 

fitness function is seeded we often see the evolution process building off these seeded 

individuals. 

In the adaptive VFF there is also a padapt probability that the chromosome will 

change length to either increase or decrease the complexity of the variable fitness 

function. If a chromosome is to change length there is an equal probability it will either 

shrink or grow by one weight set. If it is to shrink, a random weight set is chosen and 

removed from the chromosome. If it is to grow, a new weight set is inserted between 

two randomly chosen adjacent weight sets. The inserted weight set does not 

immediately change the shape of the Variable Fitness Function as it is inserted exactly 

half way between the two adjacent weight sets and has weight values that are the mean 

of the bordering weight sets. The new weight set is then mutated to introduce slight 

variations. The Ia genes also have a pmut probability of being mutated by a normal 

distribution with a variance of 5% of their initial value. This gives the chromosomes a 

chance to get more and less complex and to also expand to more or less iterations. 

We have introduced several parameters in this section but our experiments using 

the TSP and workforce scheduling problems show that the performance of VFF is not 

very sensitive to these parameters, so Lb and Ub can be set to -1 and 1 respectively 

without losing any information as any weighted sum objective function can be 

normalized so that weights will generally lie within this range. Normalization of a 

vector of weights from a weighted sum fitness function is done by dividing the vector 

by the maximum absolute value of the vector’s component values. We have found that 
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Vb set to any value around 5% of the range (Vb = 0.05(Ub – Lb)) also works well. All the 

variable fitness function experiments in this thesis have used these default values unless 

stated otherwise. In the experiments carried out pmut= padapt=0.05 unless stated 

otherwise. This lack of sensitivity could be due to the higher level nature of the Variable 

Fitness Function, and a similar lack of parameter sensitivity has been observed in the 

study of hyperheuristics which also operate at a higher level (Chakhlevitch and 

Cowling, 2008). 

5.3. Comparison with other Meta-heuristics 

The Variable Fitness Function is a metaheuristic as it works with another heuristic but 

at a higher level and can be applied to any search based optimization heuristic without 

modification so long as two conditions are satisfied: (i) The objective function can be 

expressed in terms of two or more sub-objectives (which is almost always the case in 

our experience of practical problems) or additional objectives can be found for single 

objective problems; and (ii) We have enough CPU time to run the heuristic many times. 

More importantly, no modification of the underlying heuristic is needed. 

Several metaheuristics have been described in literature that use the same 

method of changing the Fitness Function to aid the heuristic process. Generally 

speaking these metaheuristics require problem specific knowledge and modifications to 

the local search process. If the search heuristic is bespoke and complex (as it often is for 

real-world problems), some metaheuristics may prove hard to implement. Here we 

describe three local search metaheuristics that are effective and have the practical 

advantage that they are easy to implement for complex, practical problems (although 
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even for these three heuristics, we believe the VFF approach is likely to be easier to 

implement in practice). 

Simulated annealing (Aarts and Korst, 1989) works by changing the acceptance 

criteria of a local search operator (an artificial way of changing the fitness function). It 

will always accept moves which lead to a better solution, however it also has a chance 

to accept moves that make the solution worse (according to a global fitness function). 

This probability of accepting a worse move is controlled by a cooling scheme and is 

inversely proportional to how bad the move is and how long the search has been 

conducted. High early acceptance probability helps diversity at the beginning and 

reducing probability helps intensify the search toward the end. In the survey done by 

Kolisch and Hartmann (Kolisch and Hartmann, 2006) the heuristic was shown to be 

competitive and performed well ranking about midway of the tested heuristics for the 

Resource Constrained Project Scheduling Problem (RCPSP). Simulated Annealing has 

the great advantage for complex, practical problems, that it is usually easy to 

implement, Given a local search heuristic, all that is needed is a simple change the 

acceptance criteria. However, tuning the cooling scheme so that it is effective for 

most/all problem instances can be tricky and is usually a matter of trial and error. 

Guided Local Search (GLS) (Tsang and Voudouris, 1997) modifies the fitness 

function to change the search direction the search heads when search is stuck in a local 

optimum. Features of a solution are identified and penalties for solutions exhibiting 

these features are increased when the solution is stuck in a local optimum. Guided Local 

Search redefines the objective function thus: 
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where  is the weighting for the guided local search, F is the number of features, pi is 

the penalty value for the i-th feature and Ii(s)=1 when s exhibits feature i, 0 otherwise. 

When the search settles in a local optimum s* the utility of penalizing feature i is 

defined by:  

 

The feature or features with the largest utility will be penalized by increasing their 

penalty values. This has the effect of changing the fitness function and forces the search 

to move in another direction. An evolutionary variation of GLS is given by the Stepwise 

Adaptation of Weights (SAW) evolutionary algorithm (eggermont, 1999). SAW also 

uses changes of weights to escape local minima, but in this case the weights are applied 

to an evolutionary algorithm rather than a local search algorithm. The SAWing 

algorithm of (Eiben et al., 1998) was applied to Constraint Satisfaction Problems, where 

each constraint is given a weight. After every n evaluations, the weights of the fitness 

function are adjusted depending on the constraints that are the most violated in the 

population. For a Constraint Satisfaction Problem, identifying “features” is easy for 

both the GLS and SAW EA, however it may not always be straight forward for more 

complex problems. The VFF approach differs from the SAWing and GLS approach 

essentially in that the VFF approach finds weights for objectives which are already 

present, so that there is a much “lighter touch” in terms of modification of the solution. 

Later we will show that this light touch can be highly effective even though it requires 

only very limited change to the solution heuristic. 

Variable Neighborhood Search (Mladenovic and Hansen, 1997) (VNS) is based 

on the idea of systematically changing the neighborhood of a local search algorithm. 

Variable Neighborhood Search enhances local search using a variety of neighborhoods 

to “shake” the search into a new position after it reaches a local optimum. Several 
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variants of VNS exist as extensions to the VNS framework (Hansen and Mladenovic, 

2001) which have been shown to work well on various optimization problems. Variable 

neighborhood search is relatively easy to implement. The shake moves can simply be 

“chained” random local search moves as in (Lin, 1965) but if this is not adequate, new 

shake moves may have to be implemented. These shake moves ignore the fitness 

function and are just accepted. 

These local search metaheuristics all require modification of the local search. In 

the case of simulated annealing, only a minor change to the criteria of accepting a 

neighbouring solution is needed, however in guided local search and variable 

neighbourhood search, much larger changes are needed. The methods may also require 

extensive tuning and may be sensitive to the addition of spurious objectives and 

constraints. The Variable Fitness Function requires no modification of the underlying 

local search and hence can easily be used to enhance any local search method. This 

becomes particularly important when trying to solve complex, real-world problems with 

a wide range of objectives and a detailed model, where the VFF approach provides a 

straightforward way to further enhance an existing approach. 

5.4. Summary 

This chapter introduces and motivates the Variable Fitness Function as a general-

purpose approach to enhance a wide variety of search methods. The Variable Fitness 

Function defines precisely how the weights of a Weighted Sum Fitness Function change 

over the course of the search with the aim of evolving new heuristics Unlike any of the 

literature, these changes are defined before the search starts and does not use local 

information to decide on the path. A simple evolutionary algorithm is described which 
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can be used to evolve Variable Fitness Functions which vary over the iterations of a 

search. The approach is compared to related methods from the literature. 

 



 

 

Chapter 6  

Variable Fitness Function Case 

Studies 

In this section the Variable Fitness Function is implemented for various problems with 

unique and interesting characteristics. Experimental investigations show the 

effectiveness of the Variable Fitness Function to produce superior results. 
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6.1. Application to the Travelling Salesman 

Problem 

The Travelling Salesman Problem (TSP) is a well studied optimization problem which 

usually has the single objective to minimize tour length (Lawler et al., 1985). We study 

a multi-objective variant of the TSP (MO-TSP) and use the Variable Fitness Function to 

guide a 2-opt local search (Croes, 1958) to find better solutions than 2-opt alone. 

The TSP consists of a set of n cities, and a cost matrix cij (1 ≤ i,j ≤ n) that defines 

the cost of travelling from city i to city j. The aim of the TSP is to determine a tour of 

minimum length visiting each city only once and returning to the starting city.  The 

Symmetric TSP (STSP) adds a further constraint that cij = cji for all i,j. We study a 

variant of this such that each (unordered) pair of cities has B uncorrelated objectives 

associated with it. The global objective is to find a tour which minimizes a weighted 

sum of the B objectives. Such a problem can easily be converted into an STSP (and in 

fact we do to solve them exactly). This way of creating multi objective TSP problems is 

related to the work of Jaszkiewicz et al (Jaszkiewicz, 2002) who use uncorrelated 

objectives to make the symmetric TSP into a multi-objective problem. We simply split 

each edge weight at random to demonstrate the effectiveness of VFF in this 

(uncorrelated) case. 

Figure 6.1 shows an example problem. In the problems we look at, all costs are 

generated uniformly at random between 0 and 1. “Splitting” each edge in this way 

provides a way to convert a single-objective TSP to a multiple objective problem, which 

is readily applicable to other problems. However, in most of the real-world problems 

which we study, including the workforce scheduling problem, there are already many 

(often too many!) objectives. 
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Figure 6.1. Example MO-TSP with 4 cities and 2 objectives 

6.1.1. Variable Fitness Function Usage 

We investigate 3 different constructive solution generation methods and the 2-opt local 

search improvement heuristic. We will then use the Variable Fitness Function to 

enhance these methods in two ways. Firstly, just enhancing the 2-opt part and secondly 

enhancing the initial solution generation method as well. The methods are shown in 

Table 6.1. All of these heuristics for the TSP are well known – see (Lawler et al., 1985) 

for details. 

The three initial solution generation methods we use are an arbitrary random 

solution (AR), and solutions generated using the nearest neighbor (NN) and multiple 

fragment (MF) constructive heuristics. The arbitrary solution is simply the tour where 

all the nodes are visited in a fixed, randomly chosen order. Nearest neighbor starts the 

tour at a given point and repeatedly adds the nearest unvisited city to the city at a fixed 

end of the current partial tour until a complete tour is found. Multiple fragments is 

similar to nearest neighbor as at each iteration it adds an edge between the two closest 
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unconnected cities whose connection does not form a cycle (unless it is the last edge to 

be added).  

Table 6.1. Heuristics and Variable Fitness Function enhanced versions used in our experiments 

Heuristic Description 

AR Solution is an arbitrary solution 

NN Solutions are generated using a stochastic nearest neighbor algorithm 

MF Solutions are generated using a stochastic multiple fragment algorithm 

AR + 2opt Solutions are generated using AR and improved using a stochastic 2-opt 

NN + 2opt Solutions are generated using NN and improved using a stochastic 2-opt 

MF + 2opt Solutions are generated using MF and improved using a stochastic 2-opt 

AR + VFF(2opt) Solutions are generated using AR then improved using 2-opt where the 

fitness function for 2-opt is evolved  

NN + VFF(2opt) Solutions are generated using NN then improved using 2-opt where the 

fitness function for 2-opt is evolved 

MF + VFF(2opt) Solutions are generated using MF then improved using 2-opt where the 

fitness function for 2-opt is evolved 

VFF(NN + 2opt) Solutions are generated using NN and improved using 2-opt where the 

fitness function for both the NN and the 2-opt algorithm is evolved  

VFF(MF + 2opt) Solutions are generated using MF and improved using 2-opt where the 

fitness function for both the MF and the 2-opt algorithm is evolved  

 

Table 6.2 shows the parameters used in the evolution. Picking the weights between -1 

and 1 gives us the possibility to start the search in every direction, including those 

negatively correlated with the global fitness function.  

2-opt is a simple local search heuristic which improves a TSP solution by finding edges 

(i, j) and (k, l) in the current tour such that cij + ckl > cik + ckl and replacing edges (i, j) 

and (k, l) with (i, k) and (j, l). For each of the NN, MF and 2-opt heuristics we consider 

stochastic versions where instead of greedily choosing the best at each iteration, we 

choose peckishly (Corne and Ross, 1995), so that we choose one of the best two 
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possibilities at each iteration, with equal probability, so generating a different solution 

in each run and allowing us to use extended CPU time effectively when doing multiple 

restarts. 

Table 6.2.Parameters used to evolve the Variable Fitness Functions for the multiobjective TSP 

problems 

Objective  

b. 

Initial 

Value 

Lb…Ub 

Standard 

Deviation 

Vb 

1 -1…1 0.1 

2 -1…1 0.1 

6.1.2. Computational Experiments 

Each of our ten methods was run 5 times for each of 5 problem instances. They were 

given the same CPU time (15 minutes on a 3Ghz Pentium 4, with all code implemented 

in C#) in which to find a solution and were restarted if they completed before the 

allotted time. The optimal solution of each of the 5 instances was found using 

CONCORDE (Applegate et al., n.d.). The five instances have 100 cities and 2 

objectives, equally weighted in the global fitness function. The quality of a method will 

be assessed by the average deviation from the optimal tour, measured by this global 

objective, over the 25 runs.  

To tune the genetic algorithm parameters for the Variable Fitness Function 

evolution, the genetic algorithm was run for 1000 fitness evaluations with different 

population sizes of 10, 20 and 40 in an attempt to find the best parameters. The 

population was seeded with 0, 1 and All global fitness functions to see the difference. 

The parameter tuning experiments show that the genetic algorithm was not sensitive to 

the parameters. A population size of 20, and seeding with no global fitness functions 

were among the best set of parameters and were used for the rest of the experiments. 
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Figure 6.2. Average Deviation of the ten tested methods from the optimal solution. Error bars show 

90% confidence intervals averaged over 5x5 runs. 

 The comparative results are shown in Figure 6.2, showing each method’s 

average deviation from the global optimum over 5 runs of 5 problems instances with 

90% confidence intervals. We can see that NN provides the weakest result. 2-opt can be 

seen to improve the NN and MF heuristics considerably as expected. When we enhance 

the 2-opt with the Variable Fitness Function, we can see significant further 

improvements (at 90% confidence). Overall the results demonstrate that the MF + 

VFF(2opt) and VFF(MF + 2opt) perform the best. For every heuristic H in our 

experiments, VFF(H) performs much better than H. MF + 2opt has a wide 90% 

confidence interval, but for all other heuristics H, VFF(H) is significantly better at the 

90% confidence level . These results provide good evidence that the Variable Fitness 

Function can be used to enhance a simple local search without using additional problem 

knowledge or modification of the search technique. 
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Figure 6.3. Sample of the best Variable Fitness Functions evolved for the VFF(NN + 2Opt) heuristic 

for different MO-TSP problems. 
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Figure 6.3 show a sample of the best Variable Fitness Functions evolved for different 

MO-TSP problem instances. They are quite different and have very little in common. 

Each one is quite different because the problem instances have nothing in common. 

This is as expected because the objectives were generated randomly and uncorrelated, 

and we observe less heterogeneity for the two other problems which we study in this 

chapter, where objectives are correlated. This implies, not surprisingly, that there is not 

a single good Variable Fitness Function for this set of uncorrelated MO-TSP problem 

instances. This can be seen where the weights of Variable Fitness Function change 

priority (for example at approximately iteration 75 of the first graph). This could be 

because the search has reached a local optimum with respect to one objective and 

changing the direction toward optimizing the other objective avoids or escapes it.  

To show that the evolved Variable Fitness Functions exploit the characteristics 

of the search operators acting on individual problem instances’ characteristics rather 

than the characteristics of the TSP itself, we used each of the evolved Variable Fitness 

Functions for VFF(NN + 2opt) on the other problem instances for which it was not 

evolved. Figure 6.4 shows this comparison and indicates that using an incorrect 

Variable Fitness Function is worse than using the global fitness function (comparing 

Mismatched VFF(NN + 2 opt) to NN + 2 opt). Lack of correlation between problem 

instances means that this is not possible, but for related instances, this may be possible. 

For problems where there is significant correlation between the objectives in different 

instances, a VFF generated using historical problem instances is likely to show good 

performance on future problem instances as with the scheduling case study presented in 

this chapter. 
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Figure 6.4. Mismatched VFF(NN + 2 opt) represents the average deviation from the optimal solution 

when using Variable Fitness Function evolved for other problem instances. 90% confidence 

intervals averaged over 25 runs) 

Figure 6.5 shows a visualization of the search process of a Variable Fitness Function for 

an AR + VFF(2opt) search. The top plot shows the evolved Variable Fitness Function 

and the plot below it shows the behaviour during a search. Current Solution Fitness 

shows the fitness of the solution at each iteration (as measured by the global fitness 

function). Moves to Local Optimum and Local Optimum Fitness show the number of 2-

opt moves the current solution is to the 2-opt local optimum that would be found if the 

weights were fixed (at the VFF values) and the fitness of that local optimum. When the 

Moves to Local Optima reaches zero the search is at a local optimum. When it increases 

after being zero it has changed search direction and escaped a local optimum. While 

Local Optimum Fitness stays constant, the search is heading for a fixed local optimum, 

and when it changes it has changed direction. When the Local Optimum Fitness is 

worse than the Current Solution Fitness the search is heading in a non intuitive way (in 

terms of the global fitness function), away from a local optimum. 
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Figure 6.5. Visualising the search. Fitness uses the right axis and are measured in term of the global 

fitness function. 

From Figure 6.5 we see that the search is both escaping local optima and changing 

direction to avoid local optima throughout the evolution of the VFF. Until a good local 

optimum is reached the Moves to Local Optimum stays high, keeping the search away 

from poor local optima (iterations 1-120). After a good local optimum is reached, the 

Moves to Local Optimum is increased by more radical changes in the objective weights 

(iterations 150-170). During the beginning of the search the Current Solution Fitness 
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does not improve much and the Local Optimum Fitness varies a lot. This appears to 

indicate that search is moving to a different area of the search space, with respect to 

both fitness functions (iterations 1-70). We then see a period of intensification where 

there is a large improvement in the solution quality and the Local Optimum Fitness 

varies less and the Moves to Local Optimum steadily decreases indicating it is heading 

toward the same local optima (iterations 50-120) At around iteration 140, the search has 

reached a local optima for both the VFF and the global fitness function after which, we 

see a change in the priority of weights in the Variable Fitness Function which leads the 

search to another, slightly better, local optimum at around iteration 200. During the 

period of “diversification” we can see that the Local Optimum Fitness is worse than the 

Current Solution Fitness (iterations 16-170). This is because the objective a weight has 

become very small and the search is probably pushing toward the other objective at the 

expense of this objective. 

6.2. Application to the Virus Board Game 

Virus is a two player zero-sum board game of complete information (Cowling, 2005). In 

previous work (e.g. (Kendall and Whitwell, 2001) for Chess and (Lucas and Runarsson, 

2006) for Othello), the weights of a board evaluation function have been tuned using 

evolutionary techniques. It is intuitive that the ideal tactics at the beginning of a game 

will be different from those in the middle and end of a game, although defining the 

precise move where each stage stops and the next one starts may be difficult. In this 

section we show that the Variable Fitness Function can learn a strategy which changes 

over the course of the game, without needing information as to the nature of the game or 

the approach being used to select moves, and that it is competitive against hand crafted 
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AI players. Since it is clear that tactics should change over the course of a game, but it is 

far from clear when these changes should take place, the Variable Fitness Function 

would seem a promising approach. This problem is quite different from the TSP 

problem above and the scheduling problem below, since given the very complex 

discontinuous and non-linear nature of the objectives, this should provide a stern test for 

the VFF approach. 

6.2.1. Problem Description and Variable Fitness Function Usage 

The virus game is played on an 8x8 square board, and was first seen in the video game 

“Seventh Guest” (Matthews, n.d.) (Cowling, Naveed and Hossain, 2006). The objective 

is to control more squares than your opponent at game end, through “infecting” your 

opponent’s pieces with one-space “grow” moves and two-space “jump” moves. It has 

some similarities to the better known “Othello” (Lucas and Runarsson, 2006) (Hingston 

and Masek, 2007) but has a much higher branching factor. Anecdotal evidence of over 

100 people that have played the game suggests that it is tactically rich, and difficult for 

a human to play well. See (Cowling, 2005) for a complete description of how the game 

is played. The Variable Fitness Function approach will be used to determine the weights 

of a board evaluation function used within an alpha-beta minimax search framework. 

The board evaluation function is made up of 18 objectives. These are formed from 9 

different measures of the board from each player’s perspective. The measures are 

described in Table 6.3 and are chosen to give a good representation of the state of play 

from both the player and the opposition’s point of view. It should be noted that finding 

the “true” evaluation function is extraordinarily hard to compute (Iwata and Kasai, 

1994). 
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Table 6.3. Virus Board game objective measures. 

Measure Description 

Square Count The number of squares a player has captured. 

Safe Square Count The number of squares the enemy can  never capture. 

Biggest Grow Move The biggest amount of pieces a “grow” move can capture 

from the board position. 

Biggest Jump Move The biggest amount of pieces a “jump” move can capture 

from the board position. 

Squares 1 Number of empty squares at distance 1 from the player. 

Squares 2 Number of empty squares at distance 2 from the player. 

Squares 3 Number of empty squares at distance 3 from the player. 

Sum of Distances Sum of the distance to all empty squares on the board. 

Capture Potential Measures how vulnerable a board position is to the 

player. 

 

In (Cowling et al., 2004), Virus was used as a teaching aid for AI where 50 students 

were asked to write AI players for the game. Final year undergraduate and Masters 

students wrote a board evaluation function for a Virus player that used minimax search 

to a depth of 3 ply and alpha-beta pruning (Knuth and Moore., n.d.). Such players use 

limited CPU time, but play a strong game as judged by anecdotal evidence from human 

opponents. Our Variable Fitness Function player will use the same mini-max approach 

and will play against these hard coded players, as well as the top evolved players from 

the previous generations.  

6.2.2. Computational Experiments 

The 50 hand coded players played in a tournament to determine their relative 

performance. The top two are used to provide the fitness of evolved players in training 

and the second top two will be used to test the evolved players after training to make 
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sure that the evolved players are learning tactics rather than “overfitting” (Mitchell, 

1997) to beat the top two players.  

The individuals evolved will be played against the best two hand crafted players 

and the three best evolved players found from previous generations. Each of these 5 

opponents will be played twice (once as the black player and once as the white player) 

and 3 points will be awarded for a win, 1 point for a draw and 0 for a loss, with 0.0001 

points being added for each square on the board that belongs to the player at the end of 

the game to break ties and reward clear victory more highly than marginal victory. The 

fitness of an individual is the sum of its points for each of the 10 matches hence the 

maximum score for an individual is just over 30. After evolution, the best evolved 

players will be played against the third and fourth best hand coded players. 

Table 6.4. Parameters used to evolve the Variable Fitness Functions for the Virus problem 

Objective  

b. 

Initial Value 

Lb…Ub 

Standard 

Deviation 

Vb 

all -1…1 0.1 

 

Evaluation of an individual is time consuming taking up to 3 minutes and 20 seconds of 

CPU time and so the experiments will be run in parallel on 30-60 3.0 Ghz Pentium 4 

machines. 

Since we have not done any experimentation with the weights and the fitness 

function associated with this game is likely PSPACE-hard to calculate, we cannot seed 

the initial population, so all experiments will start from populations of randomly 

generated individuals. Table 6.4 shows the parameters used for the initial population 

generation and mutation, these values are standard values as defined earlier for use 

when good parameters are not known. Population sizes of 10 and 20 were tested with a 
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fixed 500 individual evaluations. Ten runs of the VFF approach are undertaken and an 

average taken. 

Figure 6.6 plots the average fitness of the population in each generation over 10 

runs. The fitness is further broken down to show the points obtained from games played 

against the two hand crafted players (the dotted line at 12 indicates 4 wins). From these 

graphs it can be seen that a population size of 20 appears to be slightly better, gaining, 

on average, 8.8 points (7.8 against the hand crafted players), although the small 

difference lends credibility to the lack of sensitivity to the population size.  Recall that 

the fitness function itself is evolving as the new “best” evolved players are added. To 

see the effects of this we must look in detail at individual runs and in particular, the best 

individual of the population. The points obtained against the hand crafted players 

steadily increases showing that the population is evolving to beat the hand crafter 

players more and more. 

Figure 6.7 shows a typical run of the genetic algorithm. As well as the 

population averages we can see the best individual’s performance. From this plot it is 

clearer to see what is going on. Initially, the best individual in the population has scored 

6 points. This means it has won 2 of its games (or possibly won one and drawn three). 

Generation 10 is where we first evolve a player that is able to beat both of the hand 

crafted players. After this we see a series of spikes. These occur when an individual is 

found that beats the previously best evolved players, as well as the hand-crafted ones. 

The Best fitness then drops back to 12 after better players are evolved because these 

best players are then used to test future individuals. In this way we would hope that 

evolved players early on a run would be beaten by later evolved players, which we 

explore below.  
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Figure 6.6. Average fitness of the population during evolution of Virus players for a population size 

of 10 and 20 
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Figure 6.7. Plot of the evolution of a single run of the GA with population size 10 

 

Figure 6.8. Plot of the VFF of the best individual of an evolved population of size 10. 

Figure 6.8 shows the VFF plot of some of the weights of an evolved individual having 

high fitness. It can be seen that there are 3 stages to this tactic, one for the first ten 

moves, one for the middle and one for the end. Some of these weights may seem 
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counterintuitive, for example, throughout the VFF, Opponents Biggest Grow Move is 

weighted high indicating that if the opponent can make a grow move that will capture a 

large amount of pieces, then we should put ourselves in this position. Analysis of the 

actual move made may reveal that it is a good tactic to let your opponent capture some 

vulnerable pieces early in the game, which may be taken back later. The VFF also 

appears to consider “My Biggest Jump Move” to be of low importance later in the 

game. It is a good feature of the VFF for complex problems that fitness measures which 

arguably add little more than noise are given low weighting after evolution. 

When playing the best evolved player of each run against the top four hand 

crafted players, 8 of the 10 scored 24 (eight wins), with an average score of 22.9. This 

shows that the evolved players were not over fitting to beat the hand crafted players 

they were trained against and the effect of playing against the previously best found 

makes the evolved players good in general, managing to also beat the 3
rd

 and 4
th

 best 

hand crafted players. 

6.3. Application to the Workforce 

Scheduling Problem 

Next we study a large, complex real-world scheduling problem as studied in (Cowling 

et al., 2006) (Remde et al., 2007). For this problem the Variable Fitness Function uses 

objectives other than those defined in the global fitness function (provided to us by the 

problem owners) to find a better solution. We investigate whether the Variable Fitness 

Function evolved offline using training instance data may be used online for unseen test 

instances.  This seems possible, and even likely in this case, due to the common features 
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of each problem instance and the similarities in the complex interactions between 

resources (including time) when finding a solution to a problem. 

When building a schedule many different and often contradictory business 

objectives are possible. In this section we consider three objectives. The first objective 

is Schedule Priority (SP). Maximizing Schedule Priority maximizes the value of the 

tasks scheduled (and implicitly minimizes the value of tasks unscheduled). The second 

objective measures Travel Time (TT) across all resources. The third objective measures 

the inconvenience associated with completing tasks or using resources at an 

inconvenient time, which we have labeled Schedule Cost (SC). Other objectives are 

possible but these three objectives express most of the primary concerns of the users in 

this case, at a high level, which would be suitable for global optimization. We also 

introduce other measures below which are used within the VFF for this problem, but 

which would not be appropriate to include in a global fitness function. 

6.3.1. Variable Fitness Function Usage 

The global fitness function we use to assess the fitness of a complete solution is f = SP, 

where SP is the sum of the priority of work done. This objective function will aim to 

build schedules with as many high priority tasks in it as possible. This is a good 

indication of the fitness of the schedule (as we are trying to maximize the number of 

tasks we schedule), but when assessing an incomplete schedule, or the change a move in 

a local search will make, it may not be as effective in the long run. A single immutable 

fitness function is really most suited to the case where there is an algorithm guaranteed 

to find the optimum, which is not the case here, or for the majority of large, complex 

problems.  
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Other measures which are considered are: SC, the sum of the costs associated 

with conducting tasks and using resources at particular times in the schedule and TT, the 

sum of the travel time on the schedule. We also introduce a metric which tries to 

estimate the difficulty of scheduling the remaining tasks by analyzing bottlenecks. The 

shifting bottleneck heuristic (Adams, Balas and Zawack, 1988) improves a solution by 

identifying the bottleneck resource and reordering work to relieve the bottleneck, 

repeating until no more improvements can be made. In our approach, we will keep track 

of the supply and demand for each skill, in order to identify potential bottlenecks during 

the solution construction process. Table 6.5 shows an example of how this approach 

helps to identify bottlenecks. 

Table 6.5. Example Skill supply and demand 

Skill Supply Demand Difference 

1 100 50 50 

2 100 100 0 

3 100 150 -50 

 

From the example, we can see that although there is an equal supply of all skills, skill 3 

is the most constrained as there is more demand than supply. When comparing two 

supply and demand tables (in effect two potential solutions), we look for the minimum 

value of (demand-supply) over all skills (in our example -50 for skill 3). Solutions are 

ranked according to the lowest difference. To break ties we would go to the second 

lowest difference and so on.  

Encapsulating bottleneck information into a single number appropriate for a 

fitness function would be impractical and so we will use the above bottleneck measure 

to compare solutions or moves that are of similar quality when assessed by the other 

objectives. We introduce ε, a value which specifies how fit a solution or move must be 
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compared to the fittest of the set being considered. These “good enough” solutions or 

moves are then judged using the supply and demand tables. For example, in a local 

search we may have ten moves available of which the best move may make a +100 

change to the fitness function. If ε was 0.9 (moves have to be within 10% of the best 

move to be considered), then out of the 10 solutions, only those which made a +90 or 

better improvement to the fitness of a solution would be considered, and the supply and 

demand tables used to determine the best one in this ε-good set. Similar ε-good ideas are 

used in reinforcement (Reinforcement Learning: An Introduction, 1998) learning and in 

peckish (Corne and Ross, 1995) heuristics. The value of ε provides a fourth measure to 

be evolved by the VFF approach, along with SP, SC and TT objective measures. 

We used the greedy hyperheuristic to solve different instances with varying values of ε. 

The results shown in Figure 6.9 show that there may be a “magic number” for ε around 

0.995, where the average fitness increased slightly, however this is likely to be just 

noise. It seems likely that a fixed value of ε does not yield the best solutions for a given 

heuristic/problem instance pair as intuitively, potential bottlenecks are more important 

near the beginning of the search than at the end.  

For this problem, we now have four parameters in our Variable Fitness Function: the 

weight of SP, SC, TT and the value of ε. The Variable Fitness Function will be used 

with the greedy improvement only hyperheuristic used previously. Table 6.6 shows the 

weights of the weighted sum fitness function, as determined by problem experts, and 

using the simple “Priority Only” fitness measure. 
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Figure 6.9. Parameter tuning experiments for epsilon (ε). Plots show various values of epsilon and 

the corresponding average relative fitness of 10 runs compared to not using epsilon. 
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Table 6.6. Weighted Sum Fitness weights. 

Objective  

b 

Global Fitness 

Weight 

Expert’s Fixed 

Weights 

1 (SP) 1 1 

2 (SC) 0 -4 

3 (TT) 0 -2 

4 (ε) 0 n/a 

 

Table 6.7. Normalized Variable Fitness Function evolution parameters. 

Objective  

b. 

Initial Value 

 Lb…Ub 

Standard Deviation 

Vb 

1 (SP) -0.25 … 0.25 0.025 

2 (SC) -1 … 1 0.1 

3 (TT) -0.5 … 0.5 0.05 

4 (ε) 0 … 1 0.1 

 

Table 6.7 shows the variables used for the evolution of the Variable Fitness Function. 

These values were generated automatically using the method outlined in chapter 5. ε is 

clamped between 0 and 1 during VFF evolution.  

6.3.2. Computational Experiments 

The Variable Fitness Function was evolved on 5 problem instances (the training data). 

These represent 5 examples of what an individual workforce may experience from day 

to day. Schedule quality was assessed by the sum of the fitness measured by the global 

fitness function (f=SP). The five problem instances require the scheduling of 400 tasks 

using 100 resources over one day using five different skills. Tasks require between one 

and three skills and resources possess between one and five skills. The problems are 

made to reflect appointment based problems Trimble MRM have identified and are 
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generated using a problem generator developed in collaboration with Trimble MRM. 

These problems are different from the ones in previous chapters. The evolved Variable 

Fitness Function was not only compared against the global fitness function for the 

training data, but also against another 5 test instances to see if evolved Variable Fitness 

Functions could be used online for test data instances. If we can show that evolved 

Variable Fitness Functions work well on data it was not trained on, then we have 

demonstrated the ability of VFFs to learn characteristics of problems and the heuristics 

used to solve them. This further shows the potential of using lots of CPU time to evolve 

Variable Fitness Functions offline using training data, and then using the evolved VFFs 

on a day to day basis to improve solution quality with no overhead in terms of CPU 

time, and very little overhead in terms of development effort. Training runs were 

repeated 10 times and averages taken. Each evaluation takes about 3.5 minutes and so 

the experiments will take over 1 month of CPU time to complete so were run in parallel 

on 30-60 3.0 GHz machines, using idle cycles from a lab containing standard Windows 

PCs. 

To tune the parameters of the GA, we tested population sizes of 10 and 20 (with 

a fixed 500 chromosome evaluations to ensure similar CPU time across runs), and 

seeded the initial populations with 0, 1 and All global fitness functions. Figure 6.10 

shows the results for population sizes 10 and 20. These results show that the GA is 

fairly insensitive to the population size. Choosing 1 or All of the initial population to be 

seeded with the global fitness function gives results which are statistically not 

distinguished at the 90% confidence level, although both of these results are 

significantly better than no seeding (at the 90% level). Figure 6.10 also shows that the 

population size is not statistically significant at this level. A population size of 10 and 
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seeding the initial population with 1 global fitness functions was chosen for the 

subsequent experiments. 

Figure 6.10. Parameter tuning on a single problem instance experimental results with 90% 

confidence intervals (Average of 10 runs). 

We took the evolved Variable Fitness Functions from each of the 10 runs using the best 

parameters and compared their performance using the global fitness function on the 

training data and on 5 previously unseen test data instances. Also included was a 

“Random” heuristic, which was given the same amount of time as the Variable Fitness 

Function evolution. This heuristic randomly picks one of the top two moves as 

measured by the global fitness function at each iteration. Figure 6.11 shows the 

comparison. The results for the training data show that the evolved Variable Fitness 

Functions were very much better than the global fitness function. This VFF appears to 

have learned to use the other objectives to aid the search process, specifically to “tune” 

weights to the time-varying characteristics of the current schedule and the heuristic used 

to improve it, and found solutions which are on average 23.8% fitter, and which are 

significantly better than a randomized restart strategy given the same amount of CPU 
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time. Looking at the test data we can see that the VFF approach is also able to find a 

significantly better solution, at the 90% confidence level, which is on average 16.8% 

fitter. The CPU time for the original heuristic, with the “Ordinary” fitness measure, and 

the VFF-enhanced heuristic, are identical. It is particularly notable that when compared 

to the “Random” heuristic, the VFF achieves a performance which is better using 

1/500
th
 of the CPU time. 

 

 

Figure 6.11. Comparison of the average fitness using the evolved Variable Fitness Functions and 

the global fitness function. Note that the Random heuristic on the Test data takes over 500 times as 

much CPU time as Ordinary or VFF approaches (average of 50 runs). 
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Figure 6.12. Selected best individuals from the final populations of individual runs. (ε is the bank 

consideration threshold, SP is the weight of sum of scheduled priority, SC is the weight of the sum 

of scheduled cost and TT is the weight of the travel time). ε+1 is shown to separate the line from SP. 
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Figure 6.12 shows a sample of the evolved fitness functions. While these show similar 

trends they are quite different, and their form is sufficiently unusual that it is not 

plausible that they might have been created simply by hand-tuning of weights. The 

graphs show that the Variable Fitness Function approach has learnt that ε should be 

around 1 throughout the search with a slight decrease toward the end. Run 1 shows 

quite a simple Variable Fitness Function. From this graph we can see that that TT and 

SC objectives are to be minimized at the start, but are far less important towards the end 

of search. This intuitively makes sense, as if we can minimize the costs and the travel 

time on the schedule, we can fit more tasks in. However, toward the end of the schedule 

optimization process when the schedule is fuller, we don’t care as much about costs and 

travel as we just want to fit as many remaining tasks in as possible. Run 2 is similar to 

run 1 with additional detail at the end. Run 3 is interesting because toward the end we 

observe tight changes in weights. However, it is most likely that that part of the graph is 

not used and that the scheduling process has reached its final local optimum before this 

point. Run 4 shows quite a complex graph, but we can still see trend from the other 

runs: ε starts at 1 and slowly decreases, SP always stays positive and dominates SC and 

TT which start low and increase toward the end. 

6.4. Summary 

In this chapter, the Variable Fitness Function has demonstrated its ability to enhance 

heuristic search across three very different problem domains, the multiobjective 

Travelling Salesman Problem, position evaluation function for the Virus board game, 

and a complex, real-world workforce scheduling problem. In all cases, we have shown 

that given a optimization heuristic H and a sufficiently large quantity of CPU time we 
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can produce a better heuristic VFF(H). Our results show that the evolved VFFs are able 

to exploit features of both the problem instance and the heuristic used to solve it. We 

have also provided evidence that the Variable Fitness Functions are learning to move 

the search to different parts of the search space when local optima are encountered 

(particularly for the multiobjective TSP). The generation of a solution using VFF takes 

longer due to the evolutionary process. However, if the time is available, this method 

appears to be better than random perturbations to a local search with multiple restarts 

(across the multiobjective TSP and the workforce scheduling problem) and requires no 

modification of the local search heuristic, unlike most common metaheuristics. The case 

studies showed that the Variable Fitness Function has great potential. The three quite 

different optimization examples we have used to show this method can be used on a 

wide range of problems. Moreover, our experiments show that evolution is insensitive 

to parameter choices, as has also been observed for the hyperheuristic methods 

(Chakhlevitch and Cowling, 2008), which also works at a higher level of generality, 

dealing with solution methods rather than directly with problems. We provide an 

automatic method for setting most parameters. The VFF approach is highly CPU-

intensive, with the work in this section taking over 13 CPU-months. In this work we 

have harvested idle CPU cycles of large labs of PCs in overnight and weekend runs. We 

can use such a cheap source of CPU cycles in other VFF applications, especially when 

solving very large, complex real-world problems.  

Where there exist similarities between training instances of a problem and 

unseen test instances (for the Virus board game and the real-world scheduling problem), 

the VFF has been shown to perform well on these test instances, given no additional 

CPU time. Hence we may use large  numbers CPU cycles offline to yield a VFF which 

improves the solutions generated by a heuristic online, without modifying that heuristic 
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or taking additional CPU time. The performance of the VFF in the experimental case 

studies in this paper gives us optimism for the broad application of the VFF approach 

across a wide variety of scheduling and optimization problems, particularly complex, 

real world problems where existing systems, models and heuristics have been developed 

at great cost, when the VFF may yield improvements which require very little 

modification to existing systems, and which do not require additional CPU time. 



 

 

Chapter 7  

Enhancing Metaheuristics with 

Variable Fitness Functions 

Our initial case studies look at local search and constructive heuristics. This section uses 

the Variable Fitness Function to enhance metaheuristic performance. A Variable 

Neighbourhood search for a static scheduling problem and a greedy look ahead search 

hyperheuristic for the dynamic scheduling problem will be studied. Studying the 

Variable Fitness Functions ability to enhance metaheuristics will be interesting as it 

removes the Variable Fitness Function further away from the search process and with a 

hyperheuristic it is arguably even further away. 

Finally, the results from this chapter and chapter 6 will be analysed to identify what 

situation is required for the evolved Variable Fitness Functions to generalise across 

different problem instances. 
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7.1. Variable Neighbourhood Search for A 

Complex Workforce Scheduling Problem 

In this section we study the real world workforce scheduling problem and apply 

constructive search and variable neighbourhood search (VNS) metaheuristics and 

enhance these methods by using a Variable Fitness Function. The Variable Fitness 

Function (VFF) uses an evolutionary approach to evolve weights for each of the 

(multiple) objectives. We show that the VFF significantly improves performance of 

constructive and VNS approaches on training problems, and “learns” features of 

problems, problem instances and heuristics used to solve them which enhance the 

performance on unseen test problem instances. Using real problems requires large 

amounts of CPU however this is justified as this gives the results plausibility of 

applicability. 

7.1.1. Variable Fitness Function Application 

In the problem instances we study, 10 resources possess between 1 and 5 skills of which 

there are various bottlenecks in the availability. The resources travel at varying speeds. 

There are 300 tasks requiring between 0.5 and 1 hours to complete to be scheduled over 

3 days and each has a 4 hour time window in which it must be completed. A task 

requires a resource to possess a certain skill, of which some skills are in more demand 

than others. Tasks are to be completed as early in the 4 hour time window as possible. 

Tasks have precedence constraints such that some tasks may not be started before 

another has completed. A chain of tasks is a subgraph of the precedence digraph of 

maximum indegree 1 where the indegree (outdegree) of a task in the subgraph is one if 

the indegree (outdegree) in the precedence digraph is greater than zero. This extra 
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constraint makes the problem similar to one Trimble encounter. This arguably makes 

the problem easier as smaller precedence trees are constructed and adds a new objective 

we can measure (completed chains). 

For this real world complex problem there are many objectives. Table 7.1 lists 

some of the principal objectives we have identified. The global fitness function is 

defined as f = 5 (Scheduled High) + 2 (Scheduled Low) + (Complete Chains) – 0.1 

(Overrun), following reflection with our industrial collaborator. This objective function 

rewards the scheduling of high priority tasks more than low priority tasks and also the 

completion of chains of tasks whilst trying to minimise the amount of overrun (and 

hence inconvenience to the clients) and ignoring travel costs.  

Table 7.1. Objectives used for the workforce scheduling problem. 

Objective Description 

Scheduled High The number of high priority tasks scheduled. 

Scheduled Low The number of low priority tasks scheduled. 

Complete Chains The number of task chains that have been completed. 

Travel Distance The total distance travelled by the resources. 

Travel Time The total time spent travelling by the resources 

Overrun The total number of hours the task have overrun. 

 

We use a constructive heuristic, CON, to build an initial schedule then an improvement 

metaheuristic, IMP, to improve it. For the improvement heuristic we have decided to 

use Variable Neighbourhood Search (VNS). VNS is relatively simple to implement and 

we have seen that this kind of method can work well for scheduling problems (Remde et 

al., 2007). We use a local search heuristic where we define the neighbourhood as 

schedules which result from optimally reinserting a task, i.e. placing a task optimally in 

the schedule in terms of the current (variable) fitness function. If the task is not yet 

scheduled, this means allocating the resources and time to it that yield the best 
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improvement in fitness. If the task is already scheduled, this may mean moving the task 

in time, allocating new resources or a combination of the two (Figure 7.1). At each 

iteration of the local search, the entire neighbourhood is sampled and the best solution 

accepted. When the local search of the VNS reaches a local optimum, the search is 

kicked into a new area of the search space. We define these kicks as removing between 

1 and 4 scheduled tasks chosen at random and all their dependent tasks. We remove 

dependent tasks so that precedence constraints are not broken. The pseudo code is given 

in Figure 7.2. 

 

Figure 7.1. Task reinsertion. The task is moved to the resource and time in the schedule which 

provides the best change in fitness according to the Variable Fitness Function. The light grey boxes 

represent other tasks, the dark grey is the task being optimized and the dotted boxes are the 

positions being considered. For simplicity this process is illustrated for a task requiring only one 

skill. 
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Table 7.2. Various methods to be used and their VFF enhanced versions. 

Heuristics Description 

CON Construction heuristic using the global fitness function. 

CON + IMP Construction heuristic and improvement heuristic using the 

global fitness function. 

VFF(CON) Construction heuristic using a Variable Fitness Function. 

VFF(CON + IMP) Construction heuristic and improvement heuristic using a 

Variable Fitness Function. 

CON + VFF(IMP) Construction heuristic using the global fitness function and 

improvement heuristic using a Variable Fitness Function. 

 

The construction method, CON, uses the local search operator of the VNS and 

terminates when a local optimum is found. The improvement metaheuristic, IMP, has a 

stopping criterion of 10,000 iterations as this gave a good trade off between CPU time 

and solution quality. Table 7.2 lists the methods we will try. We can see the first two are 

normal heuristics and the last three are enhanced using VFF. 

 

Figure 7.2. VNS Pseudo Code 

7.1.2. Computational Experiments 

The five methods are used ten times on each of the five training instances and averages 

taken to produce statistically significant results. These five training instances are chosen 

k:=1 - the kick magnitude 

s : Solution – initially empty 

 

while (k<5) 

 s’ := LocalSearch(s) 

  

 if improvement found then  

k := 1  

s := s’ 
 else  

k := k+1 

Remove k tasks and dependants from s 

 end if 

end while 
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to contain variations that a workforce would see on a day to day basis following 

consultation with Trimble. By using multiple problem instances to evolve Variable 

Fitness Functions we are trying to ensure that Variable Fitness Functions learn 

characteristics of the problem through learning multiple problem instances. For the 

methods enhanced with the Variable Fitness Function, a test set of five previously 

unseen problems instances will be solved using VFFs which were evolved using the 

training instances. Good performance on the test data will imply that a lot of CPU time 

could be used to train a “general purpose” Variable Fitness Function, then that Variable 

Fitness Function could be used very quickly in “real time”. 

The methods requiring the evolution of a Variable Fitness Function will be 

given 50 generations with a population size of 10 (equivalent to 500 evaluations as we 

have seen this works well in the previous chapter). Methods without a Variable Fitness 

Function will also be given 500 evaluations and the best one taken to give them the 

same amount of CPU time. The CON heuristic takes approximately 30 seconds to 

construct the five schedules and the IMP heuristic takes approximately 25 minutes on a 

3.0 GHz PC. As these experiments shall take over 260 CPU days to complete they will 

be run in parallel on approximately 95 computers. 

Table 7.3 shows the results of the individual methods and their standard 

deviations and Figure 7.3 graphs these with 90% confidence intervals. From the results 

we can see that the Variable Fitness Functions were indeed able to enhance the standard 

methods significantly in all cases. We see very large variations in fitness when the 

Variable Fitness Function is used on the constructive part of the search (VFF(CON) and 

VFF(CON + IMP)). Detailed investigation of individual runs leads us to believe that 

this is because when the Variable Fitness Function affects the constructive part of the 

search, it has the possibility to move a great distance in the search space from the 
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constructive algorithm using fixed fitness function weights. The best Variable Fitness 

Function enhancement for the CON + IMP method was to just enhance the 

improvement part (CON + VFF(IMP)). The variation of CON + IMP is extremely low 

and the solutions that it has found are far from optimal. This may be because the 

random kick method of the VNS we have chosen was not sufficiently disruptive 

however a more disruptive kick mechanism could have a negative effect. 

 

Table 7.3. Average fitness and standard deviation of ten runs of each method assessed using the 

global fitness function. 

Method Average Fitness Standard Deviation 

CON 3189.6774 N/A 

VFF(CON) 3308.0253 150.3236 

CON + IMP 3617.4517 8.4949 

VFF(CON + IMP) 3689.9001 111.2555 

CON + VFF(IMP) 3770.2434 35.4282 

 

 

Figure 7.3. Graph of the results in Table 7.3 with 90% confidence intervals averaged over 10 runs. 
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Figure 7.4 shows the breakdown of the individual objectives and Table 7.4 shows the 

difference in the average objective measures the enhanced methods have produced. This 

chart and table show that the VFF approach has found a way to obtain improvements to 

high priority (highly weighted) objectives at the expense of low priority ones (low or 

zero weight).  

In all of the cases where the method is enhanced by the Variable Fitness 

Function, the number of scheduled tasks, both low priority and high priority, has 

increased. This intuitively makes sense as these are the highest weighted objectives in 

the global fitness function. Travel time was decreased in both the cases where the 

Variable Fitness Function was used to enhance the metaheuristic. The increase in travel 

time and other penalty objectives for the CON approach is not surprising as CON has no 

way to optimize these objectives by reinserting. Travel time is not included in the global 

fitness function, however, it would appear that when task reinsertion is permitted, the 

VFFs have learnt that less time spent travelling means more time can be spent doing 

tasks showing that the VFF is capable of using objectives which go not directly affect 

the quality of the solution or which were deemed low importance by the expert. In all 

cases, overrun increased, indicating that tasks were not scheduled as close to their start 

time as possible.  

Table 7.4. Average change in objectives as a result of Variable Fitness Function enhancement over 

the 25 problem instances. 

Base Method  CON  CON + IMP 

Improvement Using  VFF(CON)  VFF(CON + IMP) CON + VFF(IMP) 

Scheduled High (max)  20.20  4.30 17.10 

Scheduled Low (max)  40.50  37.10 43.20 

Travel Distance (min)  13.79  -24.03 -67.69 

Travel Time (min)  14.91  -24.85 -64.34 

Overrun (min)  603.52  220.51 203.08 

Complete Chains (max)  -3.30  -1.20 1.20 
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Figure 7.4. Individual objective breakdown for each method. Note: f = 5 (Scheduled High) + 2 

(Scheduled Low) + (Complete Chains) – 0.1 (Overrun) so Scheduled High, Scheduled Low and 

Completed Chains are to be maximized, Overrun is to be minimized and the others are not 

considered when evaluating fitness. 

Figure 7.4 shows the evolution process in action. Not only do these graphs show that the 

evolution process is working, and that the populations are evolving VFFs that lead to 

better schedules, but it shows the difference between randomly generated Variable 

Fitness Functions (those in the initial population at generation 0) and evolved ones 

(those in the final population at generation 50). The plot showing the evolution of 

VFF(CON) method shows a greater increase in fitness from random Variable Fitness 

Functions to evolved Variable Fitness Functions than that of CON + VFF(IMP) (note 

the difference in “fitness” scale between the graphs). This is because the CON + IMP is 

a better method than CON, and hence there is less room for improvement. 
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Figure 7.5. Average population fitness and best of the population’s fitness at each generation 

showing the evolution for VFF (CON) and CON + VFF(IMP) methods. 

Figure 7.6 shows an example of how the Variable Fitness Function is working. The top 

plot shows a typical (good quality) evolved Variable Fitness Function from the final 

evolved population and how the objective weights change over the iterations when 

using this VFF. The two very interesting objectives that are highlighted are Travel Time 
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single run using this Variable Fitness Function. A correlation can be seen between the 

weight of overrun and the average overrun observed. When the weight is positive, 

overrun increases and when the weight is negative it decreases. This Variable Fitness 

Function has in fact learnt a type of right-left shift heuristic (Valls, Ballestin and 

Quintanilla, 2003), which is frequently used in schedule repair. This is a schedule 

improvement heuristic which works by shifting tasks to the right and then packing them 

as early as possible. We can see toward the end of this VFF, the weights of the 

objectives used in the global fitness function are emphasised providing one last push 

toward the global fitness optima.  

Figure 7.7 shows the improvement gained versus the global fitness function 

from using the Variable Fitness Function enhanced methods over the standard methods, 

for both the training data and the test data. Note that for test data instances, the amount 

of CPU time for the VFF and standard approaches are the same. As seen in the chart, 

the Variable Fitness Function enhanced methods are still significantly better than their 

standard versions on the test data (with the exception of the VFF(CON + IMP) method 

whose 90% confidence interval takes it below 0%). This is a good indication that 

Variable Fitness Functions trained for the VFF(CON) and CON + VFF(IMP) could be 

reused on different problem instances with good performance, and that they have 

“learned” generalisable information about the problem as well as specific information 

about the training instances. 
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Figure 7.6. A selected evolved VFF shown above and a plot below showing how two selected 

objective measures change over the course of a search. 
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Figure 7.7. Average method performance gained using Variable Fitness Function on test data 

compared to training data. 

7.1.3. Summary 

In this section we have demonstrated the application of an evolutionary Variable Fitness 

Function to a constructive heuristic and a metaheuristic for a complex, real-world 

workforce scheduling problem. We have shown that statistically significant increases in 

heuristic and metaheuristic performance can be gained by using the Variable Fitness 

Function, for a range of test problems. We have also seen that evolution plays a key role 

in getting these gains. To show the reusability of the evolved Variable Fitness Functions 

they were used on another set of problem instances and showed gains of nearly equal 

magnitude. This is a strong indicator that a Variable Fitness Function could be evolved 

offline and then the evolved Variable Fitness Function be used in a real time situation. 

Arguably, the Variable Fitness Function can be used for any optimization problem 

where multiple objectives can be defined. 

0%

1%

2%

3%

4%

5%

6%

7%

VFF(CON) Test VFF(CON) VFF(CON + IMP) Test VFF(CON +

IMP)

CON + VFF(IMP) Test CON +

VFF(IMP)

P
e

rf
o

rm
a

n
c
e

 G
a

in
e

d



CHAPTER 7. ENHANCING METAHEURISTICS WITH VFFS 156 

 

7.2. Hyper-heuristics for Dynamic Workforce 

Scheduling 

The problem we consider consists of a schedule and a set of events that disrupt the 

schedule. Heuristics are used to repair a schedule after the events have disrupted it. A 

heuristic’s fitness will be assessed by using the heuristic to repair the schedule 

following all the dynamic events individually on five problem instances. The events are 

responded to individually as the process of repairing an event changes the schedule and 

has knock on effect when repairing future events. This can lead to a very noisy 

optimisation environment making the process more difficult (Colledge, 2009). 

Repairing each event in isolation and then summing the changes in fitness will aid the 

optimisation process by eliminating a lot of the noise without the cost of CPU time. 

The repair heuristics we will use are hyper heuristics using eight different low 

level heuristics and a greedy look-ahead search to determine which low level heuristic 

to use. The greedy look-ahead search creates a decision tree of certain depth where the 

nodes are solutions and the branches are the application of a low level heuristic. At each 

iteration, it takes a step toward the leaf that leads to the best outcome by applying the 

low level heuristic for the branch it traverses, and then rebuilds the tree back to the 

maximum depth. Eight low level heuristics are used as this gives a good trade off 

between solution quality and CPU time required (Colledge, 2009). The hyper heuristic 

solution has thousands of low level heuristics to choose eight from. This gives rise to a 

situation where we can create different quality heuristics by the selection of low level 

heuristics. To find “good”, “ok”, and “bad” sets, we tested over 10,000 different 

combinations of low level heuristics on five different problems. This data provided us 

with a method to normalise each instance, as different size problems have been used and 
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these can result in large variations in fitness. For each of the problem instances we 

found the range in fitness that these 10,000 heuristics scored. These ranges allow us to 

normalise the instance’s fitness to the range [0 1] so we can compare a heuristic’s 

performance between the five instances and take an average. The heuristics were ranked 

according to their minimum normalised fitness as we wanted heuristics that perform 

well across all the instances, not just well on average. “good” was chosen as the 

heuristic with rank number 1 (ranked 2nd on averages), “ok” was chosen as rank 33 

(rank 38 on averages) and “bad” was chosen as rank 66 (rank 104 on averages).  

 

 

 

Figure 7.8. Top 1000 randomly created repair heuristics and their average performance on 5 

problem instances. “Good” was chosen as rank 2, “ok” as rank 38 and “bad” as 104. 

Figure 7.8 shows the average performance of the top 1000 heuristics (a collection of 8 

randomly chosen low level heuristics combined with the greed look ahead search) on 

the five problems ranked by average fitness and shows some interesting features. The 

stepped increases may indicate features of the solution methods. A lot of the low level 
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heuristics are similar in nature, doing similar things but with slightly different 

parameters (for example move a task right by 1, 2, 5, 10 minutes). Perhaps to reach a 

certain plateau requires a certain type of low level heuristic in the combination, and the 

small changes in quality come from the variations in parameters. Surprisingly, most of 

the heuristics failed in at least one instance (note that 0 is slightly above the axis for 

clarity). This is indicated where Min is equal to 0. The block of heuristics where max is 

nearly 1.0 may indicate that one of the problems is easy to solve if you have a given 

LLH in the selection. However, as the average increases the Max decreases which may 

indicate that this heuristic is only good for that given instance and thus to increase 

average performance we have to sacrifice the LLH that is good for that problem. 

The three chosen heuristics (“good”, “ok”, and “bad”), artificially created of 

different quality, will be enhanced using the Variable Fitness Function. The Variable 

Fitness Function will be used to guide the search each time it is used to repair an event 

with the aim of fixing the event with as little disruption and change to the schedule as 

possible. During the learning phase, Variable Fitness Functions will be trained on the 

five previously mentioned problems. The fitness of a Variable Fitness Function will be 

measured as the sum of the normalised sum of fitness of the five problem instances 

(hence it usually lies between 0 and 5, 5 being better). 

As only very small search depths have been used to date (Colledge, 2009) and it 

is intuitive that the Variable Fitness Function would be more effective with more 

iterations to use, we will run tests with tree search depths of 10, 30 and 50 to see if there 

is an advantage in doing so. The results in Figure 7.9 show that increasing the search 

depth to 30 yielded significant increases and increasing it even more to 50 provided 

slight further increases. Increasing search depth increases the CPU time required and so 

30 iterations was chosen as a good trade off between solution quality and CPU time 
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required. The “Good” and “Bad” heuristic provide some very interesting results. The 

results would indicate that using a Variable Fitness Function enhanced search with 

depth 10 would provide better results than a non Variable Fitness Function enhanced 

search with depth 30. In practice, this would mean better results at approximately 1/3 of 

the computational power. This is also the case with the ”Bad” heuristic which seems to 

have reached results as good as is possible with the set of low level heuristics as 

increasing the search depth makes no change. “OK” with a 10 Deep VFF seems to be 

the only case where the VFF could not enhance the quality to that of the no VFF 30 

deep version, however at the same depth, VFF enhanced the performance of all the 

heuristics. 

 

Figure 7.9. Performance of Variable Fitness Functions with different search depths compared to a 

fixed fitness function with a 30 deep search depth for a single run. 

The Variable Fitness Function has only been used with linear functions to interpolate 

the weights between the weight sets. Here, we run tests with stepped VFFs and with 

linear interpolation. These results in figure 7.10 show an average of 10 runs (population 

size of 10, 50 generations each) with 90% confidence intervals and that there is no 
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statistically significant increase in performance with or without linear interpolation. 

This is probably due to the shortness of the Variable Fitness Functions and the 

complexity of the low level heuristics. Even so, they both show significant increases in 

solution quality to the non Variable Fitness Function enhanced methods. 

 

Figure 7.10. Stepped vs Linear Variable Fitness Functions. 90% error intervals are shown averaged 

over the 10 runs. 

Generalisability, or the ability of the Variable Fitness Function to perform as well on 

unseen data, is a desirable factor. The evolved linear Variable Fitness Functions were 

used to test generalisability in three different ways: A) same schedules, unseen set of 

events; B) similar schedules, same set of events; and C) similar schedules, unseen set of 

events. The graph below shows the raw fitness values obtained from each of these 

experiments using the “Good” hyperheuristic. No normalisation is possible in this case 

without running thousands of heuristics on these new generalisation problems. 
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Figure 7.11. Using the evolved Variable Fitness Functions on unseen data. 

Figure 7.11 shows only small (and not statistically significant) differences when using 

the best evolved Variable Fitness Function from each of the 10 runs on unseen data. 

This indicates that the Variable Fitness Functions evolved here would not make 

significant improvements to unseen data. The results for the “Ok” and “Bad” heuristic 

show similar results. The most likely cause of this is that too few instances were used in 

the evolution of the Variable Fitness Functions and so the Variable Fitness Functions 

are not general enough, finding ways to exploit the training data’s features and not the 

problem itself, a problem known as “over-fitting”.  

The evolved Variable Fitness Functions look dissimilar however there are 

probably commonalties amongst them. Where problems have many objectives such as 

the ones evolved in this work, it is often hard to see trends between different evolved 

Variable Fitness Functions. We use scatter plot matrix (Becker and Cleveland, 1987) to 

try and visualise multiple Variable Fitness Functions. Figure 7.12 (top) shows the 
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scatter plot matrix which plots the final populations of the 10 runs of the “Good” 

heuristic. Each large box shows a Cartesian scatter plot of the weights assigned by VFF 

to two different objectives (the objective taken from the row and column of the matrix). 

Each point in the box represents a pair of objective weights found in one of the 

iterations of one of the Variable Fitness Functions plotted. Furthermore the colour of the 

point represents which iteration it was found in, dark at iteration 0, light at iteration 30, 

which helps to see time trends. Figure 7.11 (bottom) shows the same scatter plots, with 

our observed trends marked with arrows. This representation makes it easier to see 

trends as it lets us see a good deal of information all at once.  

Here we see some definite trends in the data. If we look at the TT/TT, DST/DST 

and STA/STA plots, we can see that these objectives seem to change over the course of 

the iterations, TT starting strongly negative and ending weakly negative/positive, DST 

seems to be a lot noisier however a positive to negative shift can be seen. STA is noisy 

like DST however it starts strongly negative and becomes positive. In SP/SC two trends 

can be seen: a big sweeping shift and smaller, seemingly opposite shift. This is probably 

because multiple strategies produce good results, so multiple different trends can be 

seen. Several other big sweeping shifts can be seen and are highlighted. 

This information can be used to better understand how the Variable Fitness 

Functions are improving the heuristic and can be better explained to non experts who 

can be a bit wary when told the precise numbers as they might find it difficult to 

understand why or how this should work. This information could also be used to build 

new types of heuristics which mimic the VFF’s behaviour. This would provide users 

with a new interesting way to explore heuristics and aid in the design process of new 

heuristics. It may also give new insight into the problem itself. 
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Figure 7.12. Scatter plot matrices for the evolved Variable Fitness Functions with identified trends 

highlighted below. 
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7.2.1. Summary 

Large amounts of experimentation with the Variable Fitness Function applied to a 

hyperheuristic for the dynamic workforce repair problem have been undertaken. These 

experiments have shown several things 

 Using a Variable Fitness Function in certain situations can produce results of 

higher quality with less iterations of search. In practice this means that 

potentially better results can be obtained in less CPU time. 

 In this solution method, there is little to choose between linearly interpolated and 

stepped Variable Fitness Functions.  

 The Variable Fitness Functions evolved were no better than the non Variable 

Fitness Function enhanced versions when used on unseen data. The most likely 

cause of this is the noisy problem. The Variable Fitness Function used in Section 

6.3 and 7.1 to enhance the building of schedules similar to the ones in this 

section found five problem instances were enough to evolve generalisable 

Variable Fitness Functions, however more may be required in this noisy nature 

of the dynamic environment. 

Furthermore, scatter plot matrices were used to analyse the evolved Variable Fitness 

Functions. This proved to be an easy way to make this very complex data easily 

readable to a non expert and could potentially be used in heuristic design.  

7.3. Summary and Generalisation Ability of 

Variable Fitness Functions 

A large amount of experimentation with the Variable Fitness Function has been applied 

in this thesis with varying results. Table 7.5 summarises key elements we have 
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identified which may determine whether or not evolved Variable Fitness Functions will 

be generalisable.  

Table 7.5. Indicators which may lead to evolved Variable Fitness Functions being generalisable.  

1
 Scheduling see Section 6.2 and 7.1  
2
 Virus board game see Section 6.2  

 3
 TSP see Section 6.1  

4
 Schedule Repair see Section 7.2 

Indicator Generalisable Not Generalisable 

Iterations Very Large 
1
 

Medium 
2
 

Very Few 
4
 

Few 
3
 

Complexity of Local Moves Low 
1,2

 High 
4 

Low 
3
 

Correlation of Objectives High 
1,2

 None 
3
 

Medium 
4
 

Number of Objectives Medium (6) 
1
 

High (18) 
2
 

Very Low (2) 
3
 

Medium (4) 
4
 

Noise in Problem Low 
1
 

Medium 
2
 

Low 
 3
 

High 
4
 

Heterogeneity of Training Data High 
1,2

 Medium 
4
 

Very Low 
 3
 

Similarity of Test Data to Training Data High 
1,2

 Very Low 
 3
 

Medium 
4
 

 

Iterations: It would appear that larger iteration counts are required. In the very 

generalisable cases (where evolved Variable Fitness Functions worked will on unseen 

data), static scheduling and virus, 10,000 and ~60 iterations were used respectively, 

compared to the 30 used in repair. Interestingly, the results seen from the different 

depths of repair show that increasing the search depth further is unlikely to increase 

performance. It is also infeasible to increase the search depth to the order of these in the 

static scheduling as too much CPU time would be required. The exception here is the 

TSP application, however the aim of that investigation was not to produce generalisable 

results (and the reason for no generalisability is clearly explained in “Similarity of 

Training Data” and “Correlation of Objectives”). 
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Complexity of Local Moves: Both virus and static scheduling used very simple moves 

compared to the complex low level heuristics used in the repair. This gives the Variable 

Fitness Function more control over what is happening as it can more directly affect the 

results. The hyperheuristic in the repair raises the Variable Fitness Function’s 

abstraction level from the problem. Intuitively, the closer the Variable Fitness Function 

can operate on the problem the better the results.  

 

Correlation of Objectives: Correlation of objectives seems to be slightly important. In 

the scheduling problems, the objectives had indirect effects on the other objectives (an 

increase in travel time increased travel cost, decrease in travel time would mean more 

tasks could be scheduled increasing scheduled priority etc.) In virus, a lot of the board 

evaluation functions were similar and complementary and of course had objectives from 

the view of both players made the objectives have a direct effect on other objectives. In 

the TSP there was no correlation between the objectives, within the problem instances, 

nor between different problem instances. This would make it hard for the Variable 

Fitness Function to a) manipulate the solution and b) learn information that is common 

to different instances. 

 

Number of Objectives: The data seems to indicate that many objectives are better than 

none. In fact identifying extra objectives unused in the global fitness function is 

advantageous as seen in section 7.1. Adding more objective measures, no matter trivial, 

is a good idea because there is the possibility that the VFF will learn to use one of these 

to good effect. 
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Noise in Problem: Low noise is best. Noisy environments have been observed to affect 

GAs negatively in literature and would appear to be supported by this work. Rattray and 

Shapiro (Rattray and Shapiro, 1997) state that it is possible to overcome the effects of 

noise by using a larger population, although this is impractical for our computationally 

intensive studies. 

 

Similarity of Training Data and Similarity of Test Data to Training Data: There seems 

to be a direct correlation here as the similarity ranges from none in the TSP, to some in 

repair, to high in static scheduling and virus, the generalisability increases from none to 

high. This is expected as training on more similar problems is likely to lead to 

generalisable Variable Fitness Functions.  

 



 

 

Chapter 8  

Conclusions, Observations and 

Future Work 

This chapter concludes the thesis summarising the work done, reflecting on the 

undertaking of the work and identifies interesting areas of work arising from the 

thoughts presented in this thesis. 
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8.1. Conclusions 

In this thesis very large amounts of CPU time have been used to empirically test new 

heuristic methods on various problems. The methods have been analysed in detail in 

order to ascertain how they work and give a greater understanding of the methodology. 

In Chapter 4, local search heuristics were developed and tested in order to create 

a hyperheuristic framework for a detailed model to capture important features of 

Trimble MRM’s dynamic workforce scheduling problem. Initially we showed that the 

solutions generated by a simple genetic algorithm could be enhanced using exact search 

methods. We then introduced a method for splitting the dynamic workforce scheduling 

problem up using the smaller problem of scheduling a single task optimally. Hundreds 

of low level heuristics were created to solve these smaller parts of the problem using 

exact methods. Variable Neighbourhood Search and hyperheuristics were used to 

control the order in which these smaller problems were solved on realistic problem 

instances our industrial sponsor identified and produced schedules vastly superior to the 

genetic algorithm showing that exact/heuristics hybrids are an effective optimisation 

tool in this case. Furthermore the results of greedy hyperheuristic could be analysed to 

see which methods to use at what point in the scheduling process to create a solution 

faster. In business terms this equates to more cost effective solutions, more quickly. 

Analysis of the low level heuristics showed that hyperheuristic used many of the low 

level heuristic and there was no single “silver bullet”. It did however reveal that many 

were used in less than 1% of the search indicating that learning which ones to avoid 

could potentially lead to less CPU time being used. The hyperheuristics produced fitter 

results than the variable neighbourhood search, however used a much larger CPU time. 
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This work was published in: 

S. M. Remde, P. I. Cowling, K. P. Dahal, N. J. Colledge, “Exact/Heuristic 

Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling” in 

Proceedings of EvoCOP 2007, Springer LNCS 4446, 2007, pp. 188-197. (One of 3 

papers nominated for the best in conference nomination out of 81) 

 

We introduced learning in the form of a Binary Exponential Back Off based 

Tabu Hyperheuristic in Section 4.4. The Tabu based algorithm was used to learn which 

low level heuristics were performing badly and not use them. The time between trying 

repeatedly poor performing low level heuristics was increased exponentially minimising 

the time wasted on the low level heuristics that never perform well or only perform well 

at the end. The heuristic was shown to be better than fixed and random Tabu tenures 

and managed to produce results within 99% of the best, very CPU intensive, 

hyperheuristic in one third of the CPU time required. 

 

This work was published in: 

S. M. Remde, P. I. Cowling, K. P. Dahal, N. J. Colledge. “Binary Exponential 

Back Off for Tabu Tenure in Hyperheuristics” in Proceedings of EvoCOP 2009, 

Springer LNCS 5482, 2009. 

 

In Chapter 5 we introduce the Variable Fitness Function framework and a 

method of evolution, which we used in chapter 6 and 7 with various local search and 

metaheuristics respectively. The Variable Fitness Function provides and intelligent way 

to control the direction of any local search-based heuristic in order to yield better 

results. Extra CPU time is needed to evolve these “search directions” and if available 
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this methodology provides a very simple yet powerful way of enhancing a search 

heuristic without the need to modify the underlying search heuristic. This is useful when 

the heuristic is bespoke and crafting more intelligent search heuristics require a large 

amount of work or expert knowledge. Usually the cost of such is greater than the cost of 

extra CPU cycles used to evolve a Variable Fitness Function which in most of the cases 

was reusable. If the CPU time used to evolve a Variable Fitness Function can be reused 

because the Variable Fitness Function is exploiting the problem and not the problem 

instance, then the cost of evolving the Variable Fitness Function can be amortized by 

multiple uses. 

In Chapter 6.1 the Variable Fitness Function was used with a multiobjective 

TSP. This work showed how it is easy to create an artificially multiobjective problem 

out of a single objective problem for use with the Variable Fitness Function. In this 

section the Variable Fitness Function enhanced methods were superior to the original 

heuristics. The search was visualised and indicators of the Variable Fitness Function 

moving the search to different areas of the search space and out of local optima were 

seen. This section was published in  

 

This work was published in: 

S. M. Remde, P. I. Cowling, K. P. Dahal, N. J. Colledge, “Evolution of Fitness 

Function to Improve Heuristic Performance” in proceedings of Learning and 

Intelligent Optimization (LION) II, Springer LNCS 5313, 2008, pp 206-219. 

 

In Chapter 6.2 the Variable Fitness Function was used to create players for a 

tactically rich board game. It was hypothesised that tactics at the beginning, middle and 

end of the game would differ and the Variable Fitness Function provided a great way of 
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capturing this. Indeed, Variable Fitness Functions evolved for this game showed such 

behaviour and the evolution in this case was an adaptive one, evaluating the population 

against two hand crafted players and the three best evolved players. This lead to some 

interesting plots of fitness over the generations which provided strong evidence that the 

players were getting better.  

In Chapter 6.3 the Variable Fitness Function was used with a constructive 

scheduling process. “The Bank” was developed to try and anticipate bottlenecks when 

using constructive scheduling. The Bank keeps track of the supply and demand of each 

type of resource to try and identify potential bottlenecks during the scheduling process. 

It can be used to compare to potential moves to see which one results in the most 

favourable situation. The Variable Fitness Function here was used to control not only 

the weights of the fitness function, but also the a variable related to the bank. This 

shows that the Variable Fitness Function could be used in other situations where 

parameters need to change over time and are not directly considered in a fitness 

function. This has been submitted to European Journal of Heuristics. 

In Chapter 7.1 the Variable Fitness Function was used on a Variable 

Neighbourhood Search for the scheduling problem. One such evolved Variable Fitness 

Function was shown to work similarly to a right-left shift. We showed evidence that the 

Variable Fitness Function was able to create this well-known schedule improvement 

which shows the potential to make new heuristics for problems. 

 

This work was published in: 

K. P. Dahal, S. M. Remde, P. I. Cowling, N. J. Colledge, “Improving 

Metaheuristic Performance by Evolving a Variable Fitness Function” in 

Proceedings of EvoCOP 2008, Springer LNCS 4972, 2008, pp. 170-181 
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In chapter 7.2 multiple evolved Variable Fitness Functions for the dynamic side 

of the scheduling problem were visualised simultaneously using scatter-plot matrices. 

This helped the user to see trends between multiple Variable Fitness Functions that 

would have otherwise been hard to identify. These higher level trends give a greater 

understanding of how the Variable Fitness Functions are working. The Variable Fitness 

Functions evolved for the dynamic problem were unable to generalise across unseen 

instances however they were able to improve the performance on instances they were 

evolved on.  

The ability of the evolved Variable Fitness Functions to perform well on unseen 

data was always tested and Table 7.5 gives a summary of the information obtained in 

this thesis, however, this needs to be investigated more extensively. 

8.2. Observations 

 I see general approaches to solving problems as a research direction of 

continuing importance. When a new problem needs to be solved, general methods can 

be quickly adapted to solve it to a high quality whereas tailored methods may be much 

harder to apply. With generality comes a loss of quality of course, and that is why I see 

methods such as the ones described in this thesis as an enabler to understand problems 

better. The Variable Fitness Function discovered the right-left heuristic in days, whereas 

it was published by experts in 2003 – years after the RCPSP was formulated. 

Admittedly this pattern was identified as a right-left shift – if we had no idea what a 

right-left shift was it might not have been so straight forward. There could be many 

more efficient heuristics identified in the Variable Fitness Functions we have evolved in 
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this thesis that do not have a name – yet. Potentially this approach could be used with 

existing and new problems to identify new and interesting areas to look at. 

Working with an industrial partner has really aided the work and added 

credibility to the results. Trimble MRM Ltd. has had great input into the project and the 

discussions with them have always led to interesting ideas. Furthermore they helped us 

identify a real world problem and develop a model that captures the problems faced by 

many different types of their customers. 

 Working with a real world problem has provided us with a rich multiobjective 

problem landscape to test complex heuristic methods. The disadvantage of this is the 

CPU time required to solve the problems. Sometimes this became an issue when 

debugging problems. For testing purposes we found it useful to use the TSP which can 

be solved much quicker. 

 Due to the complex problem and the many runs we did to average results, a very 

large amount of CPU time was needed (over 3.25 CPU years of experiments actually 

made it into the thesis). The Genetic Algorithms were parallelised using the method in 

(Colledge, 2009) and the other experiments were parallelised at the experiment level on 

up to 100 machines. We used University computer labs over nights and weekends 

which meant that machines could be turned off (by other students) and so the software 

had to be resilient to failure. 

8.3. Future Work 

This section identifies some areas of interest for future work arising from this thesis. 
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8.3.1. Exact/Heuristic Hybrids 

In Chapter 4 Exact/Heuristic hybrid methods were used on the workforce scheduling 

problem. It would be interesting to see if the techniques used in this chapter to make lots 

of low level heuristics could be applied to other problems, and if the used of the rVNS 

and hyperheuristics would produce as significant results. The analysis of the results 

should also be extended in 3 ways:  

1) Each low level heuristic should be used in isolation to show that the result 

truly is a combination of multiple heuristics and not a single one.  

2) The pattern of low level heuristics used by the greedy search could be applied 

to other problems to see if it provides good results on unseen data. If so, the greedy 

hyperheuristic could be used to learn a pattern of low level heuristics offline and then 

that pattern used (many times quicker) online. This is similar to the HyperGA approach 

however patterns would be found by trial, not by evolution. 

 3) Analysis was done to see at which part of the search low level heuristics 

were used. This could be taken further to build rVNS neighbourhoods based on the 

analysis of these results. This rVNS would be a lot faster and could potentially provide 

nearly as good results as the greedy hyperheuristic with the speed of the rVNS. 

8.3.2. Binary Exponential Back Off 

The Binary Exponential Back Off algorithm used in chapter 4 to control the Tabu 

tenures of individual low level heuristics looks very promising. The idea of 

parameterless hyperheuristic that “just works” is interesting, and this certainly takes a 

step in that direction. BEBO Tabu search introduced a new parameter however this can 

can be used to determine the trade-off between CPU time and solution quality. 
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 Further work should be done experimentally testing the BEBO heuristic with 

different problems and parameters to see that the parameters affect the trade-off in other 

problems also. It is very likely that a good estimation of solution quality and CPU time 

required can be calculated as a function of the proportion of low level heuristic deemed 

bad. If this is the case it could provide an invaluable tool for testing what-if scenarios, 

where the user may want quick responses in the short run while trying scenarios, but a 

better quality solution once the ideal scenario has been found. 

 BEBO uses an existing mechanism to exponentially avoid trying bad moves. 

Similar statistical approaches which try to focus on good areas exist such as UCB 

(Kocsis and Szepesvari, 2006). It would be interesting to see if these ideas could be 

used to control search. 

8.3.3. Variable Fitness Function 

Numerous areas of research arise from the Variable Fitness Function. 

1. More extensive work needs to be carried out to try and identify factors which 

make an evolved Variable Fitness Function work across multiple problem 

instances. This means investigating different problems with different 

characteristics, the number and diversity of the problems instances used to 

evolve the Variable Fitness Functions, and the similarities and differences 

between the ones where generalisation works and does not.  

2. An investigation of why the evolution process is so insensitive to the 

evolutionary parameters should be carried out. This has been observed many 

times in the thesis and it is likely to be because of the higher level nature of the 

evolution, however more evidence of this would be nice and further 

investigation and evidence is needed. 
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3. Variable Fitness Functions that vary over scalars other than time or iterations is 

also an interesting idea. Variable Fitness Functions could be made to vary 

depending on a characteristic of the problem (such as the availability of 

resources, the time of day, the month of the year, etc) in order to learn from and 

exploit features of these characteristics. Multi-dimensional Variable Fitness 

Function could mean the weighted sum fitness function could vary according to 

two or more measures as this would give a greater depth to the characteristics of 

a problem the Variable Fitness Functions could learn. 

4. So far we have only used genetic algorithms to optimise Variable Fitness 

Functions. These have the advantage of being tried and tested and it has worked 

out well as it seems very insensitive to parameters. Other way of creating 

Variable Fitness Functions should be investigated. Combining this with point 3 

could also provide interesting results. For example, say we used schedule 

workload (some measure of how under/over subscribed the schedule is) as the 

dimension and then asked an expert to define weights for different scenarios. 

The Variable Fitness Function could be used to fill in the gaps. This could be 

combined with Valuated State Space ideas to add an easier interface for the 

expert to define these weights.  

5. So far piecewise linear and stepping functions have been used. It would be 

interesting to try different functions like Bezier curves or sine functions to 

connect the discontinuities. The work so far suggests different types of functions 

do not have an effect, but this was on very short searches and it is more than 

likely to have a larger effect on longer searches. 
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