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Abstract— An alternative technique for shape morphing
using a surface generating method using partial differential
equations is outlined throughout this work. The boundary-
value nature that is inherent to this surface generation
technique together with its mathematical properties are
hereby exploited for creating intermediate shapes between
an initial shape and a final one. Four alternative shape
morphing techniques are proposed here. The first one is
based on the use of a linear combination of the boundary
conditions associated with the initial and final surfaces,
the second one consists of varying the Fourier mode for
which the PDE is solved whilst the third results from a
combination of the first two. The fourth of these alternatives
is based on the manipulation of the spine of the surfaces,
which is computed as a by-product of the solution. Results
of morphing sequences between two topologically non-
equivalent surfaces are presented. Thus, it is shown that the
PDE based approach for morphing is capable of obtaining
smooth intermediate surfaces automatically in most of the
methodologies presented in this work and the spine has been
revealed as a powerful tool for morphing surfaces arising
from the method proposed here.

Index Terms— Morphing, PDE surfaces, Geometric mod-
elling, PDE method, geometric algorithms, boundary rep-
resentations.

I. INTRODUCTION

Metamorphosis, word with Greek origin in metamor-
phoun (transform, change shape), is used to denote a
change of form or nature and, has been adopted in areas
related to computer graphics and computer-aided geomet-
ric design to describe the action of changing smoothly
and gradually from one shape into another. Some of
these areas are industrial design [1], geometric modelling,
medicine [2], visual effects and computer animation [3].
Now, given that smooth and aesthetic effects are gener-
ally pursued, the development of morphing techniques is
oriented to fulfil such requirements.

The current available morphing techniques are roughly
classified into two major groups. These groups are es-
sentially distinguished by the kind of approach em-
ployed in their development. These are volume-based and
boundary-based approaches. The first kind of technique
regards the entire surface representing the object as a
means for transforming an object and manipulates the
object by modifying a set of specific points (control

This paper is based on “Shape Morphing Using PDE Surfaces ” by
G. González Castro, H. Ugail, P.Willis and I. Palmer, which appeared
in the Proceedings of the Visualization, Imaging and Image Procesing,
Palma de Mallorca, Spain, August 2006.

points). This technique provides excellent results when
applied to objects represented by implicit surfaces, giv-
ing rise to some conservative properties and producing
smooth transitions. Moreover, their implementation is
fairly straightforward.

As far as the boundary-based approaches are con-
cerned, specific values of the boundaries describing the
object are modified. However, it has been noticed that
a small variation of the data describing the boundary of
an object may result in an invalid object, disrupting the
smoothness of the sequence. This problem is overcome
by merging the two meshes associated with each of the
objects into a third one, where a corresponding rule is the
found.

According to [4], the major problems present in morph-
ing are feature specification, warp generation and transi-
tion control. These problems provide an additional mech-
anism for classifying morphing techniques. The work
presented in [5] enlists such a classification by making
reference to works based on mesh warping [6], field
morphing [7], energy minimisation [8] and free-form
deformations [9] among others.

Works such as [2], [10], [3] and [11] are examples of
some of the morphing techniques developed so far. For
instance, [11] introduces a method that allows morphing
between two objects using variational interpolation, whilst
[10] offers an alternative for achieving morphing between
two non-topologically equivalent objects by creating a
four-dimensional transitional mesh. However, there are
still a number of relevant areas in which little work has
been done such as multiple image morphing and the
development of appropriate real-time interactive deforma-
tion tools.

Surface generation methods may provide a useful tool
for addressing some of these problems. In particular,
those based on the use of partial differential equations
such as Bloor-Wilsons PDE method, a fast boundary-
value surface generation technique, may offer an excellent
alternative for problems related to feature specification
and transition control.

Preliminary work using the PDE method proposed by
Bloor and Wilson as the foundations for a morphing
technique is outlined in [12]. This work exploits some of
the advantages offered by this PDE method, among which
are the speed at which individual morphs are generated
and the intrinsic parametrisation of the surface shapes
generated through this method and has proved useful to
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for acquiring smooth and controlled transitions between
surfaces as required in morphing. Three methodologies
for morphing are proposed in [12]. The first one, is
based on the change of the boundary conditions for the
intermediate surfaces by using a weighted sum of the
original boundary conditions of each surface. The second
method is achieved by decreasing the Fourier mode for
which the PDE is solved whilst the third one consists of
a combination of the first two.

This work presents and additional methodology. The
additional alternative uses the spine as a morphing tool.
The spine is a mathematical feature inherent to PDE sur-
faces obtained by Bloor-Wilsons PDE method [13]. Some
of the advantages of centring a methodology for morphing
in the use of the spine are: it is only required to solve the
PDEs associated with the original surfaces, it increases the
speed with which morphing sequences are obtained with
respect to the speed offered by previous techniques based
on Bloor-Wilsons PDE method. The results presented
in this work include morphing sequences between two
objects with different topologies and complex geometries
showing that these morphing technique are capable of
morphing complex geometries with different topologies.

This paper is organised as follows: Section 2 outlines
the mathematical basis of the PDE method in use, while
Section 3 describes the details of four approaches for mor-
phing using this method. The results obtained for each of
the methods are discussed in Section 4. Section 5 contains
a discussion where the advantages of the methodology
presented in this work is compared to other morphing
techniques. Finally, the conclusions obtained from this
work are outlined in Section 6.

II. THE BLOOR-WILSON PDE METHOD

A surface generation technique based on the use of
partial differential equations has been formulated by Bloor
and Wilson and was firstly used in the area of computer
aided design as a blend generation technique [14]. There-
after, the areas of application of this method have been
widely increased. These include areas such as automatic
design optimisation and interactive design [15] together
with applications to physical and biological systems.

The Bloor-Wilson PDE method produces a parametric
surface X(u, v), which is defined as the solution to an
elliptic PDE of the form,

( ∂2

∂u2
+ a2 ∂2

∂v2

)2

X(u, v) = 0 , (1)

where u and v are the parametric surface coordinates,
which are then mapped into the physical space; i. e.,
(x(u, v), y(u, v), z(u, v)) and a ≥ 1 is a parameter
inherent to the PDE. Equation (1) is solved subject to
a specific set of four boundary conditions that define the
value of X(u, v) and some of its derivatives at determined
regions.

The particular case when a = 1, Equation (1) is known
as the biharmonic equation, which is widely used to
describe some phenomena occurring within areas such as

fluid and solid mechanics and therefore, many alternatives
for solving it have been developed. Nevertheless, it is
stressed that the implementation of this method is not
restricted to the use of Equation (1) for obtaining PDE
surfaces. For instance, this formulation was adapted in
[16] where a sixth order PDE was considered with the
aim of achieving fast surface modelling.

Restrictions in the choice of the boundary conditions to
periodic cases give rise to a closed form analytic solution
to Equation (1). In particular, when the parametric region
defined by u and v is delimited by 0 ≤ u ≤ 1 and
0 ≤ v ≤ 2π, the solution to Equation (1) is given by,

X(u, v) = A0(u)+
∞∑

n=1

[An cos(nv)+Bn sin(nv)] , (2)

where,

A0 = a00 + a01u + a02u2 + a03u3 , (3)

An = (an1 + an3u) eanu

+ (an2 + an4u) e−anu , (4)

Bn = (bn1 + bn3u) eanu

+ (bn2 + bn4u) e−anu . (5)

The value of the constants aij and bij are determined by
the specified boundary conditions, which for this purpose,
have to be expressed in terms of a Fourier series. In
specific cases when all the boundary conditions can be
exactly expressed in terms of finite Fourier series, Equa-
tion (2) will also be finite. However, when the solution is
given in terms of an infinite series, it can be approximated
by the sum of the first N Fourier modes and the so called
remainder term; i. e.,

X(u, v) = A0(u) +
N∑

n=1

[An cos(nv) + Bn sin(nv)]

+ R(u, v) , (6)

where R(u, v) is a function defined as,

R(u, v) = r1(u)ewu + r2(u)e−wu

+ r3(u)uewu + r4(u)ue−wu , (7)

where w has been conveniently chosen as w = a(N + 1)
and, r1, r2, r3 and r4 are functions denoting the differ-
ence between the original boundary conditions and the
ones satisfied by,

F(u, v) = A0(u)+
N∑

n=1

[An cos(nv)+Bn sin(nv)] . (8)

Therefore, Equation (7) guarantees that the original
boundary conditions are exactly satisfied in Equation (6)
in spite of the truncation of the series.

It is important to stress that the traditional implemen-
tation of the PDE method proposed by Bloor and Wilson
requires two positional boundary conditions and its re-
spective derivative with respect to u. These derivatives
are calculated using standard finite differences between
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the original positional boundary curve and an additional
curve for each respective case.

An example of a surface generated by the PDE method
in use is outlined in Figure 1. The generating positional
boundary conditions are presented in Figure 1.a. The outer
curves represent the positional boundary conditions at
u = 0 and u = 1 respectively, whereas the inner ones
are the curves used in the intrinsic calculation of the
derivatives accordingly. The associated surface is sketched
in Figure 1.b. In this example, the expansion has been
truncated after 5 modes.

(a) (b)

Figure 1. Example of a surface generated by the PDE method in use.
The boundary curves are shown in (a) and their PDE surface is sketched
in (b).

According to the mathematical properties of the expres-
sion stated in Equation (6) is qualitatively composed as
follows: the term A0(u), which describes the spine of the
object, and

∑N
n=1[An cos(nv) + Bn sin(nv)] + R(u, v),

which defines its radial component. The spine of the
object can be thought as the medial axis of the object
and in general represents much richer topologies than the
object itself [17]. This characterization of Equation (6)
provides an excellent tool for manipulating the shape of
an object, a feature that is exploited in this work. Figure 2
shows an example of a PDE surface representing a Klein
bottle (Fig. 2.a) and its corresponding spine, (Fig. 2.b).

(a) (b)

Figure 2. PDE surface representations associated with a Klein bottle
(a) and its spine (b).

The PDE method employed throughout this work dif-
fers slightly from the one proposed in [14] since such a
method requires two positional boundary conditions and
their respective first derivative boundary conditions for
solving the PDE, whilst the alternative used in this work
is formulated so that the PDE is solved by using four

positional boundary conditions. This technique is faster
for solving this kind of PDE than methods such as the
ones based on either finite element or finite differences.
As far as surface generation is concerned, the speed with
which the PDE is solved (results are obtained virtually
in real time) makes this technique an excellent choice.
The reader is referred to [14] for further details on
the mathematical formulation of the Bloor-Wilson PDE
method.

III. METHODOLOGY

Morphing using partial differential equations for gener-
ating surfaces is achieved with the aim of creating inter-
mediate surfaces between two given surfaces; the source
surface, denoted by Ss, and the target one represented
by St. These intermediate surfaces can be generated
by taking advantage of the many mathematical features
inherent to Equation (6) and thus, different choices by
which a morphing sequence can be achieved are available.
Moreover, the boundary conditions of any intermediate
surface, prescribed with the use of some mathematical
properties of Equation (6), may lead to find iterative
boundary conditions for each of the intermediate surfaces
so that a smooth transition from Ss to St can be achieved.
This work comprises four methodologies involving differ-
ent features inherent to the proposed PDE method.

The first methodology proposed exploits the property of
closure of Fourier series; i. e., the sum of any two Fourier
series is equal to another Fourier series, permitting a linear
combination of the boundary conditions associated with
Ss and the ones specified for St. The second alternative
takes advantage of the fact that given that the larger
the number of Fourier modes employed in the Fourier
series expansion, the better the boundary conditions are
satisfied, intermediate surfaces can be obtained by using
a progressive decrement in the number of modes involved
in the computation of Ss until one mode is used and
then, increasing the number of modes involved in the
computation of St from one to the number originally
used in its computation. A combination of the first two
methodologies leads to a third one, whilst the use of a
linear combination of the spine of the original surfaces
together with a linear combination of its respective radial
components give rise to the fourth methodology assessed
throughout this work. Technical details concerning each
of the methodologies mentioned in the former paragraph
are given below.

A. Variation of the boundary conditions

The first alternative consists of using weighted sums
of the boundary conditions associated with the source
and target surfaces. Let Bs = {S1 ,S2 ,S3 ,S4 } be
the set of boundary conditions specified for the S s and
Bt = {T1 ,T2 ,T3 ,T4 } be the set of boundary con-
ditions representing St. Thus, the ith intermediate set of
boundary conditions Bi = {I1 , I2 , I3 , I4 } is achieved
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by,

I1 = (1 − ε)S1 + εT1 ,

I2 = (1 − ε)S2 + εT2 ,

I3 = (1 − ε)S3 + εT3 ,

I4 = (1 − ε)S4 + εT4 , (9)

where,

ε =
γ(i − 1)

m
,

with γ ≥ 0 and m represents the number of intermediate
surfaces to be created.
Equation (9) provides an iterative formulation giving rise
to intermediate boundary conditions. Such an iterative
process generates surfaces that are gradually transforming
the original source surface into the target one at a constant
rate. The exclusion of the remainder term in Equation (6)
is not mandatory; however, for the purposes of speed, this
term has been omitted. Therefore, the intermediate surface
is then given by,

Si(u, v) = A0(u) +
N∑

n=1

[An cos(nv) + Bn sin(nv)] ,

(10)
where A0, An and Bn are subject to the set of boundary
conditions specified by Equation (9). This method is
particularly useful when the morphing of two surfaces
with perfect cylindrical symmetry is required.

B. Variation of the number of Fourier modes

The second method to be assessed in this work con-
cerns the iterative manipulation of the number of Fourier
modes associated with the expansions of the source and
target surfaces. This alternative is divided in two stages:
The first one consists of decreasing the number of modes
employed in the computation of Ss until the number of
modes employed reaches one. The second stage calcu-
lates intermediate surfaces using the boundary conditions
associated with St and gradually increasing the number
of modes from one until it reaches the number of Fourier
modes for which St was originally computed.

Let Ns and Nt be the number of Fourier modes for
which Ss and St have been respectively expanded. For
the purposes of this work, let m = Ns+Nt be the number
of intermediate surfaces and thus, the ith intermediate sur-
face is obtained according to the following formulation,

Si(u, v) = A0(u) +
Ns−i∑
n=1

[An cos(nv) + Bn sin(nv)] ,

for i = 1, ..., Ns,

Si(u, v) = A0(u) +
i−Ns∑
n=1

[An cos(nv) + Bn sin(nv)] ,

(11)
for i = Ns + 1, ..., m.

Now, the boundary conditions employed to solve Equa-
tion (11) for each of the ith intermediate surfaces are
given by,

Bs , for i = 1, ..., Ns ,

Bt , for i = Ns + 1, ..., m .

Notice that, as mentioned before, the remainder term
is excluded in Equation (11) for computing S i. This is
due to the fact that throughout this methodology for this
term is the one responsible for the exact satisfaction of
the boundary conditions and consequently contributing to
the attenuation of the morphing effects achieved by this
alternative.

C. Combination of a gradual variation of the boundary
conditions and the number of Fourier modes

This method results from the combination of the ones
presented above. The intermediate surfaces are found ac-
cording to a corresponding rule similar to Equation (11),
whilst the boundary conditions prescribed to each respec-
tive intermediate surface are determined by Equation (9).

D. Linear combination of the spine and the radial com-
ponents of the original surfaces

The use of the spine and radial components of the
source and target surfaces offers additional alternatives
to follow in the aim of achieving morphing sequences.
For the purposes of this work, intermediate surfaces are
determined by a new spine resulting from a sequential
linear combination of the spines of the source and target
surfaces, whereas the radial component of these interme-
diate surfaces is computed analogously. Thus, let A0s and
A0t denote the spine of the source and target surfaces
respectively and, let Ans, Bns, Ant and Bnt represent
the coefficients associated with the radial component of
the source and target surfaces on each respective case.
Thus, each intermediate surface is determined by

Si = A0i +
N∑

n=1

[Ani cos(nv) + Bni sin(nv)] , (12)

where

A0i = (1 − ε)A0s + εA0t ,

Ani = (1 − ε)Ans + εAnt ,

Bni = (1 − ε)Bns + εBnt , (13)

and ε, γ and m are subject to the same definitions and
restrictions as in Equation (9).

Again, the remainder term is excluded from the com-
putation of the intermediate surfaces for the same rea-
sons for which it was previously omitted. Note that this
methodology reduces the number of operations involved
in finding intermediate surfaces in the sense that this
procedure only requires the estimation of the coefficients
of the source and target surfaces in full. Therefore, it is
expected that this alternative may reduce computing time
significantly. This aspect will be discussed with detail in
the next section.
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IV. RESULTS

The efficiency of the methodologies explained in the
previous section is assessed through the use of partic-
ular examples. The results obtained for each case are
compared qualitatively. Additionally, the time required
for computing each morphing sequence is obtained in
order to determine the fastest methodology among the
ones proposed here.

A. Variation in the boundary conditions

The technique using a linear combination of the bound-
ary conditions has been assessed by specifying the con-
stant rate γ at which the boundary conditions are to be
changed and the value set for this purpose has been
defined as 0.1. Therefore, according to Equation (9),
eleven intermediate surfaces are found. Each of these
intermediate surfaces is then computed by solving Equa-
tion (6) and using the boundary conditions determined by
Equation (9).

The transformation between a sea shell and a Klein
bottle has been chosen as a first example for assessing
the four methodologies proposed in this work since they
present different topologies. Both shapes possess ana-
lytical expressions in terms of two parametric variables
namely, u and v. The sea shell, representing Ss, is
determined by

x = α

(
1 − 1

2π

)
cos (2u) (1 + cos (v)) + δ cos (2u) ,

y = β

(
(1 − 1

2π

)
sin (2u) (1 + cos (v)) + δ cos (2u) ,

and
z = δ

u

2π
+ α

(
1 − v

2π

)
sin (v) ,

where α, β and γ are constants, 0 ≤ u < π and 0 ≤
v < 2 π. The graphical representation of the sea shell
used throughout this work has been obtained using the
values of α = 0.2, β = 1.0 and δ = 0.1.

The analytical expressions of the coordinates represent-
ing the Klein bottle are given by

x =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
α cos(u)(1 + sin(u))
+δ cos(u) cos(v)

0 ≤ u < π{
α cos(u)(1 + sin(u))
+δ cos(v + π)

π ≤ u < 2π ,

y =
{

β sin(u) + δ sin(u) cos(v) 0 ≤ u < π
β sin(u) π ≤ u < 2π ,

and
z = δ sin(v) .

Again α and β are constants, whereas δ is a function
of u, 0 ≤ u < π and 0 ≤ v < 2 π. For the purposes
of this work, the values of α = 6.0, β = 16.0 and
δ = 4

(
1 − cos(u)

2

)
.

The analytic expressions outlined above have been
employed to obtain the boundary curves responsible for
producing a PDE surface representation on each respec-
tive case. Figure 3 shows the PDE surface representations
have resulted from solving nine PDEs for both the sea
shell and the Klein bottle.

(a) (b)

Figure 3. PDE surface representations associated with a sea shell (a)
and a Klein bottle (b).

Figure 4 shows the results obtained after transforming
the sea shell into the Klein bottle using the methodology
based upon a linear combination of the boundary con-
ditions associated with the source and target surfaces. A
smooth and progressive transition between the sea shell
(Fig. 4.a) and the Klein bottle (Fig. 4.m) is observed
throughout the entire sequence. The results have been
calculated using a 3.4 GHz Intel Pentium 4 processor
resulting on the use of a computing time equivalent to
1.448 seconds corresponding to a mesh of 40 x 40 points.

The second example presented in this section discusses
the transformation of a Klein bottle, regarded as Ss,
into a dolphin, which is therefore considered as St. The
geometric representation of the dolphin has been achieved
by extracting the necessary boundary curves using MAYA
and then, producing a blend of different surface patches,
each of which represents a different region of the body of
the dolphin. A total of five surface patches are used in this
model. Figure 5 shows the schematic representation of A
PDE surface representing the source and target surfaces
associated with this example. These surfaces have been
obtained with the aid of the Bloor-Wilson PDE method
by using specific sets of boundary conditions for each
respective case.

A morphing sequence from the source surface to the
target one passing through eleven intermediate surfaces is
shown in Figure 6. This sequence is outlined as follows:
Figure 6.a corresponds to the PDE representation of a
Klein bottle; i. e., the remainder term is included, which
is transformed into Figure 6.b by changing its boundary
conditions according to Equation (10) when i = 1. Then,
Figure 6.b evolves into Figure 6.c successively until the
last change in the boundary conditions is carried out,
which is schematised in Figure 6.l. Finally, Figure 6.m
represents the original PDE representation of the dolphin.
The sequence qualitatively shows how the Klein bottle is
smoothly transformed into the dolphin. For instance, it can
be noticed a gradual appearance of the dorsal and lateral
fins of the dolphin together with a progressive growth
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Figure 4. Sequence showing how the source surface Ss, representing
a sea shell, has been morphed into the target one St, a Klein bottle, by
using a gradual change in the boundary conditions and finding each of
the intermediate surfaces via the proposed PDE method.

of the tail, which has been completely formed from the
beginning of this sequence.

The time employed in the computation of such a
morphing sequence has been equal to 2.662 seconds using
a mesh containing 20 × 20 points for each surface patch.
Thus, the results obtained through the two examples
studied in this work suggest that this method can be used
for morphing surfaces without losing its advantages of
speed and accuracy.

B. Results obtained by varying the number of Fourier
modes in the series

The effects of varying the number of Fourier modes
employed for computing intermediate PDE surfaces in
a morphing sequence are assessed here. The two ex-
amples considered in the previous case are again used.
The Fourier series associated with their respective PDE
surfaces Ss and St have been expanded to 5 modes. Thus,
according to the methodology proposed in Section 3.2,
it is possible to find 10 intermediate surfaces; the first
five are computed by decreasing the Fourier mode for
which Equation (6) and using the boundary conditions
associated with Ss, whilst the remaining surfaces are
computed by increasing the Number of Fourier modes

(a) (b)

Figure 5. PDE surfaces associated with a Klein bottle (a) and a dolphin
(b) employed to assess the efficiency of the methodology based on the
gradual variation of the boundary conditions.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Figure 6. Sequence showing how the source surface Ss (Kelin Bottle)
has been morphed into the target one St (dolphin) by using a gradual
change in the boundary conditions and finding each of the intermediate
surfaces via the proposed PDE method.

used in Equation (6) from 1 to 5 and using the boundary
conditions corresponding to St.

The results obtained by morphing a sea shell into a
Klein bottle (Figure 3) are sketched in Figure 7. The
results outlined in this figure suggest that no change
is achieved by varying the Fourier mode for which the
solution to the PDE has been expanded. However, this is
due to the cylindrical symmetry of the objects involved
in this sequence. The time employed in calculating this
sequences has been equivalent to 0.989 seconds when the
mesh contains 40 x 40 points.

Now, regarding the results obtained for the case posed
by transforming a Klein bottle, Ss, into a dolphin, St,
are sketched in Figure 8. The first (Figure 8.a) and last
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7. Morphing sequence obtained by varying the Fourier mode of
the expansion when the source surface consisting of a sea shell whilst
the target one is represented by a Klein bottle.

(Figure 8.l) figures correspond to the source and target
surface respectively, whereas the remaining ten figures
outline the transition between them.

Again, the sequence presented in Figure 8 shows little
or no morphing between these two surfaces. This is
due to the nearly perfect cylindrical symmetry observed
by the two objects involved in the morphing sequence.
Therefore, the efficiency of this methodology cannot be
exclusively assessed. The time consumed in obtaining
such a sequence has been 1.428 seconds using a mesh
using 20 x 20 points for each surface patch associated
with the geometric model of a dolphin used in this work.

The examples employed through this work have been
proved unable to assess the efficiency of this method-
ology and therefore, the future use of another example
is proposed. Thus, a third example is used to assess the
efficiency of this alternative. Such an example consists of
the transformation of a super ellipsoid into a super toroid.
the Cartesian coordinates of the super ellipsoid are given
in terms of the parametric coordinates u and v by

x = α sinn1 (v) cosn2 (u) ,

y = β sinn1 (v) sinn2 (u) ,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Morphing sequence obtained by varying the Fourier mode
of the expansion associated with the solution of the PDEs when the
source and target surfaces surface represent a Klein bottle and a dolphin
respectively.

and
z = γ sinn1 (v) ,

where the constants α, β and γ denote the scale on each
direction, n1 and n2 are constants controlling the shape
of the ellipsoid, 0 ≤ u < 2π and 0 ≤ v < π.

Analogously, the coordinates associated with the super
toroid are determined by

x = rx (γ + α cosn2) (v) cosn1 (u) ,

Y = ry (γ + α cosn2) (v) sinn1 (u) ,

and
z = rzα sinn2 (v) ,

where the constants rx, ry and rz denote the scales on
each direction, α and γ represent the inner and outer
radius respectively, n1 and n2 are constants controlling
the shape of the ellipsoid, whereas the domain is defined
by 0 ≤ u < 2π and 0 ≤ v < 2π.

Figure 9 shows a set of source and target surfaces to use
as a third example for assessing the alternative based on
the variation of the Fourier mode. Figur 9.a corresponds
to a super ellipsoid obtained by defining α = 1.0, β =
γ = 2.0, n1 = 0.8 and n2 = 1.7, whereas Fig.9.b
represents a super toroid that was calculated using rx =
ry = rz = 1.0, α = 1.0, β = 2.0, n1 = 0.6 and
n2 = 0.7.
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(a) (b)

Figure 9. PDE surfaces associated with a super ellipsoid (a) and a super
toroid (b) employed to assess the efficiency of the methodology based
on the gradual variation of the Fourier mode.

Figure 10 shows a morphing sequence between a super
ellipsoid and a super toroid by varying the Fourier mode.
Again the first and last surfaces in this figure correspond
to the original super ellipsoid and super toroid respec-
tively. As expected, an abrupt transition between Fig. 10.e
and Fig. 10.f is observed as a consequence of changing
set of boundary conditions used for solving the PDE.
However two subtle transitions can be observed. The first
one takes place between Fig. 10.a and Fig. 10.e, whereas
the second one occurs between Fig. 10.f and Fig. 10.l.
The computing time employed in the calculation of this
morphing sequence has been equal to 0.267 seconds when
using a mesh composed of 40 x 40 points.

Thus, it is shown that the variation of the Fourier mode
represents an alternative method for morphing. However,
this technique is less efficientthan the one based on the
variation of the boundary conditions.

C. Results obtained by combining the two methodologies

The combination of the two previous methodologies,
the use of a linear combination of the boundary condi-
tions and the variation of the Fourier mode for which
the Fourier series is expanded has been proposed as a
third methodology for achieving morphing. Again, the
boundary conditions associated with the intermediate sur-
faces are determined by Equation (9) for γ = 1 and i
varying from 0 to 10 in Equation (10). In the interest
of taking all possible advantage of this methodology, the
intermediate surfaces will be computed as follows: The
first five are calculated by decreasing the Fourier mode
from 5 to 1 along with the first five sets of boundary
conditions. The sixth intermediate surface is estimated by
using one Fourier mode together with the sixth set of
boundary conditions. This one corresponds to the surface
with central morph; i.e., it resembles both source and
target surfaces equally. The remaining five surfaces are
determined by an increment in the Fourier mode and the
rest of the pre-determined sets of boundary conditions.

The results obtained by morphing a sea shell into
a Klein bottle using this methodology are sketched in
Figure 11. A sequence consisting of thirteen surfaces
has been obtained where a smooth transition between the
source and target surface is achieved. This sequence has
been computed in 1.921 seconds, time slighter bigger than

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10. Morphing sequence obtained by varying the Fourier mode of
the expansion associated with the solution of the PDEs when the source
and target surfaces surface represent a super ellipsoid and a super toroid
respectively.

the one employed for obtaining the respective sequence
with the exclusive use of a linear combination of the
boundary conditions.

Figure 12 shows the transformation sequence in which
a Klein bottle (Ss) is transformed into a dolphin (St) by
sketching the original surfaces and their corresponding
eleven intermediate surfaces. A smooth transition similar
to the one outlined in Figure 6 is achieved. Again,
a gradual appearance of features such as fins and tail
together with a progressive change in the topology of the
Klein bottle can be observed. This morphing sequence has
been computed in 3.1857 seconds, which again is slightly
larger than the one invested in computing the respective
morphing sequence associated with the use of a linear
combination of the boundary conditions exclusively.

D. Results obtained by using the spine

The last methodology to be evaluated throughout this
work consists of using a pre-determined manipulation
of the spine and the radial components associated with
two given surfaces for achieving intermediate ones. The
spine and radial component corresponding to each of the
intermediate surfaces are determined by Equation (13)
with γ = 1 and i varying from 1 to 10 leading to nine
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Figure 11. Morphing sequence obtained using a linear combination of
the boundary conditions and a variation of the Fourier mode simulta-
neously. This sequence has been obtained by using the PDE surface
representation of a sea shell and a Klein bottle as source and target
surfaces respectively.

intermediate surfaces. The remainder term associated with
each of generating PDE surfaces are combined in an
analogous manner in order to obtain a remainder term
for each of the intermediate surfaces. This term has been
included with the aim of proving that such a term does
not modify the obtained results substantially.

The use of this methodology for morphing a sea shell
into a Klein bottle gives rise to the results sketched in
Figure 13, where the surfaces obtained are similar to
those obtained by the use of a linear combination of the
boundary conditions. However, the computing time used
for obtaining this sequence is equal to 0.738 seconds,
suggesting that the use of this methodology produces
acceptable results faster than the rest of the alternatives
studied here.

Figure 14 shows the sequence in which a Klein bottle
(Fig 14.a) is morphed into a dolphin (Fig 14.k). A smooth
transition between these two surfaces similar to the ones
obtained for the first and third methodologies is observed.
Moreover, the time required for its computation has been
equal to 1.1722 seconds, which is the smallest so far for
this example. This confirms the hypothesis sustaining that

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Figure 12. Morphing sequence obtained by using a linear combina-
tion of the boundary conditions and a variation of the Fourier mode
simultaneously for transforming a Klein bottle into a dolphin.

the spine could represent a powerful parameter by which
smooth morphing could be obtained.

V. DISCUSSION

A direct comparison between the methodology pre-
sented in this work in general and some others is not
a very straightforward task to carry out. However, it is
necessary to highlight the existing differences between the
alternative presented in this work and those techniques
based on the use of generalised cylinders. The works
presented in [18] and [19] uses generalized cylinders for
achieving morphing under different scenarios; the first
uses Boolean operators to create, morph and animate
objects; whereas the second achieves morphing by in-
cluding Fourier interpolation to the process. Some of the
differences are listed below:

• The techniques based on generalised cylinders are
not based on the use of partial differential equations
as a surface generating tool.

• The use of Fourier interpolation as a morphing tool
in [19] consists of controlling the region of the cross-
sectional curve which want to be morphed along the
axis. This technique differs from the ones presented
in our work; however, it can be easily adapted to our
methodology.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 13. Sequence showing how the source surface representing a
sea shell has been morphed into the target one, a Klein bottle, by using
a linear combination of their spine and radii.

• The time reported in [19] refers to the time employed
in rendering some of the objects presented in this
work; however, this work does not report the times
required for morphing two different objects and thus,
it is not possible to compare the efficiency of this
technique to the methodology based on the use of
partial differential equations.

Thus, it can be concluded that the ideas presented
through this work can be enriched by some of the
arguments employed throughout the works discussed in
this section without losing its contribution to the field as
PDE-based methodology for achieving morphing.

VI. CONCLUSIONS

Shape morphing using partial differential equations
and adapting the PDE method formulated by Bloor and
Wilson has been achieved by taking advantage of its
numerous mathematical properties enabling the imple-
mentation of different methodologies for the purpose.
Four alternatives are described in this work: the first
one consists of a linear combination of the prescribed
boundary conditions associated with the source and target
surfaces, the second alternative explores the effects of
morphing by varying the number of Fourier modes for

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 14. Sequence showing how the source surface representing a
Klein bottle has been transformed into the target one, a dolphin, with
the aid of a linear combination of their respective spines.

which the source and target surfaces are expanded, whilst
the third results from a combination of the previous two.
The fourth methodology assesses the use of the spine
of these surfaces as a morphing tool by using a linear
combination of the spines associated with the generating
PDE surfaces. Two examples have been used to evaluate
the efficiency of these methodologies obtaining interesting
results. Notice that the examples studied here carry out
morphing between two objects that are not topologically
equivalent proving that the method proposed in this work
can achieve smooth morphing between any two objects.
Additionally, one of the examples morphs two objects that
are represented by a different number of PDEs without
presenting unwanted effects.

The third and fourth alternatives are likely to be more
successful than the other methodologies proposed since
both offer smooth results and the former includes the
variation of the parameters, whilst the latter requires
less time for its computation. The use of the second
alternative is not recommended for morphing objects
with cylindrical symmetry since their Fourier expansion
only requires one mode. The major advantage of using
surface generation techniques based on PDEs such as
Bloor-Wilsons PDE method as a morphing tool relies on
the fact that the intermediate surfaces can be obtained
in virtually real time and the intermediate surfaces can
be as smooth as required. Furthermore, the morphing
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methodology presented in this work modifies one or
several parameters inherent to PDE surfaces avoiding
complications offered by other methodologies such as
those based on subdivision or NURBS where the non-
trivial task of modifying each control point describing
the surface is required. Therefore, the proposed PDE
method represents an excellent choice for developing an
interactive morphing tool and further studies concerning
its potential may encourage a formulation of such a tool.

Future work on this area can be oriented towards the
use of different values of ε for each of the boundary con-
ditions, which may result particularly useful when some
features characterizing the target surface need emphasis at
the early stages of the morphing sequence. Additionally,
the use of nonlinear weighted sums of the boundary
conditions represents another alternative for achieving
morphing that can be explored in the future. This may
be useful when dramatic morphing effects are required.
Thus, the potential of the PDE method proposed here can
be extended further. Another alternative for expanding this
work consists of developing a methodology in which the
morphing process is determined by a rate of change in
the arc of length that is transformed from the original
boundary curve into the source ones [19].

ACKNOWLEDGMENTS

The authors wish to acknowledge the support received
by the UK Engineering and Physical Sciences Research
Council grants EP/C015118/1 and EP/D000017/1 through
which this work has been endeavoured.

REFERENCES

[1] K. C. Hui and Y. Li, “A feature-based shape blending
technique for industrial design,” Computer-Aided Design,
vol. 30, no. 10, pp. 823–834, 1998.

[2] L. Liu, G. Wang, B. Zhang, B. Guo, and H. Shum,
“Perceptually based approach for planar shape morphing,”
Computer Graphics and Applications, pp. 111–120, 2004,
(12th Pacific conference).

[3] V. Kraevoy and A. Sheffer, “Cross-parametrization and
compatible remeshing of 3D models,” in Proc. SIGGRAPH
’04, vol. 23, 2004, pp. 861–869.

[4] G. Wolberg, “Image morphing: a survey,” The Visual
Computer, vol. 14, pp. 360–372, 1998.

[5] F. Lazarus and A. Verroust, “Three-dimensional metamor-
phosis: a survey,” The Visual Computer, vol. 14, pp. 373–
389, 1998.

[6] D. B. Smythe, A two-pass mesh warping algorithm for
object transformation and image interpolation. Technical
Report 1030, IML Computer Graphics Department, Lucas-
film, San Rafael California, 1990.

[7] T. Beier and S. Neely, “Feature-based image metamorpho-
sis,” in Proc. SIGGRAPH ’92, vol. 26, 1992, pp. 35–42.

[8] S. Lee, K. Chwa, J. Hahn, and S. Y. Shin, “Image morphing
using deformation techniques,” Journal of Visualization
and Computer Animation, vol. 7, pp. 3–23, 1996.

[9] S. Cohen, G. Elber, and R. Bar-Yehuda, “Matching of
freefrom curves,” Computer-Aided Design, vol. 29, no. 5,
pp. 369–378, 1997.

[10] S. Takahashi, Y. Kokojima, and R. Ohbuchi, “Explicit
control of topological transitions in morphing shapes of
3D meshes,” in Proc. Pacific Graphics ’01, 2001, pp. 70–
79.

[11] G. Turk and J. F. OBrien, “Shape transformation using
variational implicit functions,” in Proc. ACM SIGGRAPH
’99, 1999, pp. 335–342.
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