4@ EF UNIVERSITY OF Learner
A BRADFORD Support

/ .'"’ MAKING KNOWLEDGE WORK SerVices

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please
refer to the repository record for this item and our Policy Document available from
the repository home page for further information.

To see the final version of this work please visit the publisher’'s website. Where
available access to the published online version may require a subscription.

Author(s): Dahal, K. P. and McDonald, J. R.

Title: Generator maintenance scheduling of electric power systems
using genetic algorithms with integer representations.

Publication year: 1997.

Conference title: Second International Conference on Genetic Algorithms
in Engineering Systems: Innovations and Applications, Glasgow 2-4
Sept 1997 (GALESIA 97)

ISSN: 0-85296-693-8
Publisher: IEEE

Link to original published version:
http://ieeexplore.ieee.org/serviet/opac?punumber=5586

Citation: Dahal, K. P. and McDonald, J. R. (1997) Generator maintenance
scheduling of electric power systems using genetic algorithms with integer
representations. In: Second International Conference On Genetic Algorithms in
Engineering Systems: Innovations and Applications, Glasgow 2-4 Sept 1997
(GALESIA 97). New York: IEEE. Conf. Publ. No. 446. pp.456-461.

Copyright statement: Copyright © [1997] IEEE. Reprinted from Second
International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications, Glasgow 2-4 Sept 1997 (GALESIA 97). New York:
IEEE.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of

Bradford's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

GENERATOR MAINTENANCE SCHEDULING OF ELECTRIC POWER SYSTEMS
USING GENETIC ALGORITHMS WITH INTEGER REPRESENTATION

K.P.Dahal, J.R.McDonald
Centrefor Electrical Power Engineering, University of Strathclyde, Glasgow, UK

(presented at International Conference on Genetic Algorithmsin Engineging Systems: Innowations and Applicaions (GALESIA’97).

ABSTRACT

The dfedive maintenance scheduling d power system
generators is very important to a power utility for the
eonamicd and reliable operation o a power system.
Many mathematica methods have been implemented for
generator maintenance scheduling (GMS). However,
these methods have many limitations and require many
approximations. Here a Genetic Algorithm is proposed
for GMS problems in order to owercome some of the
limitations of the cnventional methods.

This paper formulates a general GMS problem using a
reliability criterion as an integer programming problem,
and demonstrates the use of GAs with three different
problem encodings: binary, binary for integer and
integer. The GA performances for eah o these
representations are analysed and compared for a test
problem based ona pradicad power system scenario. The
effeds of different GA parameters are dso studied. The
results how that the integer GA is a very effedive
methodfor GMS problems.

1. INTRODUCTION

It is very important for the dfedive operation d a power
system to determine when its generators $oud be taken
off line for preventive maintenance This is primarily
becaise other planning adivities are diredly affeaed by
such dedsions. In modern power systems the demand for
eledricity has gredly incressed with related expansions
in system size, which has resulted in higher numbers of
generators and lower reserve margins making the
generating maintenance scheduling (GMS) problem more
complicated. The goal of GMS is to alocae a proper
maintenance timetable for generators while maintaining a
high system reliability, reducing total production cost,
extending generator life time dc., subjed to some unit
and system constraints. The maintenance schedule of
ead generating urit shoud be optimised in terms of the
particular objedive function under a series of constraints.

Severa deterministic mathematicd methods and heuristic
techniques are reported in the literature for solving these
problems [1,2,3,4]. Genera solution methods are based
on integer programming, branch-and-bound technique,
dynamic programming, etc. However, such approaches
are severely limited by the 'curse of dimensiondlity' and
are poa in handing the nonlinea obedive ad
constraint functions that charaderise the GMS problem.
The heuristic gpproach uses a trial-and-error method to

evaluate the maintenance objedive function in the time
interval under examination. This requires sgnificant
operator input and in some situations it fails to produce
even feasible solutions [3,4].

Genetic dgorithms may be a effedive dternative
method for finding ogimal or nea optima solutions of
these mplex problems. This paper describes the
procedure for implementing GAs for solving the GMS
problem. A stealy state GA approacd has been applied to
amedium sized test GM S problem, which includes many
fedures that charaderise red systems. The GA is
implemented for threetypes of problem encoding: binary,
binary for integer and integer. The results have shown
that the integer representation is very efficient in finding
goodsolutions for GMS problems.

The following sedion describes the formulation o a
general GMS problem using a reliability objedive and
general unit and system constraints. Sedion 3 dktail s the
implementation d GAs to the GMS problem with the
three types of problem encoding. The performances of
the GA with these different problem representations for
the test problem are compared and dscussed in Sedion
4. This £dion aso presentsthe dfeds of GA parameters
on the performance of the GA and the results obtained
using an improved mutation operator. Our conclusions
are presented in Sedion 5

2. PROBLEM FORMULATION

There ae generaly two categories of objedive functions
in GMS, based onreliability and econamic cost [4]. This
paper uses the reliability criteria of levelling reserve
generation throughou the period undr examination.

This can be redised by minimising the sum of squares of

the reserve over the entire operational planning period.

The problem has a series of unit and system constraints

to be satisfied, which in general include the foll owing:

¢ Maintenance windov and sequence onstraints -
define the ealiest and latest time, the duration and the
restriction d maintenancefor ead urit.

e Crew and resource nstraints - consider the
manpower avail ability and the limits on the resources
neeaded for maintenance adivity at ead time period.

e Load and reliability constraints - consider the
demand and the risk level on the power system
during the scheduling period.

Mathematicdly, the GMS problem can be formulated as

an integer programming poblem by using integer

varidbles aswciated with answers to “When dees

maintenance start?” or aternatively by using
conventional binary variables associated with answers to
“When dces maintenance occur?’ [1]. However the first
formulation takes care of the cnstraints on the periods
and duation d maintenance axd hence the number of
unknawns is reduced. The answer to the first question
automaticdly provides the answer to the second

Notation:
index of generating urits
set of generating unit indices
total number of generating urits
index of periods
set of indices of periodsin planning haizon
ealiest period for maintenance of unit i to begin
latest period for maintenance of unit i to end
duration d maintenancefor unit i

t generating cgpadty of unitiin periodt

Lt anticipated load demand for periodt

Mijt manpower needed by unit i at periodt

AM; available manpower at periodt

oo A—"z——

Suppase TiOT isthe set of periods when maintenance of
unit i may start, Ti={tOT: g<t<lj-dj+1} for ead i. We
define
__ O if unit i starts maintenancein period t,
= otherwise,
to be the maintenance start indicator for unit i in periodt.
Let Sit be the set of start time periods k such that if the
maintenance of unit i starts at period k that unit will be
in maintenance d periodt, Sit={k OTj: t-dj+1<k<t}. Let
It be the set of units which are dlowed to be in
maintenancein periodt, I+={i: tOTi}. Then the problem
can be expressed mathematicdly as below.

ignLto T

The objedive is to minimise the sum of squares of the
reserve generation

a O DZEI
. g
Min @ZBZHF Y Y XiRk-Lg Do (@)
it Jeoi it kSit D%
subjed to the maintenancewindow constraint
zxit =1 Oi, 2
taT;
the aew constraint
z zxikMik < AM; L, 3
i kiS¢

the load constraint

YPi-> > XikPkzLy Ot (4
i id¢ kOS;t
In general a GMS problem may include dternative or
additional constraints.

3. GAIMPLEMENTATION

Different types of approaches can be taken in the basic
design d a GA. This paper applies a ‘steady state’ GA
to GMS problems. With this approach new offspring are
introduwced immediately into the popuation on an
individual basis, abandoring the standard generational
structure. In ead iteration step two individuals are
seleded from the popuation pod acmrding to some
seledion procedure. A new offspring is creaed in the
popuation pod repladng a less fit individual. Hence,
the parents and dfspring can co-exist in the same
popuation pod for the next iteration step.

A GA software padage cdled GENITOR [5] which
uses this gealy state structure has been modified for use
on GMS problems. The GENITOR algorithm explicitly
uses the ranking seledion method Parents are seleded
acording to their ranked fitness gore.

3.1. Problem encoding

The excoding d the problem using an appropriate
representation is a aucia asped of the implementation
of a GA for solving an optimisation problem. Different
types of candidate solutions may be used to encode the
set of parameters for the evaluation function. GMS
problems can be solved uwsing three types of
representations:

* binary representation,

e binary for integer representation,

e integer representation.

In the binary representation the GMS problem (1) - (4) is
encoded by using an ore-dimensional binary array as
follows.

[(X1,e1, X1 (e1+1): -+ +X1,(11-d1+1), X2,€2: X2, (€2+1)s--
o X2,(12-d2+2)s -+ 1 XN,eNs XN, (eN+1): - XN, (IN-dN+1)]

This binary string (chromosome) consists of sub-strings
which ead contain the variables over the whoe
scheduling period for a particular unit. The size of the
GA seach spacefor this type of representationis

N
> (li—di-¢+2)
2i=1

For ead unt i=12,...N, the maintenance window
constraint (2) forces exadly one variable in { Xjt: tOTi}
to be one and the rest to be zeo. The solution o this
problem thus amourts to finding the crrea choice of
positive variable from ead variable set {Xjt:t OTj}, for
i=1,2,...N [6]. The index t of this positive variable
indicates the period when maintenance for unit i starts.
In order to reduce the number of variables the indices of
the paositive variables from {Xjt:tOTj}, for i=1,2,...N,
can be taken as new variables. The alvantage of this
approach is the posshility of using an integer encoding
for these new variables in a genetic structure cnsisting
of astring d integers, ead ore of which represents the
maintenance start period o a unit. For this
representation the string length is equal to the number of
units (N) andthe stringis

t1.to, .. i, iN,

where tj is an integer, g<tj<lj-dj+1, for ead i=1,2,...N,
which indicaes the maintenance start period for unit i.
This type of representation automaticdly considers the
maintenance window constraint (2) and gealy reduces
the size of the GA seach spaceto

N
I_l(li -dj -e +2).
i=1

The integer formulation d the problem can also be
encoded by using kinary (or Gray) code to represent the
integer variables in the GA structures [7]. For example,
with tj defined as abowve, suppcse the number of passble
values of tj is lj-dj-g+2=32, then a 5 bit binary pattern
may be used to represent the posdble variable values.
We cdl this representation 'binary for integer'. In this
case if the number of variable valuesis nat a power of 2,
some of the binary values will be redundnt. To
overcome this problem, some integer values are
represented by two o more bit patterns. The string
length in this stuation is b1+bo+..+bN and the GA
seach spaceis

N

2 b

2i=1 ,

where bj is the number of the binary bits used to
represent the integer variable values for unit i and equals
the least paositive integer greaer than o equal to logp(lj-

di-+2). This redundancy increases the size of the
seach spacesince

N N
bi Yloga(li-di-ei+2) N
2i=1 > 2i=1 :H(Ii—di—ei+2).
=1

A test GMS problem has been encoded using ead of the
three representations described above ad the
performance of the GA investigated.

3.2. Evaluation function

Along with the @ding, the procedure for evaluation o
new structures is ancther important asped of GAs. To
take cae of the various constraints impased on GMS
problems, we have taken a penalty function approach
[6]. The pendty value for ead constraint violation is
propational to the amourt by which the mnstraint is
violated. The evaluation function is the sum of penalty
values for ead constraint violation and the objedive
function itself with some weighting coefficients, hence

evaluation= weVe+woF, ©)
Cc
where we and wg are the weighting coefficients,
V.isthe anourt of the violation o constraint c,
F isthe objedive value.

The weighting coefficients are dhosen in such away that
theviolation d harder constraints gives a greaer penalty

value than for the soft constraints. In general the penalty
value for the mnstraint violations dominates over the
objedive function. Feasible solutions with low
evaluation measures have high fitness values while
unfeasible solutions with high evaluation measures take
low fitnessvalues.

In the test problem described below the aew constraint
was asdgned alow penalty coefficient. Thisis becaise a
solution with a high reliability but requiring more
manpover may well be acceted for a power utility as
the unavail able manpower may be hired.

4. GA PERFORMANCE ANALYSIS

A number of small problems have been tested with the
propaosed GAs with dfferent objedives and constraints.
GAs with bah generational and stealy state gproaches
yield the optimum solution for small problems when
appropriate GA parameters are chosen. Here we present
the results of applying a stealy state GA to a test
problem comprising 21 uiits over a planning period o
52 weeks, which was loosely derived from the example
presented in [2] with some simplificaions and additional
constraints. The problem is described below.

TABLE 1 -Datafor the test system.

Unit| Capadty |All owed| Outage| Manpower required
(MW) | period |(weeks)| for eat week
1 555 1-26 7 10+10+5+5+5+5+3
2 555 27-52 5 10+10+10+5+5
3 180 1-26 2 15+15
4 180 1-26 1 20
5 640 27-52 5 10+10+10+10+10
6 640 1-26 3 15+15+15
7 640 1-26 3 15+15+15
8 555 27-52 6 10+10+10+5+5+5
9 276 1-26 10 3+2+2+2+2+2+
2+2+2+3
10 140 1-26 4 10+10+5+5
11 90 1-26 1 20
12 76 27-52 3 10+15+15
13 76 1-26 2 15+15
14 94 1-26 4 10+10+10+10
15 39 1-26 2 15+15
16 188 1-26 2 15+15
17 58 27-52 1 20
18 48 27-52 2 15+15
19 137 27-52 1 15
20 469 27-52 4 10+10+10+10
21 52 1-26 3 10+10+10

Schedule the maintenance outages of generators to
minimise the sum of squares of reserves and satisfy the
foll owing constraints:

* Maintenance window: Eadh unt must be maintained
exadly once and the maintenance for ead unt must
occupy the required time duration without interruption.

« Load constraint: The system’s peek load is4739MW.

 Crew constraint: There ae only 20 people avail able for
the maintenancework ead week.

The data for the test problem is given in Table 1. Due to
its complexity the optimum solution for this problem is
unknown.

A number of GA runs have been dore using the three
representations (binary, binary for integer and integer),
taking dfferent values of the GA parameters and
employing dfferent GA operators. A brief anaysis of
the resultsis presented below.

4.1. Crossover operator

The aossover operator used here is a simple two-point
crosover. This operator first chooses two pants at
which to brea&k eadh o the two seleded parent strings,
and then combines fragments from ead string to buld
offspring which contain information from ead o the
parent strings. The aosover is applied in ead iteration
when the exchanged information is unique to ead
parent. For the ‘binary’ and ‘binary for integer’
representations, the qosover points may be within a
gene (asub-string d a genetic structure which represents
one particular unit). Hence the aossover operator may
split genes and introdwce danges within them.
Theoreticdly, the splitting o genes by the aossver
operator seems undesirable. In the cae of integer
representation, this sub-string splitting daes not occur
and the individual variable values are preserved in
crosover. In this case only the mutation operator is
resporsible for creaing a new integer value for agene.

4.2. Effect of mutation probability on GA
performance with different problem encodings

In order to okserve the dfed of the mutation probability
for ead of the representations described above, GA runs
were caried ou with varying mutation probability (MP),
while taking all other GA parameters as constant. The
popuation size was taken to be 50. The seledion has,
which parameterises the seledion d parents for
reproduction, was taken as 2.5. We discuss this further
in Sedion 44. The total number of trials for ead run
was fixed at 30000

Table 2 presents the test results for the GMS problem
from a total of 75 runs of the genetic dgorithm using
different values of mutation probability for the three
types of representation. Each case presents the
minimum, average and maximum evaluation measures
of the best solutions obtained for 5 GA runs, eat using
adifferent random seed.
TABLE 2 -Effed of mutation probability (MP).

Type | MP | 0.001 | 0005 [001 0.05] 0.1
Min | 2474 | 1143 | 4398 5.8¢6|8.7¢6
Avg | 3937 | 2138 |1.3¢5|6.3¢6 | 9.4¢6
Max | 6647 | 2600 |3.05|7.2¢6 | 1.0e7
Binay | Min | 167 | 156 | 159 | 156 | 239
for | Avg | 211 | 175 | 185 | 174 | 264
integer | Max | 256 | 201 | 196 | 200 | 287

Binary

Min 191 144 | 141 | 138 | 147
Integer | Avg | 200 | 176 | 160 | 144 | 155
Max 227 194 | 198 | 157 | 170

The mmputational resultsin Table 2 show that the dfed
of the mutation probability depends on the particular
representation. For the binary representation, the GA
adhieves a better solution in a smaller number of GA
trials with a lower mutation probability, wheress the
higher mutation probabilities are recommended for
‘binary for integer’ and ‘integer’ representations. The
variation d the performance on the mutation probability
is much more sensitive for the binary representation than
for the other two representations.

As explained in Sedion 3 using a binary representation,
a string correspondng to a maintenance window feesible
solution hes only one ‘1’ for ead urit over the entire
scheduling period with the remaining kts being '0'.
Therefore, a maintenance windowv feasible genetic
structure @ntains many more ‘0’ bits than ‘1’ bits. For
our test problem, only 21 ou of 496 hts in the string
are'l andtherestsare ‘0. A high mutation probability
increases the chance of changing these ‘0’s into ‘1's,
dragging the solution into the maintenance window
unfeasible region. Hence the search spaceis very large
and most of it represents the unfeasible solutions.
Therefore, a high mutation probability has the potential
to dsrupt and degrade the seach process using the
binary representation d the GMS problem. With higher
mutation probabilities the GA coud na find a
maintenance window feasible solution even in 30000
trials. However, with lower mutation probabiliti es the
GA foundmaintenance feasible solutions but converged
prematurely. With the lower mutation probability there
isahigh chanceof being trapped in alocd minima.

The ‘binary for integer’ and ‘integer’ encodings of the
GMS problem result in every candidate solution keing
maintenance window feasible, which causes a grea
reduction in the seach space The GA seach is thus
limited within the maintenance feasible region. In this
case a higher mutation probability incresses the
exploration for the global minima within this limited
region reducing the cance of premature cnvergence
However, a very high mutation probability causes more
randomnessin the GA seach reducing the exploitation
of the solutions previously found

One point to be noted for the ‘binary for integer’
representation is that the adual mutation probability for
changing integer values is much geder than the
prescribed mutation probability. As explained abowve, in
the ‘binary for integer’ representation the variable states
(integers) are denoted by a binary (or Gray) code with a
number of binary bits in a string, for example 5 hit
strings are used for ead unit for our test problem. The
mutation operator takes ead hit and deddes whether or
not to change that bit with the given mutation
probability. In particular, the given mutation probability
is the probability of mutating eat hinary bit. However,

a dhange in a least one of these 5 hits by the mutation
operator results in a change in the crrespondng integer
value. The adual mutation probability mg of changing

the integer value for a given binary mutation probability

m can be cdculated as ma:1-(1-m)b' , Where bj is the
number of bits used to represent the integer variable for
unit i. For example, if the given mutation rate m=0.05
and a 5 hit representation is used, the at¢ual mutation
probability is my=0.23. In order to have the adual

mutation probability m4=0.05, the mutation probability
m shoud be taken as abou 0.01. However, the

distribution o the new integer values foll owing mutation
isnot uniformin this case.

In the integer encoding d a GMS problem, ead gene is
an integer, which is the number of the time period in
which maintenance work begins for a unit. The mutation
operator takes ead integer and with the given mutation
probability changes the value within the dlowed integer
interval. The distribution d the new integer value within
theinterval is approximately uniform during mutation.
4.3. Comparison of different
representations

performance for

Table 3 presents a performance omparison for ead of
the three representations with the mutation probabiliti es
chosen to gve the best performance from Table 2.

TABLE 3 -Comparison d GA performance for
diff erent problem encodings.

Type Binary Binary for | Integer
Integer
MP 0.005 0.05 0.05
Evaduation value| 114288 15641 13791
of best solution
Computational 4501s 21.07s 16.81s
time
Sizeof GA | 2496- 205 | 2105-406 | 623
seach space 10149 x1031 x1028

The GA with the integer representation founda solution
with evaluation measure 13791 for the test GMS
problem, which is better than the solution found ly the
GA with the binary for integer representation (156.41),
and significantly better than that of the GA with binary
representation (114288). The binary GA did na find
feasible solutions for load and crew constraints up to
30000trials. It requires a large number of GA trias to
obtain feasible solutions.

The computational times for the three GAs for one run
with 30000trials on a DEC Ultrix 5000260 workstation
are shown in Table 3. The time taken by the GA with the
integer representation is dhorter than that for the other
two representations. The sizes of the search spacefor the
threeGAs are dso shown in Table 3.

—— Average of bests
: ---X -- Average of averages

E 900] :
% Population size: 175
i’?‘ 70071: Mutation rate: 0.05
u : Selection hias: 2.5
& 5007
i X
g 30071 k

Pa

TR XXX XX K XX XX X XX X

100 ‘ ‘
0 10000 20000 30000
Trials

Figure 1. Average performance of GA with integer
representation for 5 GA runs.

The average performance over 5 runs of the integer GA
is depicted in Figure 1. Using the integer representation
the best solution was foundwithin 24000trials and was
not bettered before the GA terminated after 30000trials.
It is apparent from the &ove that the integer
representation is the best choice for GMS problems bath
in terms of speal and quality of the solution, further
discusgonis concentrated onthis representation alone.

4.4. Effect of selection biasand population size

The seledion kbas (SB) value spedfies the anount of
preference to be given to the superior individuals in the
popuation. If SB=2, for example, then the seledion
probability for the best individua is twice that of the
mean individual. If SB>2, a number of the least fit
solutions in the genetic pod are a&dgned zeo
probability of seledion.

In genera, if the seledion Has is too Hgh, then a
superior solution strondy dominates the lessfit solutions
and this may lead the GA to converge prematurely to a
locd minimum. Low vaues of the seledion bas cause
lesspreferenceto be given to the good genetic structures
previously found Therefore, a trade-off needs to be
applied in the doice of the bias value. This is
demonstrated in ou results. Table 4 presents results
found wing hias values 1.5, 2, 2.5 and 3 with MP=0.05
and popuiation size=50. Taking SB=2.5 gves the best
solution.
TABLE 4 -Effed of seledion bHas (SB).

SB Best solutionin 5GA runs
Minimum | Average Maximum
15 148 156 174
2.0 147 153 165
25 138 144 157
3.0 143 151 162

The popuation size spedfies the number of individuas
in the genetic pod. A number of GA runs were dore
using the integer representation for different popuation
sizes between 10 and 500 with aother GA parameters

fixed: SB=2.5 and MP=0.05. It was found that the
lowest average evaluation measure of the best solutions
was adieved with popdation size 175 though the
performance of the GA did na vary gredly over the
different cases.

4.5 Use of adaptive mutation operator

Duringarun d a GA the optimum value of the mutation
probability may be varied. Table 5 presents the results
from 5 runs of the GA using the integer representation
with the adaptive mutation operator. This operator
dynamicdly varies the mutation probability depending
on the Hamming dstance between parents sleded for
crosover. The adual mutation probability is aways less
than or equal to the prescribed value. The GA runs were
caried ou for the integer representation with three
prescribed mutation values 0.005 0.01 and Q05. The
results show littl e difference between the performance
with the traditional mutation operator and adaptive
mutation operator for this representation.

TABLE 5 -GA peformance with the alaptive
mutation operator.

Given MP Min Avg Max
0.005 146 158 176
0.01 149 161 176
0.05 143 150 156

Tables 2 and 5indicae that the higher mutation values
give better performance & the GA maintains the genetic
diversity necessary to sustain the search for the global
optimum.

TABLE 6 -The best solution found

i 112]|13|4[5]6]7[8]|]9]10
t | 6 (2724126148 |13 2 | 33] 16| 18
1111213 |14)115]16(17]18)19| 20| 21
1 (39| 9|5 ([11[16)42|31[47[43]21

The best solution found ty the GA during the @ove
tests, whose evaluation measure is 137.9, is &t out in
Table 6, where tj represents the index of the of
maintenance start period for unit i. This lution is
feasible and ketter than a heuristic solution (evaluation
measure 222) cdculated by ranking the generator units
in order of deareasing cgpadty to level the generation. It
can be seen from the test results that the integer GA is
very stable for a wide range of variations in the GA
parameters.

5. CONCLUSIONS

The results presented above show that the GA isarobust
and stable technique for the solution & GMS problems
for red-sized systems. Good solutions of the problem
can be foundif an appropriate problem encoding, GA
approadh, evaluation function and GA parameters are
seleded for the problem. Although GAs are nat
guaranteed to find the global optimal solution, it is a

significant achievement to oltain a good solution to a
complex problem like GMS in a short time.

As the GMS problem variables are integer, representing
them diredly as integers in a genetic structure has many
advantages. The most significant of these is the grea
reduction in the GA search space Furthermore, this type
of representation is obvious and easy for decoding and a
meaningful crosover and mutation operator can be
applied. The integer GA is very robwst for GMS
problems and can find goodsolutions with a wide range
of variations of the GA parameters in a comparatively
short time, using traditional operators.

REFERENCES

[1] JF. Dopaz, H. M. Merill, “Optimal generator
maintenance scheduling wsing integer programming’,
IEEE Trans. PAS-94(5):15371545 1975

[21Z. Yamayee S. Kathleen, "A computationally
efficient optimal maintenance scheduling method’,
IEEE Trans. PAS-102(2):330-338 1983

[3] T.G. Gerard, S.D. Tharam, M. Karol, “An
experimental method d determination o optimal
maintenance schedules in power systems using
branch-and-bound technique”, IEEE Trans. SMC-
6(8):538547, 1976

[4] X. Wang, JR. McDonald, "Modern Power System
Planning", McGraw-Hill, London 247-307,1994

[5] Darrel L. Whitley, “GENITOR”, avail able & ftp site:
ftp.cs.colostate.edW/put GENITOR .tar, Colorado
State University, 199Q

[6] Atidel Ben Hadj-Alouane, James C. Bean, “A
genetic dgorithm for the multiple-choice integer
program”, Technicd Report 92-50, Department of
Indwstrial and Operations Engineaing, University of
Michigan, 1992

[7] D. Beadley, D.R. Bull, R.R. Martin, “An owerview of
genetic dgorithms: part 2, reseach topics’,
University Computing, 15:170-181, 1993

