

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please
refer to the repository record for this item and our Policy Document available from
the repository home page for further information.

To see the final version of this work please visit the publisher’s website. Where
available access to the published online version may require a subscription.

Author(s): Dahal, K. P. and McDonald, J. R.

Title: Generator maintenance scheduling of electric power systems
using genetic algorithms with integer representations.

Publication year: 1997.

Conference title: Second International Conference on Genetic Algorithms
in Engineering Systems: Innovations and Applications, Glasgow 2-4
Sept 1997 (GALESIA 97)

ISSN: 0-85296-693-8

Publisher: IEEE

Link to original published version:
http://ieeexplore.ieee.org/servlet/opac?punumber=5586

Citation: Dahal, K. P. and McDonald, J. R. (1997) Generator maintenance
scheduling of electric power systems using genetic algorithms with integer
representations. In: Second International Conference On Genetic Algorithms in
Engineering Systems: Innovations and Applications, Glasgow 2-4 Sept 1997
(GALESIA 97). New York: IEEE. Conf. Publ. No. 446. pp.456-461.

Copyright statement: Copyright © [1997] IEEE. Reprinted from Second
International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications, Glasgow 2-4 Sept 1997 (GALESIA 97). New York:
IEEE.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of

Bradford's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

GENERATOR MAINTENANCE SCHEDULING OF ELECTRIC POWER SYSTEMS
USING GENETIC ALGORITHMS WITH INTEGER REPRESENTATION

 K.P.Dahal, J.R.McDonald

Centre for Electrical Power Engineering, University of Strathclyde, Glasgow, UK

(presented at International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA’97).

ABSTRACT

The effective maintenance scheduling of power system
generators is very important to a power utilit y for the
economical and reliable operation of a power system.
Many mathematical methods have been implemented for
generator maintenance scheduling (GMS). However,
these methods have many limitations and require many
approximations. Here a Genetic Algorithm is proposed
for GMS problems in order to overcome some of the
limitations of the conventional methods.

This paper formulates a general GMS problem using a
reliabilit y criterion as an integer programming problem,
and demonstrates the use of GAs with three different
problem encodings: binary, binary for integer and
integer. The GA performances for each of these
representations are analysed and compared for a test
problem based on a practical power system scenario. The
effects of different GA parameters are also studied. The
results show that the integer GA is a very effective
method for GMS problems.

1. INTRODUCTION

It is very important for the effective operation of a power
system to determine when its generators should be taken
off line for preventive maintenance. This is primarily
because other planning activities are directly affected by
such decisions. In modern power systems the demand for
electricity has greatly increased with related expansions
in system size, which has resulted in higher numbers of
generators and lower reserve margins making the
generating maintenance scheduling (GMS) problem more
complicated. The goal of GMS is to allocate a proper
maintenance timetable for generators while maintaining a
high system reliabilit y, reducing total production cost,
extending generator li fe time etc., subject to some unit
and system constraints. The maintenance schedule of
each generating unit should be optimised in terms of the
particular objective function under a series of constraints.

Several deterministic mathematical methods and heuristic
techniques are reported in the literature for solving these
problems [1,2,3,4]. General solution methods are based
on integer programming, branch-and-bound technique,
dynamic programming, etc. However, such approaches
are severely limited by the 'curse of dimensionality' and
are poor in handling the non-linear objective and
constraint functions that characterise the GMS problem.
The heuristic approach uses a trial-and-error method to

evaluate the maintenance objective function in the time
interval under examination. This requires significant
operator input and in some situations it fails to produce
even feasible solutions [3,4].

Genetic algorithms may be an effective alternative
method for finding optimal or near optimal solutions of
these complex problems. This paper describes the
procedure for implementing GAs for solving the GMS
problem. A steady state GA approach has been applied to
a medium sized test GMS problem, which includes many
features that characterise real systems. The GA is
implemented for three types of problem encoding: binary,
binary for integer and integer. The results have shown
that the integer representation is very eff icient in finding
good solutions for GMS problems.

The following section describes the formulation of a
general GMS problem using a reliabilit y objective and
general unit and system constraints. Section 3 details the
implementation of GAs to the GMS problem with the
three types of problem encoding. The performances of
the GA with these different problem representations for
the test problem are compared and discussed in Section
4. This section also presents the effects of GA parameters
on the performance of the GA and the results obtained
using an improved mutation operator. Our conclusions
are presented in Section 5.

2. PROBLEM FORMULATION

There are generally two categories of objective functions
in GMS, based on reliabilit y and economic cost [4]. This
paper uses the reliabilit y criteria of levelli ng reserve
generation throughout the period under examination.
This can be realised by minimising the sum of squares of
the reserve over the entire operational planning period.
The problem has a series of unit and system constraints
to be satisfied, which in general include the following:
• Maintenance window and sequence constraints -

define the earliest and latest time, the duration and the
restriction of maintenance for each unit.

• Crew and resource constraints - consider the
manpower availabilit y and the limits on the resources
needed for maintenance activity at each time period.

• Load and reliabilit y constraints - consider the
demand and the risk level on the power system
during the scheduling period .

Mathematically, the GMS problem can be formulated as
an integer programming problem by using integer
variables associated with answers to “When does

maintenance start?” or alternatively by using
conventional binary variables associated with answers to
“When does maintenance occur?” [1]. However the first
formulation takes care of the constraints on the periods
and duration of maintenance and hence the number of
unknowns is reduced. The answer to the first question
automatically provides the answer to the second.

Notation:

i index of generating units
I set of generating unit indices
N total number of generating units
t index of periods
T set of indices of periods in planning horizon
ei earliest period for maintenance of unit i to begin
li latest period for maintenance of unit i to end
di duration of maintenance for unit i
Pit generating capacity of unit i in period t
Lt anticipated load demand for period t
Mit manpower needed by unit i at period t
AMt available manpower at period t

Suppose Ti⊂ T is the set of periods when maintenance of

unit i may start, Ti={ t ∈ T: ei≤t≤li-di+1} for each i. We
define

Xit=
1

0

 if unit i starts maintenance in period t,

 otherwise,



î

i ∈ I,t ∈ Ti

to be the maintenance start indicator for unit i in period t.
Let Sit be the set of start time periods k such that if the
maintenance of unit i starts at period k that unit will be

in maintenance at period t, Sit={ k ∈ Ti: t-di+1≤k≤t} . Let
It be the set of units which are allowed to be in
maintenance in period t, It={ i: t ∈ Ti} . Then the problem
can be expressed mathematically as below.

The objective is to minimise the sum of squares of the
reserve generation

Min
Xit

P X P Lit ik ik
k Siti I ti

t
t

− −



















î








∈∈

∑∑∑∑
2

, (1)

subject to the maintenance window constraint

X it
t Ti

=
∈
∑ 1 ∀ i, (2)

the crew constraint

i I
ik

k S
ik t

t it

X M AM
∈ ∈
∑ ∑ ≤ ∀ t, (3)

the load constraint

P X P Lit
i I

ik
k S

ik t
i t it

− ≥
∈ ∈
∑ ∑∑ ∀ t. (4)

In general a GMS problem may include alternative or
additional constraints.

3. GA IMPLEMENTATION

Different types of approaches can be taken in the basic
design of a GA. This paper applies a ‘steady state’ GA
to GMS problems. With this approach new offspring are
introduced immediately into the population on an
individual basis, abandoning the standard generational
structure. In each iteration step two individuals are
selected from the population pool according to some
selection procedure. A new offspring is created in the
population pool replacing a less fit individual. Hence,
the parents and offspring can co-exist in the same
population pool for the next iteration step.

A GA software package called GENITOR [5] which
uses this steady state structure has been modified for use
on GMS problems. The GENITOR algorithm explicitly
uses the ranking selection method. Parents are selected
according to their ranked fitness score.

3.1. Problem encoding

The encoding of the problem using an appropriate
representation is a crucial aspect of the implementation
of a GA for solving an optimisation problem. Different
types of candidate solutions may be used to encode the
set of parameters for the evaluation function. GMS
problems can be solved using three types of
representations:
• binary representation,
• binary for integer representation,
• integer representation.

In the binary representation the GMS problem (1) - (4) is
encoded by using an one-dimensional binary array as
follows.

[X1,e1, X1,(e1+1), ... , X1,(l1-d1+1), X2,e2, X2,(e2+1),...

... , X2,(l2-d2+1), ... , XN,eN, XN,(eN+1), ... XN,(lN-dN+1)]

This binary string (chromosome) consists of sub-strings
which each contain the variables over the whole
scheduling period for a particular unit. The size of the
GA search space for this type of representation is

 2
2

1
()l d ei i i

i

N
− − +

=
∑

.

For each unit i=1,2,...,N, the maintenance window
constraint (2) forces exactly one variable in { Xit: t ∈ Ti}
to be one and the rest to be zero. The solution of this
problem thus amounts to finding the correct choice of
positive variable from each variable set { Xit:t ∈ Ti} , for
i=1,2,...,N [6]. The index t of this positive variable
indicates the period when maintenance for unit i starts.
In order to reduce the number of variables the indices of
the positive variables from { Xit:t ∈ Ti} , for i=1,2,...,N,
can be taken as new variables. The advantage of this
approach is the possibilit y of using an integer encoding
for these new variables in a genetic structure consisting
of a string of integers, each one of which represents the
maintenance start period of a unit. For this
representation the string length is equal to the number of
units (N) and the string is

t1,t2,...,ti,...,tN,

where ti is an integer, ei≤ti≤li-di+1, for each i=1,2,...,N,

which indicates the maintenance start period for unit i .
This type of representation automatically considers the
maintenance window constraint (2) and greatly reduces
the size of the GA search space to

()l d ei i i
i

N
− − +

=
∏ 2

1
.

The integer formulation of the problem can also be
encoded by using binary (or Gray) code to represent the
integer variables in the GA structures [7]. For example,
with ti defined as above, suppose the number of possible
values of ti is li-di-ei+2=32, then a 5 bit binary pattern

may be used to represent the possible variable values.
We call this representation 'binary for integer'. In this
case if the number of variable values is not a power of 2,
some of the binary values will be redundant. To
overcome this problem, some integer values are
represented by two or more bit patterns. The string
length in this situation is b1+b2+...+bN and the GA
search space is

2 1
bi

i

N

=
∑

,
where bi is the number of the binary bits used to
represent the integer variable values for unit i and equals
the least positive integer greater than or equal to log2(li-
di-ei+2). This redundancy increases the size of the
search space since

2 2 21 1

1

b

i i i
i

Ni
i

N

i l d e= =
∑

=
≥

∑
= − − +∏

log (l -d -e +2)2 i i i
N

() .

A test GMS problem has been encoded using each of the
three representations described above and the
performance of the GA investigated.

3.2. Evaluation function

Along with the coding, the procedure for evaluation of
new structures is another important aspect of GAs. To
take care of the various constraints imposed on GMS
problems, we have taken a penalty function approach
[6]. The penalty value for each constraint violation is
proportional to the amount by which the constraint is
violated. The evaluation function is the sum of penalty
values for each constraint violation and the objective
function itself with some weighting coeff icients, hence

evaluation =
c
∑ ωcVc + ωo F , (5)

where ωc and ωo are the weighting coeff icients,
Vc is the amount of the violation of constraint c,
F is the objective value.

The weighting coeff icients are chosen in such a way that
the violation of harder constraints gives a greater penalty

value than for the soft constraints. In general the penalty
value for the constraint violations dominates over the
objective function. Feasible solutions with low
evaluation measures have high fitness values while
unfeasible solutions with high evaluation measures take
low fitness values.

In the test problem described below the crew constraint
was assigned a low penalty coeff icient. This is because a
solution with a high reliabilit y but requiring more
manpower may well be accepted for a power utilit y as
the unavailable manpower may be hired.

4. GA PERFORMANCE ANALYSIS

A number of small problems have been tested with the
proposed GAs with different objectives and constraints.
GAs with both generational and steady state approaches
yield the optimum solution for small problems when
appropriate GA parameters are chosen. Here we present
the results of applying a steady state GA to a test
problem comprising 21 units over a planning period of
52 weeks, which was loosely derived from the example
presented in [2] with some simpli fications and additional
constraints. The problem is described below.

TABLE 1 -Data for the test system.

Unit Capacity
(MW)

Allowed
period

Outage
(weeks)

Manpower required
for each week

1 555 1-26 7 10+10+5+5+5+5+3
2 555 27-52 5 10+10+10+5+5
3 180 1-26 2 15+15
4 180 1-26 1 20
5 640 27-52 5 10+10+10+10+10
6 640 1-26 3 15+15+15
7 640 1-26 3 15+15+15
8 555 27-52 6 10+10+10+5+5+5
9 276 1-26 10 3+2+2+2+2+2+

2+2+2+3
10 140 1-26 4 10+10+5+5
11 90 1-26 1 20
12 76 27-52 3 10+15+15
13 76 1-26 2 15+15
14 94 1-26 4 10+10+10+10
15 39 1-26 2 15+15
16 188 1-26 2 15+15
17 58 27-52 1 20
18 48 27-52 2 15+15
19 137 27-52 1 15
20 469 27-52 4 10+10+10+10
21 52 1-26 3 10+10+10

Schedule the maintenance outages of generators to
minimise the sum of squares of reserves and satisfy the
following constraints:
• Maintenance window: Each unit must be maintained

exactly once and the maintenance for each unit must
occupy the required time duration without interruption.

• Load constraint: The system’s peak load is 4739 MW.

• Crew constraint: There are only 20 people available for
the maintenance work each week.

The data for the test problem is given in Table 1. Due to
its complexity the optimum solution for this problem is
unknown.

A number of GA runs have been done using the three
representations (binary, binary for integer and integer),
taking different values of the GA parameters and
employing different GA operators. A brief analysis of
the results is presented below.

4.1. Crossover operator

The crossover operator used here is a simple two-point
crossover. This operator first chooses two points at
which to break each of the two selected parent strings,
and then combines fragments from each string to build
offspring which contain information from each of the
parent strings. The crossover is applied in each iteration
when the exchanged information is unique to each
parent. For the ‘binary’ and ‘binary for integer’
representations, the crossover points may be within a
gene (a sub-string of a genetic structure which represents
one particular unit). Hence the crossover operator may
split genes and introduce changes within them.
Theoretically, the splitti ng of genes by the crossover
operator seems undesirable. In the case of integer
representation, this sub-string splitti ng does not occur
and the individual variable values are preserved in
crossover. In this case only the mutation operator is
responsible for creating a new integer value for a gene.

4.2. Effect of mutation probability on GA
performance with different problem encodings

In order to observe the effect of the mutation probabilit y
for each of the representations described above, GA runs
were carried out with varying mutation probabilit y (MP),
while taking all other GA parameters as constant. The
population size was taken to be 50. The selection bias,
which parameterises the selection of parents for
reproduction, was taken as 2.5. We discuss this further
in Section 4.4. The total number of trials for each run
was fixed at 30000.

Table 2 presents the test results for the GMS problem
from a total of 75 runs of the genetic algorithm using
different values of mutation probabilit y for the three
types of representation. Each case presents the
minimum, average and maximum evaluation measures
of the best solutions obtained for 5 GA runs, each using
a different random seed.

TABLE 2 -Effect of mutation probabilit y (MP).

 Type MP 0.001 0.005 0.01 0.05 0.1

Min 2474 1143 4398 5.8e6 8.7e6

Binary Avg 3937 2138 1.3e5 6.3e6 9.4e6

Max 6647 2600 3.0e5 7.2e6 1.0e7

Binary Min 167 156 159 156 239

for Avg 211 175 185 174 264

integer Max 256 201 196 200 287

Min 191 144 141 138 147

Integer Avg 200 176 160 144 155

Max 227 194 198 157 170

The computational results in Table 2 show that the effect
of the mutation probabilit y depends on the particular
representation. For the binary representation, the GA
achieves a better solution in a smaller number of GA
trials with a lower mutation probabilit y, whereas the
higher mutation probabiliti es are recommended for
‘binary for integer’ and ‘ integer’ representations. The
variation of the performance on the mutation probabilit y
is much more sensitive for the binary representation than
for the other two representations.

As explained in Section 3, using a binary representation,
a string corresponding to a maintenance window feasible
solution has only one ‘1’ f or each unit over the entire
scheduling period with the remaining bits being '0'.
Therefore, a maintenance window feasible genetic
structure contains many more ‘0’ bits than ‘1’ bits. For
our test problem, only 21 out of 496 bits in the string
are ‘1’ and the rests are ‘0’ . A high mutation probabilit y
increases the chance of changing these ‘0’s into ‘1’s,
dragging the solution into the maintenance window
unfeasible region. Hence the search space is very large
and most of it represents the unfeasible solutions.
Therefore, a high mutation probabilit y has the potential
to disrupt and degrade the search process using the
binary representation of the GMS problem. With higher
mutation probabiliti es the GA could not find a
maintenance window feasible solution even in 30000
trials. However, with lower mutation probabiliti es the
GA found maintenance feasible solutions but converged
prematurely. With the lower mutation probabilit y there
is a high chance of being trapped in a local minima.

The ‘binary for integer’ and ‘ integer’ encodings of the
GMS problem result in every candidate solution being
maintenance window feasible, which causes a great
reduction in the search space. The GA search is thus
limited within the maintenance feasible region. In this
case a higher mutation probabilit y increases the
exploration for the global minima within this limited
region reducing the chance of premature convergence.
However, a very high mutation probabilit y causes more
randomness in the GA search reducing the exploitation
of the solutions previously found.

One point to be noted for the ‘binary for integer’
representation is that the actual mutation probabilit y for
changing integer values is much greater than the
prescribed mutation probabilit y. As explained above, in
the ‘binary for integer’ representation the variable states
(integers) are denoted by a binary (or Gray) code with a
number of binary bits in a string, for example 5 bit
strings are used for each unit for our test problem. The
mutation operator takes each bit and decides whether or
not to change that bit with the given mutation
probabilit y. In particular, the given mutation probabilit y
is the probabilit y of mutating each binary bit. However,

a change in at least one of these 5 bits by the mutation
operator results in a change in the corresponding integer
value. The actual mutation probabilit y ma of changing
the integer value for a given binary mutation probabilit y

m can be calculated as ma=1-(1-m)
bi , where bi is the

number of bits used to represent the integer variable for
unit i . For example, if the given mutation rate m=0.05
and a 5 bit representation is used, the actual mutation
probabilit y is ma=0.23. In order to have the actual

mutation probabilit y ma=0.05, the mutation probabilit y

m should be taken as about 0.01. However, the
distribution of the new integer values following mutation
is not uniform in this case.

In the integer encoding of a GMS problem, each gene is
an integer, which is the number of the time period in
which maintenance work begins for a unit. The mutation
operator takes each integer and with the given mutation
probabilit y changes the value within the allowed integer
interval. The distribution of the new integer value within
the interval is approximately uniform during mutation.

4.3. Comparison of performance for different
representations

Table 3 presents a performance comparison for each of
the three representations with the mutation probabiliti es
chosen to give the best performance from Table 2.

TABLE 3 -Comparison of GA performance for
different problem encodings.

Type Binary Binary for
Integer

Integer

MP 0.005 0.05 0.05

Evaluation value
of best solution

1142.88 156.41 137.91

Computational
time

 45.01s 21.07s 16.81 s

Size of GA
search space

2496= 2.05

×10149
2105= 4.06

×1031

6.23

×1028

The GA with the integer representation found a solution
with evaluation measure 137.91 for the test GMS
problem, which is better than the solution found by the
GA with the binary for integer representation (156.41),
and significantly better than that of the GA with binary
representation (1142.88). The binary GA did not find
feasible solutions for load and crew constraints up to
30000 trials. It requires a large number of GA trials to
obtain feasible solutions.

The computational times for the three GAs for one run
with 30000 trials on a DEC Ultrix 5000/260 workstation
are shown in Table 3. The time taken by the GA with the
integer representation is shorter than that for the other
two representations. The sizes of the search space for the
three GAs are also shown in Table 3.

Population size: 175
Mutation rate: 0.05
Selection bias: 2.5

100

300

500

700

900

0 10000 20000 30000
Trials

E
v
a
l
u
a
t
i
o
n

Average of bests
Average of averages

Figure 1: Average performance of GA with integer
representation for 5 GA runs.

The average performance over 5 runs of the integer GA
is depicted in Figure 1. Using the integer representation
the best solution was found within 24000 trials and was
not bettered before the GA terminated after 30000 trials.
It is apparent from the above that the integer
representation is the best choice for GMS problems both
in terms of speed and quality of the solution, further
discussion is concentrated on this representation alone.

4.4. Effect of selection bias and population size

The selection bias (SB) value specifies the amount of
preference to be given to the superior individuals in the
population. If SB=2, for example, then the selection
probabilit y for the best individual is twice that of the
mean individual. If SB>2, a number of the least fit
solutions in the genetic pool are assigned zero
probabilit y of selection.

In general, if the selection bias is too high, then a
superior solution strongly dominates the less fit solutions
and this may lead the GA to converge prematurely to a
local minimum. Low values of the selection bias cause
less preference to be given to the good genetic structures
previously found. Therefore, a trade-off needs to be
applied in the choice of the bias value. This is
demonstrated in our results. Table 4 presents results
found using bias values 1.5, 2, 2.5 and 3, with MP=0.05
and population size=50. Taking SB=2.5 gives the best
solution.

TABLE 4 -Effect of selection bias (SB).

SB Best solution in 5 GA runs
Minimum Average Maximum

1.5 148 156 174
2.0 147 153 165
2.5 138 144 157
3.0 143 151 162

The population size specifies the number of individuals
in the genetic pool. A number of GA runs were done
using the integer representation for different population
sizes between 10 and 500 with other GA parameters

fixed: SB=2.5 and MP=0.05. It was found that the
lowest average evaluation measure of the best solutions
was achieved with population size 175, though the
performance of the GA did not vary greatly over the
different cases.

4.5 Use of adaptive mutation operator

During a run of a GA the optimum value of the mutation
probabilit y may be varied. Table 5 presents the results
from 5 runs of the GA using the integer representation
with the adaptive mutation operator. This operator
dynamically varies the mutation probabilit y depending
on the Hamming distance between parents selected for
crossover. The actual mutation probabilit y is always less
than or equal to the prescribed value. The GA runs were
carried out for the integer representation with three
prescribed mutation values 0.005, 0.01 and 0.05. The
results show littl e difference between the performance
with the traditional mutation operator and adaptive
mutation operator for this representation.

TABLE 5 -GA performance with the adaptive
mutation operator.

Given MP Min Avg Max
0.005 146 158 176
0.01 149 161 176
0.05 143 150 156

Tables 2 and 5 indicate that the higher mutation values
give better performance as the GA maintains the genetic
diversity necessary to sustain the search for the global
optimum.

TABLE 6 -The best solution found.

i 1 2 3 4 5 6 7 8 9 10
ti 6 27 24 26 48 13 2 33 16 18

11 12 13 14 15 16 17 18 19 20 21
1 39 9 5 11 16 42 31 47 43 21

The best solution found by the GA during the above
tests, whose evaluation measure is 137.9, is set out in
Table 6, where ti represents the index of the of
maintenance start period for unit i . This solution is
feasible and better than a heuristic solution (evaluation
measure 222) calculated by ranking the generator units
in order of decreasing capacity to level the generation. It
can be seen from the test results that the integer GA is
very stable for a wide range of variations in the GA
parameters.

5. CONCLUSIONS

The results presented above show that the GA is a robust
and stable technique for the solution of GMS problems
for real-sized systems. Good solutions of the problem
can be found if an appropriate problem encoding, GA
approach, evaluation function and GA parameters are
selected for the problem. Although GAs are not
guaranteed to find the global optimal solution, it is a

significant achievement to obtain a good solution to a
complex problem like GMS in a short time.

As the GMS problem variables are integer, representing
them directly as integers in a genetic structure has many
advantages. The most significant of these is the great
reduction in the GA search space. Furthermore, this type
of representation is obvious and easy for decoding and a
meaningful crossover and mutation operator can be
applied. The integer GA is very robust for GMS
problems and can find good solutions with a wide range
of variations of the GA parameters in a comparatively
short time, using traditional operators.

REFERENCES

[1] J.F. Dopazo, H. M. Merrill , “Optimal generator
maintenance scheduling using integer programming” ,
IEEE Trans. PAS-94(5):1537-1545, 1975.

[2] Z. Yamayee, S. Kathleen, "A computationally
eff icient optimal maintenance scheduling method",
IEEE Trans. PAS-102(2):330-338, 1983.

[3] T.G. Gerard, S.D. Tharam, M. Karol, “An
experimental method of determination of optimal
maintenance schedules in power systems using
branch-and-bound technique”, IEEE Trans. SMC-
6(8):538-547, 1976.

[4] X. Wang, J.R. McDonald, "Modern Power System
Planning", McGraw-Hill , London, 247-307,1994.

[5] Darrel L. Whitley, “GENITOR”, available at ftp site:
ftp.cs.colostate.edu/pub/GENITOR.tar, Colorado
State University, 1990.

[6] Atidel Ben Hadj-Alouane, James C. Bean, “A
genetic algorithm for the multiple-choice integer
program”, Technical Report 92-50, Department of
Industrial and Operations Engineering, University of
Michigan, 1992.

[7] D. Beasley, D.R. Bull , R.R. Martin, “An overview of
genetic algorithms: part 2, research topics” ,
University Computing, 15:170-181, 1993.

