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A B S T R A C T   

Typically, supervised Machine Learning (ML)-based image classifiers leverage algorithms derived from either 
Artificial Neural Networks (ANNs) or optimal separating hyperplane (OSH)-based algorithms. However, despite 
recent progress has been made to enhance ANNs’ classification performance via the Rectified Linear Unit (ReLU)- 
based activation functions (AFs), there is currently no AF that scales across and benefit both ANNs and OSH- 
based classifiers. Moreover, the lack of globally optimal AFs leads to a high variance in image classification- 
related results. Thus, this study seeks to overcome this limitation by implementing a next-generation evolu-
tionary framework (‘ActiGen’) to generate a novel and more reliable AF, which can scale to two families of AFs 
for two classifiers. The proposed evolutionary knowledge-based framework leverages a Multi-Objective (MO) 
optimisation method based on Genetic Algorithms (GA), or ‘MOGA’, to improve the generalisation of such 
classifiers. This evolutionary framework and its generated AF are validated using nine open-access datasets: 
seven image-based datasets, consisting of 22,136 images in total, and two large (561 features for 10,929 in-
stances, 124 features for 1,700 instances) tabular datasets. These diverse datasets include both binary and multi- 
class classification, such as images of breast masses, those acquired via cardiac computed tomography, photos of 
famous people from the Internet, images of handwritten digits and those drawn on a graphics tablet, human faces 
with different lighting, details, and expressions, smartphone-related data captured during various activities and 
postural transitions, and clinical data on complications of myocardial infarction. Findings demonstrate that the 
proposed evolutionary optimisation framework (‘ActiGen-MOGA’) was able to generate a novel scalable AF, 
which led to achieve the highest classification performance and the fastest convergence across six out of nine 
datasets. In the best classification task, the ActiGen-MOGA-based AF led to a classification performance of 80 % 
and 78 % higher than the polynomial and Rectified Linear Unit (ReLU) AFs respectively.   

1. Introduction 

1.1. The need for an evolutionary framework to derive a reliable 
activation function for image classification 

Recent advancements in supervised learning have significantly 
contributed to the fields of kernel and activation functions (AFs), 
particularly for optimal separating hyperplane (OSH)-based classifiers 
like the Support Vector Machine (SVM) [8] and Artificial Neural 

Networks (ANNs), such as the Multi-Layer Perceptron (MLP) [49]. These 
developments have been well-documented [40]. However, a critical gap 
remains in providing usable, reproducible, replicable, and reliable 
functions that can apply to both categories of classifiers, specifically 
SVMs and MLPs [40]. Furthermore, the absence of automated frame-
works for deriving optimal AFs tailored to chosen classifier families and 
candidate AF families for specific tasks highlights the need for a scalable 
AF across various classifiers. Currently, addressing these challenges 
largely relies on manual interventions by subject matter experts, 
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primarily Machine Learning (ML) engineers or data scientists. Thus, to 
fill this research gap, there is the need for deriving an optimal and 
scalable AF in an automated manner. Optimal is defined as reaching the 
global minimum for the chosen algorithms. 

OSH- and ANN-based learning processes involve defining optimal 
decision boundaries [8,23,29,35,51] and constructing neural maps to 
capture patterns for class discrimination [10,32–34,49], respectively. 
Existing wisdom suggests distinct sets of gold-standard functions for 
these algorithms, as evidenced in the Python ’scikit-learn’ library for ML 
[3,47]. The quest for a single function capable of scaling and benefiting 
both supervised learning-based algorithm categories represents a com-
plex optimisation problem due to inherent differences in their learning 
processes. Open-source software, notably Python and related commu-
nities, offer accessible resources such as the ’scikit-learn’ library [47], 
which provides classes like ’MLPClassifier’ and ’SVC’ (Support Vector 
Classifier) implementing MLPs and SVMs, respectively 

Despite state-of-the-art AFs, real-world classification tasks often 
encounter reliability-related issues, including slow convergence [21] or 
a lack thereof [53]. These issues arise from challenges like local minima 
during optimisation [6,43–45]. While partial solutions exist, such as 
weighted averaging of outputs [16,24,55], these approaches provide 
limited ad-hoc improvements. Furthermore, existing solutions primarily 
focus on optimizing classifier hyperparameters or employ band-aid ap-
proaches. Notably, scikit-learn offers separate sets of AFs for OSH-based 
classifiers and ANNs, making it challenging to find a function suitable 
for both SVMs and MLPs simultaneously [40]. The only commonality 
lies in the ’sigmoid’ kernel function for SVMs and its variant ’hyperbolic 
tangent sigmoid’ (’tanh’) [27], which better suits ANNs due to its 
extended range and steeper derivatives. 

This study aims to address these challenges by proposing a hybrid 
ML-driven approach that blends the fundamental properties of individ-
ual classifiers to define an AF that scales across multiple classifier types. 
This approach targets the unique learning processes of each classifier to 
optimise their predictive potential. The rationale behind optimizing 
activation functions (AFs) for Support Vector Machines (SVMs) and 
Multilayer Perceptrons (MLPs) is rooted in the requirement to ensure 
consistent and harmonised learning processes across these two distinct 
model families, especially in the context of ensemble classifiers and two- 
headed models [22]. 

Ensemble classifiers often use a combination of SVMs and MLPs, each 
with its unique AFs, to harness the strengths of both models. However, 
the challenge arises in achieving cohesion and synergy between these 
diverse components [22]. This is where the need for a unified AF be-
comes evident. By employing a unified AF that is adaptable and opti-
mised for both SVMs and MLPs, we establish a consistent foundation for 
the learning processes within ensemble classifiers [40]. This consistency 
ensures that data is processed and classified in a uniform manner, irre-
spective of whether it is processed by an SVM or an MLP. 

This cohesion in learning processes not only simplifies the overall 
modeling approach but also promotes the convergence of learning to-
wards globally optimal solutions. It mitigates the discrepancies that may 
arise from using different AFs and facilitates the harmonization of the 
ensemble’s decision-making process. Ultimately, the utilisation of a 
unified activation function across SVMs and MLPs contributes to 
achieving more reliable and consistent image classification-related re-
sults, leading to enhanced performance in ensemble classifiers and two- 
headed models [24,40,55]. 

The research focuses on establishing an innovative approach based 
on open-source kernels, AFs, and frameworks that can semi-automate 
their selection and optimisation. This approach aims to save time, 
enhance consistency, and systematically discover AFs suitable for a va-
riety of classifiers, datasets, applications, and levels of heterogeneity and 
noise. This solution seeks to scale the AF across both SVMs and MLPs, 
achieving faster convergence and ultimately resulting in more reliable 
ML-driven models. Recent enhancements in AFs for image classification, 
including ’Quantum ReLU’ (QReLU) and its modified version (’m- 

QReLU’) addressing the ’dying ReLU’ problem, as well as ’hyper-sinh’ 
for deep neural networks (DNNs), have been achieved through expert- 
driven and heuristic methods, focusing on specific algorithms like 
DNNs [43,46]. However, these methods do not guarantee that the AF 
can scale to multiple classifier types, datasets, applications, and noise 
levels, particularly in complex image classification tasks. 

Deploying image classifiers with globally non-optimal AFs may 
result in issues like exploding gradients in ANNs [32-34] or convergence 
problems in OSH-based SVM classifiers [8]. These drawbacks can hinder 
generalization, affecting classifier performance across diverse datasets 
and applications [36,37]. To ensure consistent classification perfor-
mance, it is imperative to establish an optimisation framework for 
generating novel, reliable AFs that can scale across multiple classifier 
categories. This framework would enable the semi-automated discovery 
of optimal AFs suitable for various learning-based algorithms, such as 
ANN- and OSH-based models, thereby enhancing image classification 
for decision support. 

1.2. The need for a novel multi-objective evolutionary approach to 
improve image classification 

Evolutionary algorithms, such as Genetic Algorithms (GAs), offer a 
valuable approach for identifying the global minimum within solution 
spaces. They operate by simulating bio-inspired processes, including 
mutation and crossover, and these processes are mathematically repre-
sented through fitness functions [18,26]. GAs have demonstrated suc-
cess in optimizing activation functions (AFs) to create hybrid intelligent 
systems tailored for data classification in constrained scenarios [41]. 
However, their applicability falters when faced with large and noisy 
image datasets, as previously acknowledged in the literature [18,26,30, 
38,39,50]. 

The limitation of GAs in handling these challenging datasets lies in 
their tendency to converge to local minima. Consequently, improve-
ments in existing AFs and related classification performance remain 
modest within this constrained optimisation framework [41]. Tradi-
tional AF optimisation for image classifiers typically relies on a manual 
and heuristic selection of optimal hyperparameter ranges [16,24]. This 
approach yields only marginal enhancements and carries a low proba-
bility of discovering transformative solutions capable of significantly 
advancing image classification performance. 

As a consequence, the use of single-objective GA-based optimisation, 
although effective in denoising data [42], cannot ensure AFs’ general-
izability across multiple classifier types, datasets, and applications. The 
prevailing method for mathematically deriving AFs is expert-driven and 
entails a laborious, multi-step process of defining baseline candidate 
AFs. This approach is time-consuming, not entirely reproducible, and 
falls short of optimizing the learning process to attain the necessary 
robustness for image classification, particularly in the presence of noisy 
images. To address these limitations, this study introduces a novel 
multi-objective GA-based optimisation framework. This framework 
aims to semi-automate the generation of novel and dependable AFs 
capable of scaling across various types of classifiers. It achieves this goal 
by optimising existing families of AFs, ultimately enhancing image 
classification results. 

1.3. Related studies 

In the existing literature, we have identified two key research works, 
each with a somewhat similar objective. The first study [16] sought to 
optimise the weights and an asymmetric Activation Function (AF) 
within a specific family of AFs in Artificial Neural Networks (ANNs) for 
time-series forecasting. This was achieved through computationally 
intensive techniques like simulated annealing and Tabu search. How-
ever, it is important to note that this approach was constrained by its 
reliance on pre-setting the weights and the order of a single family of 
asymmetric AFs. Furthermore, this method was not extended to benefit 
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classification processes. This aligns with the broader literature [11,14, 
15,52], which primarily focused on optimizing the initialization of 
weights in ANNs. Unfortunately, these efforts did not significantly 
improve the existing state of practice since weights are typically ini-
tialised with small random numbers to prevent dead neurons before 
training and are subsequently updated through learning algorithms. 
Therefore, the initial optimisation task undertaken by Gomes & Luder-
mir [16] appears somewhat redundant and potentially counterproduc-
tive, as it may introduce bias into the weight initialization process by 
relying on a globally suboptimal evolutionary approach [25], rather 
than allowing networks to initialise weights from inherently unbiased 
small random numbers. 

The second, more recent study conducted by Kunc & Kléma [24] 
centred on the development of an adaptive AF based on the performance 
of ANNs in reconstructing gene expression profiles. While this study 
fine-tuned the AF’s parameters, it did not extend its optimisation to 
encompass the entire family of AFs. Consequently, this effort resulted in 
a narrowly-focused, task-specific optimisation of parameters for a 
selected AF. This approach may not generalise effectively to different 
types of classifiers, datasets, or applications. 

In the broader literature, the practice has been to tailor the param-
eters of standard AFs slightly to suit the requirements of specific algo-
rithms and their corresponding applications, whether in the context of 
time-series forecasting [16] or classification tasks [24]. This common 
approach has led to the manual, time-consuming, and non-scalable 
process of discovering novel AFs. It lacks generalizability across 
various classifier types and datasets, relying solely on the expertise of 
Subject Matter Experts (SMEs) and often resulting in only incremental 
improvements. 

To derive an optimal AF and develop a versatile function that can 
effectively serve both Support Vector Machines (SVM) and Multilayer 
Perceptron (MLP), it is essential to recognise the substantial benefits of a 
unified activation function (AF). Drawing upon our previous research 
[38,39,41,42], this study introduces a multi-objective Genetic Algo-
rithm (GA)-based framework. The significance of a unified AF for SVM 
and MLP becomes evident in its potential to substantially enhance the 
performance of both classifier types. Traditionally, SVM and MLP 
employ different AFs, leading to the need for distinct modeling processes 
and hyperparameter tuning. However, by optimizing a comprehensive 
set of hyperparameters, including polynomial degrees or orders, regu-
larization parameters, and coefficients, this framework aims to create a 
novel, globally optimal AF. 

This unified AF is designed to seamlessly integrate with both SVM 
and MLP, thereby simplifying and unifying the modeling process. This 
integration leads to improved image classification outcomes across a 
wide range of datasets and scenarios. Using the same AF for both clas-
sifier families, the framework ensures consistency and harmonisation in 
the way data are processed and classified. Furthermore, the proposed 
framework offers the added advantage of accelerating convergence in 
both MLP and SVM for image classification applications. This acceler-
ation is especially valuable in real-world contexts, where computational 
efficiency and faster decision-making processes are crucial for timely 
and accurate results. Consequently, the development of a unified AF 
represents a substantial advancement in machine learning, as it sim-
plifies the model selection process, promotes consistency, and ultimately 
enhances classification performance across diverse domains. 

1.4. Rationale and aim of the proposed contribution 

In the context of image classification, the manual and heuristic ap-
proaches discussed in sub-sections 1.1 and 1.3 reveal a significant 
problem. These methods lack an objective framework to guide the dis-
covery of a novel, globally optimal, unified Activation Function (AF) in a 
semi-automated manner. Consequently, they cannot effectively optimise 
learning across various types of classifiers when dealing with noisy 
images. This issue arises because the current non-optimal AFs being used 

are neither generalizable [24] nor computationally efficient [16]. 
To address this challenge, our study introduces a novel expert-based 

multi-objective evolutionary framework. This framework optimises 
families of AFs and their associated hyperparameters. It then generates a 
blended novel AF tailored to the chosen types of classifiers. For the first 
time, we propose an objective optimisation framework for deriving a 
new AF capable of scaling across multiple types of image classifiers, such 
as Artificial Neural Networks (ANNs) and optimal separating hyperplane 
(OSH)-based algorithms like Multi-Layer Perceptron (MLP) and Support 
Vector Machine (SVM). 

As detailed in sub-section 1.2, our multi-objective evolutionary 
approach aims to achieve higher image classification performance, 
irrespective of the dataset or application in question. Furthermore, this 
method semi-automates the process of discovering novel AFs once 
families of AFs have been selected for optimizing model learning pro-
cesses. Consequently, it reduces the need for extensive human inter-
vention by expert developers and machine learning engineers, as 
elaborated upon in sub-sections 1.1 and 1.3. 

The novel AF produced through our evolutionary framework is 
rigorously validated and proven competitive against gold-standard al-
ternatives, accommodating both kernel and AF requirements [40]. 
Additionally, we have made this novel AF freely accessible within the 
’scikit-learn’ Python library [47], making it readily available for use 
with both the ’MLPClassifier’ and the ’SVC’ classes. 

In summary, this study offers two main contributions:  

1) From a knowledge-based systems perspective: We have developed 
and validated a multi-objective evolutionary framework capable of 
generating novel AFs, thereby enhancing real-world image classifi-
cation. This framework employs Genetic Algorithms (GA) to opti-
mise chosen families of AFs, enabling scalability across two types of 
classifiers—ANN- and OSH-based models.  

2) From a theoretical and scientific research standpoint: Through the 
multi-objective evolutionary approach described in point 1, we have 
discovered a new and more reliable AF for image classification. This 
novel AF is adaptable to various types of supervised learning-based 
algorithms. Consequently, it bridges the gap between ANN- and 
OSH-based classifiers in two ways: (1) it offers a reliable, common 
approach across both algorithm types, potentially facilitating 
explainability [58] and adoption, and (2) it consistently demon-
strates robustness when consumed by various categories of 
classifiers. 

1.5. Paper structure 

The remaining sections cover the following topics: Section 2 in-
troduces the proposed multi-objective evolutionary framework to 
generate the m-arcsinh AF for reliable image classification. Section 3 
describes the methodology and data sources used for validating this 
novel contribution. Section 4 discusses the results and the potential of 
the proposed framework for human-in-the-loop-based ML-driven ap-
plications. Section 5 provides conclusions and highlights areas for future 
work. 

2. Methods 

2.1. Requirements for an optimal kernel for SVM and activation function 
for MLP 

The optimal function for both a kernel in Support Vector Machines 
(SVM) and an activation function (AF) in Multilayer Perceptrons (MLP) 
[21,27,53] is chosen based on specific criteria detailed in the sub-section 
4.3 on evaluation metrics. This selected function must satisfy two crucial 
requirements: (1) maximising the margin width in SVM and (2) 
improving the MLP’s ability to categorise input data into target classes 
by appropriately extending the range of its underlying activation 
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function. Two distinct families of functions have been identified as ful-
filling these dual criteria, distinguishing them from other alternatives. 

In the realm of kernels, the linear kernel, a widely applied repre-
sentative of the kernel family, stands out as particularly well-suited for 
SVM due to its intrinsic capability to maximise margin width, a pivotal 
factor contributing to SVM’s predictive performance. The linear kernel 
efficiently separates data by establishing linear decision boundaries, a 
fundamental principle underlying the strength of SVM. It is important to 
note, however, that the linear kernel is not suitable for MLPs, especially 
when dealing with non-linearly separable data. This limitation arises 
from its inability to facilitate effective gradient descent under such cir-
cumstances, rendering it less versatile for meeting the complex learning 
needs of MLPs. 

Conversely, the s-shaped AF family, with hyperbolic tangent (tanh) 
as a representative member (as shown in Eq. (1)), exhibits a unique 
characteristic – an extended range coupled with sigmoidal behavior. 

ci = tanh
(
net(i,h) + dh

)
, {ciεR| − 1 ≤ ci ≤ +1} (1)    

• where ci represents the output of the tanh activation function for a 
particular neuron or unit, often denoted as "i." 

• tanh is the hyperbolic tangent function, which is used as the activa-
tion function in neural networks. 

• net(i,h) represents the weighted sum of inputs to neuron "i" in a spe-
cific layer, denoted by "h." This is the result of multiplying each input 
by its corresponding weight, summing these products, and poten-
tially adding a bias term.  

• dh is an optional bias term, which is added to the weighted sum 
before applying the tanh function. 

2.2. The tanh function for MLP as basis of the optimal kernel for SVM 

The tanh function possesses a distinctive feature in its output range, 
spanning from -1 to +1. This sets it apart from the sigmoid function, 
whose range extends from 0 to +1. The tanh function exhibits sigmoidal 
behavior, characterised by an S-shaped curve, with output values 
bounded between -1 and +1. 

In neural networks, the tanh function is often favoured due to its 
capability to handle both positive and negative inputs, resulting in a 
centred activation around zero. This centeredness aids in faster 
convergence during training, particularly when dealing with data hav-
ing a mean near zero. Eq. (1) for the tanh function outlines how inputs 
undergo transformation within a neural network’s neuron, yielding an 
output within the range of -1 to +1, making it well-suited for various 
ML-driven tasks. 

These unique characteristics position the tanh AF as an ideal choice 
for the MLP. Leveraging the tanh as a kernel function in SVM allows for 
reliable maximisation of the margin width, even when faced with data 
requiring non-linear separation. Tanh’s sigmoidal nature enables it to 
capture non-linear relationships within data, contributing to the 
adaptability of SVM. In contrast to the linear and tanh functions that can 
be hybridised to achieve non-linear and high-range learning, combining 
other functions, such as the Radial Basis Function (RBF) and sigmoid, 
may result in skewed learning tendencies that are more locally optimal 
for either SVM or MLP individually, but not globally optimal for both 
algorithms. 

2.3. MLP’s fundamental architecture and learning process informing the 
optimisation framework 

To achieve globally optimal learning, it is essential to optimise the 
hyperparameters of the functions separately. This distinct optimisation 
approach is imperative, considering the diverse requirements and 
characteristics of the SVM and the MLP. Fine-tuning each function 
independently ensures optimal performance in their respective roles, 

with the linear kernel enhancing SVM’s capabilities and tanh enabling 
MLP to effectively handle complex, non-linear data. This strategic di-
chotomy in optimisation enables the harnessing of the full potential of 
these functions within their specialised contexts, ultimately leading to 
superior classification outcomes. 

The training of the MLP involves the application of the back- 
propagation algorithm, where initially randomised weighted inputs 
(denoted as ’w’ in Eq. (2)) are propagated forward. These weights, 
initially assigned randomly, play a crucial role in determining the 
strength of connections between neurons in different layers of the MLP. 
The errors are iteratively propagated backward through training itera-
tions or epochs, denoted as ’n’ in Eq. (2), until the adjustment of the 
generated weights reaches the lowest mean squared error (MSE) be-
tween the predicted outputs and the actual target values [38,43,44]. 
Notably, an MLP with one hidden layer (’h’) can mathematically 
describe any Boolean-bounded functions for both binary and multi-class 
classification [9,38,41,42]. The hidden layer(s) in an MLP assume a 
crucial role in capturing complex patterns and relationships within the 
data. 

The proposed optimisation framework was expected to return one as 
the optimal number of hidden layers. To account for a larger range of 
inputs, the tanh AF (Eq. (1)), including an appropriate summation of 
weighted inputs (Eq. (2)), was expected to be the output from the pro-
posed framework as a transfer function in the hidden layer. Further-
more, in Eq. (2), i for the ‘number of hidden layers’ to be optimised; x 
represents the input matrix, and b is the bias: 

net(i,h) =
∑i

1

(
w(n,i)⋅xi + b

)

h (2) 

The weights (’w’) are specific to the connections between input 
neurons and hidden layer neurons. The weighted summation in Eq. (2) 
determines the input to the activation function (tanh in this case) for 
each neuron in the hidden layer. The equation also includes a bias term 
(’b’) for each neuron in the hidden layer. The bias term allows for an 
additional degree of freedom in adjusting the neuron’s activation 
threshold. 

In summary, Eq. (2) encapsulates the essential components of an 
MLP’s hidden layer operation during training. It showcases the role of 
weights, the application of the tanh activation function, and the inclu-
sion of bias terms in determining the output of each neuron within the 
hidden layer. This combination of weighted summation and activation 
function application enables the MLP to learn and represent complex 
patterns in the data, ultimately contributing to its ability to perform 
tasks such as classification and function approximation. 

2.4. ActiGen-MOGA: A multi-objective evolutionary framework for an 
optimal activation for reliable image classification 

Conventional SVMs often face challenges in convergence, particu-
larly when dealing with non-linearly separable inputs, leading to 
compromised generalisation and misclassifications. To address this, 
preventing trapping at local minima is crucial in SVMs, and guiding the 
definition of an appropriate Optimal Separating Hyperplane (OSH) to 
maximise the margin width can enhance the linear separability of inputs 
into the expected target classes. 

In this study’s innovative evolutionary framework, the process 
commences with the selection of an initial SVM-based learning function 
leveraging the linear kernel, parameterised by a real number denoted as 
’p.’ Concurrently, for the MLP, we initiate with a family of S-shaped 
activation functions, such as the sigmoid or logistic functions. These 
choices serve as the starting point for our evolutionary optimisation. 

The Genetic Algorithm (GA) assumes a pivotal role in guiding this 
optimisation process, mitigating issues related to premature conver-
gence and working towards identifying the global minimum. The over-
arching objective is to generate a novel activation function, labelled as 
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’m-arcsinh,’ depicted in Eq. (7) in Fig. 2. This unique AF is meticulously 
designed and optimised to enhance the classification performance of 
both the MLP and the SVM. 

To achieve this, we employ non-uniform mutation (as specified in Eq. 
(3)) and the process of crossover for each chromosome within our ge-
netic population, with the aim of optimizing these functions. These steps 
are carried out iteratively, driven by a fitness function that guides the 
evolution of our functions: 

xʹ
k =

{
xk + Δ(t, xub − xk), if α random β is 0
xk − Δ(t, xk − xlb), if α random β is 1 (3)  

where xk is a chosen element, xt
i = {x1, x2, …, xm} is a chromosome 

with t generations, and lb and ub represent the lower and the upper 
bounds of xk. 

Eq. (3) delineates the mutation process undergone by each gene 
(hyperparameter) in the genetic population. This mutation is not uni-
form; its variation over time depends on the current gene’s value, upper 
and lower bounds, and random factors (α random β). This dynamic 
variability ensures the genetic population explores a diverse range of 
hyperparameter values, facilitating the GA in a more effective search for 
optimal activation functions and hyperparameters. 

This study’s innovative expert-based multi-objective evolutionary 
framework stems from the imperative to optimise not only the activation 
functions but also their associated hyperparameters concurrently. This 
optimisation, depicted in Fig. 1 within the context of the chosen types of 
classifiers, employs a multi-objective evolutionary approach. The aim is 
to systematically explore and identify optimal hyperparameters 
enhancing the classification performance of both SVM and MLP 
simultaneously. 

Guided by the fitness function through non-uniform mutation and 
crossover operations, the evolutionary process progressively refines and 
selects the most favourable genes. This iterative refinement culminates 
in the derivation of the ’m-arcsinh’ as the optimal activation function, 
marking a significant milestone in this study’s research endeavours. 

2.5. The equation of the ActiGen-MOGA-derived activation and its 
decomposition for MLP and SVM 

In the proposed multi-objective GA-based framework (ActiGen- 

MOGA), the fitness functions capturing the optimal underlying ML- 
based learning for the ANN- (MLP) and OSH-based (SVM) algorithms 
respectively are defined by the following parameters to be optimised, to 
generate a novel blended AF that could scale to both the MLP and the 
SVM for image classification:  

• inputs is the matrix of the input image data to be classified.  
• h denotes the number of hidden layers required in the MLP to 

transform inputs to facilitate learning [31].  
• p is the power (any real value), degree or order of the polynomial in 

either families of s-shaped AF (in short, AF) or SVM-based kernel (in 
short, kernel) to improve their efficiency in discriminating amongst 
inputs into the expected or target classes [28].  

• c is a factor of the selected family of AF (any real value) to refine the 
output from it and minimise its relative error [13].  

• ν is one of the four mathematical operators to ensure appropriate 
approximation [4] and sensitivity of the outputs [5] from the 
generated AF based on the inputs considered.  

• nmax is the maximum number of training iterations or epochs. 

The optimised set of solutions (ν1/2, p1/2,c1/2,AF,kernel) was sought 
to maximise the generalisation in both the MLP and the SVM models, 
which is defined in this study by the weighted F1-score, thus leading to a 
novel AF with parameters from their blended learning process (as per 
requirements no. 1 and 2 listed at the start of the sub-section 2.1), 
quantified by the metrics mentioned in the sub-section 2.4. Such opti-
misation problems are solved separately but concurrently by a collab-
orative optimisation process whereby coordination is achieved via 
adaptive Lagrangian penalties. The training is stopped when the highest 
number of epochs before convergence (nmax) was achieved, i.e., when 
the target error (ε) was lower than a threshold, e.g., 10− 5. 

Eq. 4 represents the ActiGen-MOGA-based optimisation methodol-
ogy that concurrently maximises the generalisation of both the MLP and 
the SVM (argmax

(
generalisation

(
v1

2
, h, p1

2
, c1

2
, nmax, AF

))
), whilst mini-

mising the target error (argmin
(
ε
(
v1

2
,h, p1

2
,c1

2
,nmax,AF

))
), thus yielding a 

novel optimal AF. Eq. 4 can be decomposed into Eq. 5 for the MLP alone 
and Eq. 6 for the SVM alone:   

Fig. 1. The proposed multi-objective optimisation framework for a genetic algorithm-based activation function generation.  
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fMLP(ν1, h, p1, c1, nmax, AF) = ν1(h, p1, c1, inputs, AF) (5)  

fSVM(ν2, p2, c2, nmax, kernel) = ν2(p2, c2, inputs, kernel), (6)  

{p ∈ Z}

{c ∈ Z}

{
n ∈ Z+ : nmax

⃒
⃒ε < 10− 5}

| in Eq. 4 is the bitwise operator, which we used to indicate that Eq. 4 can 
be decomposed into Eq. 5 (for the MLP alone) and 6 (for the SVM alone) 
using a bitwise OR operation. 

The m-arcsinh is derived from the evolution process by solving both 
fitness functions in Eqs. (5) and (6) and reaching a global optimum be-
tween them concurrently, thus being an optimal function for both SVM 
and MLP. The genes are derived, and the evolution is performed via non- 
uniform mutation and crossover as per Eq. (3). The fitness values are 
computed by solving Eq. (4), which derives a unique globally optimal 
solution whilst ensuring that generalisation is achieved. 

The ActiGen-MOGA generates a novel AF (Eq. (7)) that concurrently 
accounts for a weighted interaction effect between the hyperbolic nature 
of the inverse hyperbolic sine function (as the optimal AF was the 
‘arcsinh’ function, with p1 = 1), suitable for the MLP, and the slightly 
non-linear characteristic of the square root function (the optimal kernel,
with p2 = 1

2), appropriate for the SVM. As expected from the literature 
mentioned above [9,38,43,44], 1 was found the optimal value for h. 

y = arcsinh(x) ×
1
3
×

1
4
×

̅̅̅̅̅̅
|x|

√
= arcsinh(x) ×

1
12

×
̅̅̅̅̅̅
|x|

√
(7) 

With a higher weight (c1 =
1
3) attributed to the ‘arcsinh’ and a slightly 

lower one (c2 =
1
4) to the square root function, thus satisfying both re-

quirements (1) and (2), the modified (m-) arcsinh (m-arcsinh) (Fig. 2) 
was generated via the ActiGen-MOGA framework as per Eq. (7): 

The derivative of m-arcsinh (Fig. 3) is expressed as: 

dy

dx
=

̅̅̅̅̅̅
|x|

√
×

1
12 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + 1

√ +
x × arcsinh(x)

24 × x3/2 (8)  

3. Data and Modelling pipelines 

Given the original motivation to target a generalised approach by the 
proposed evolutionary optimisation framework (‘ActiGen-MOGA’), the 
datasets and related case scenarios reported in this section for the 
framework evaluation show diversity in terms of topic, data structures, 
and features, as well as the hyperparameters used for models’ 
comparison. 

3.1. Datasets and pre-processing 

This study leveraged nine open-access datasets: five of them from the 
University of California at Irvine (UCI) ML Repository and four from the 
Python library ‘scikit-learn’, accounting for 22,136 images in total. Such 
datasets involved both binary (datasets no. 1 and 6) and multi-class 
classification (datasets no. 2-5, and 7-9) tasks. A comprehensive 
description of these datasets used is provided below. 

The datasets from the UCI ML repository used in this study are as 
follows:  

1. The ‘Optical Recognition of Handwritten Digits’ (OptDigits) datasets 
[22], to recognise handwritten digits (from 0 to 9), given 5,620 
images in total and 64 features per each image from 43 people, 30 of 
which in the training data and the remaining 13 for testing.  

2. The ‘SPECTF’ dataset [7], which has 267 images (80 images for 
training, 187 for testing) collected via a cardiac Single Proton 
Emission Computed Tomography (SPECT), describing whether each 
patient has a physiological or pathophysiological heart based on 44 
features.  

3. The ‘Pen-based handwritten digits recognition’ dataset [1], to 
recognise handwritten digits (from 0 to 9), drawn on a WACOM 
PL-100V pressure-sensitive tablet with an integrated LCD display and 
a cordless stylus, based on 250 images from 44 writers, 30 writers’ 
images for training, 14 for testing.  

4. The ‘Smartphone-Based Recognition of Human Activities and 
Postural Transitions’ dataset [56], which has recordings of 30 sub-
jects carrying out activities and postural transitions whilst having a 
smartphone on their waist, along with embedded inertial sensors. 
This dataset has 561 features and 10,929 instances. 

Fig. 2. The m-arcsinh activation function, generated by the proposed ActiGen- 
MOGA optimisation framework as the optimal function for both the Multi-Layer 
Perceptron (MLP) and the Support Vector Machine (SVM) for image 
classification. Fig. 3. The derivative of the m-arcsinh activation function.  

f = argmax
(

generalisation
(

v1
2
, h, p1

2
, c1

2
, nmax,AF

))

| argmin
(

ε
(

v1
2
, h, p1

2
, c1

2
, nmax,AF

))

(4)   
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5. The ‘Myocardial infarction complications’ dataset [57], which has 
clinical data including demographics, patients’ history, indicators of 
cardiovascular and respiratory health, biomarkers from electrocar-
diogram measurements, and haematological and pharmacological 
markers. This dataset has 124 features and 1,700 instances. 

The open-access datasets from scikit-learn leveraged in this study are 
the following:  

1. The ‘Breast cancer Wisconsin (diagnostic)’ dataset [54], having 30 
characteristics of cell nuclei from 569 digitised images of a fine 
needle aspirate of breast masses, to detect whether they correspond 
to either malignant or benign breast cancer.  

2. The ‘LFW people’ dataset [19], having 13,233 JPEG photos of 5,749 
famous people collected from the Internet, each of which is 
composed of 5,828 features [20], to identify the individual appear-
ing on each photo.  

3. The ‘Handwritten Digits’ dataset [2], to recognise handwritten digits 
(from 0 to 9), given about 180 images per class (1,797 images in 
total) and 64 features per each image.  

4. The ‘Olivetti faces’ dataset [48] with 10 different 64×64 images 
regarding the faces of 40 different subjects to be classified, which 
were taken between April 1992 and April 1994 at the ‘AT and T’ 
Laboratories Cambridge. Such photos were captured against a dark 
homogeneous background at various times, with differing lighting 
conditions, facial expressions (open/closed eyes, smiling/not smil-
ing) and details (glasses/no glasses). Subjects were in an upright, 
frontal position, with little side movement at a time. 

The input data were randomised prior to performing classification. 
Then, the interquartile range-based method was used to remove outliers 
from the input data. Thereafter, cleaned data were standardised, i.e., 
transformed to z-scores to have an average of 0 and a standard deviation 
of 1, which characterise a standard normal distribution. Finally, min- 
max normalisation was applied on the transformed input data. For the 
case studies where data were not already provided in two separate 
partitions for training and testing (since the number of folds (k) or 
partitions in the k-fold cross-validation method leveraged should equal 
the number of input features [12,36]) k varied based on the image 
dataset considered. The experiments were conducted on an AMD 
E2-9000 Radeon R2 1.8 GHz processor, and 4 GB DDR4 RAM. 

3.2. Modelling strategy 

The ‘MLP’ and the ‘SVM’, implemented in the Python library ‘scikit- 
learn’ [47], are the two selected supervised learning algorithms repre-
senting ANN- and OSH-based classifiers respectively, with the following 
initial hyperparameters:  

• For the MLP:  
• Learning rate = 0.6 [32,33].  
• Momentum = 0.8 [32,33].  
• Random state = 1, which is a fixed random number to control 

random processes in the MLP and ensure the reproducibility of its 
training. 

• ‘Max iter’ = 300, which is the maximum number of training itera-
tions or epochs.  

• For the SVM:  
• Gamma = 0.001, which is the kernel coefficient for the AFs 

evaluated.  
• Random state = 13.  
• Class weight = ‘balanced’, thus setting the hyperparameter C by 

adjusting the weights to be inversely proportional to the class fre-
quencies in the input data. 

Along with guiding the generation of a novel AF to suit both the MLP 

and the SVM, their hyperparameters were optimised via the proposed 
multi-objective evolutionary framework leveraging GA, as described in 
sub-section 2.1. All hyperparameters were consistent when comparisons 
are performed using different activation functions to train and test the 
model in a specific dataset. 

3.3. Metrics for evaluating classification performance 

The same data pre-processing and encoding methodology in the sub- 
section 2.2 was adopted for all nine open-access datasets used to enable 
a fair comparison of the classification performance of both the SVM and 
the MLP regardless of the AF leveraged. This performance was assessed 
by the following two gold-standard criteria, including classification ac-
curacy and reliability [17]:  

1. Accuracy, measuring the predictive power of discriminating input 
data into the expected or target classes, quantified based on the 
testing set, which represents previously unseen or unknown data to 
the classification algorithm.  

2. Reliability, which is the predictive capability of assigning a suitable 
degree of certainty on the classification outcomes. 

For a binary classification task (datasets no. 1 and 6, described in the 
sub-section 2.2), the outcome from each image classified is either ‘True’ 
or ‘False’, thus, yielding four results [17], i.e., ‘True Positive’ (TP), ‘False 
Positive’ (FP), ‘True Negative’ (TN), and ‘False Negative’ (FN). For 
multi-class classification (datasets no. 2-5, and 7-9, described in the 
sub-section 2.2), the overall outcome can be obtained from each binary 
classification problem into which the multi-class classification task 
considered can be decomposed, as illustrated in Table 1 (e.g., a 
four-class classification problem). 

To assess the performance brought by the optimal AF (m-arcsinh in 
Eq. (7) and Fig. 2 of the sub-section 2.1) for each image classification 
task as per the sub-section 2.2, generated via the proposed multi- 
objective evolutionary framework (ActiGen-MOGA in the sub-section 
2.1), the test classification accuracy of the SVM and the MLP was eval-
uated. The following metrics assessed their reliability [17]: the preci-
sion, the sensitivity/recall, and the F-measure or F1-score, which is the 
harmonic mean between the precision and the recall. 

In this study, the best-performing classifier was determined by its 
highest accuracy and reliability, whilst retaining a low computational 
training time in seconds on the same hardware in the sub-section 2.2 
when considering different AFs, including the novel m-arcsinh function 
generated via the proposed ActiGen-MOGA evolutionary framework. 

4. Results and Analysis 

The ActiGen-MOGA evolutionary optimisation framework was 
employed to derive the novel blended activation function ’m-arcsinh’ 
(as detailed in sub-section 2.1). This function was designed to scale 
effectively for both the MLP and the SVM models, which were subse-
quently evaluated on datasets that had been pre-processed and encoded 
(as explained in sub-section 2.2) via the classifiers described in sub- 
section 2.3. The performance of the SVM and the MLP, utilizing the ’m- 
arcsinh’ function generated through the evolutionary framework 
ActiGen-MOGA as a kernel and activation function, respectively, was 
assessed based on classification accuracy, reliability, and computational 
cost (outlined in sub-section 2.4). 

The main findings from these evaluations are summarised in Ta-
bles 2-4 and Figs. 4-5, while additional findings are available in the 
Appendix (Tables 5A-11A). Following an extensive analysis of classifi-
cation and computational performance, ’m-arcsinh’ demonstrated su-
periority over state-of-the-art activation functions and kernel functions 
when used with both ANN- and OSH-based classifiers, as outlined below 

For the MLP: 
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- Achieved the best classification performance on 7 out of 9 evaluated 
datasets (Tables 3, 5A in the Appendix, 6A-10A in the Appendix, 
Figs. 4-5).  

- Ranked second-highest in classification performance on 2 out of 9 
datasets (Tables 2 and 11A).  

- Attained the second-fastest training time and the second-lowest 
number of epochs on 1 out of 9 datasets (Table 7A in the Appendix). 

Table 1 
Confusion matrix for a four-class classification problem, wherein TP, TN, FP, and FN cases are the images involved in this study for each of the four binary classification 
tasks (no. 1-4) derived from the multi-class classification problem considered.   

Expected label1 Expected label2 Expected label3 Expected label4 

True (T1) False (F1) True (T2) False (F2) True (T3) False (F3) True (T4) False (F4) 

Predicted class1 Positive (P1) T1P1 F1P1      

Negative (N1) T1N1 F1N1      

Predicted class2 Positive (P2)   T2P2 F2P2    

Negative (N2)   T2N2 F2N2    

Predicted class3 Positive (P3)     T3P3 F3P3  

Negative (N3)     T3N3 F3N3  

Predicted class4 Positive (P4)       T4P4 F4P4 

Negative (N4)       T4N4 F4N4  

Table 2 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated on the ‘Breast cancer Wisconsin (diagnostic)’ dataset 
[54] in scikit-learn.  

Classifier Function Training time Number of epochs Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) N (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.007 2 0.97 0.97 0.97 0.97 

SVM Linear 1.312 112 0.98 0.98 0.98 0.98 
SVM Poly 311.706 29,876 0.98 0.98 0.98 0.98 
SVM Sigmoid 0.012 4 0.39 0.15 0.39 0.21 
MLP m-arcsinh 

(This study) 
9.830 53 0.91 0.92 0.91 0.91 

MLP Identity 3.124 17 0.92 0.92 0.92 0.92 
MLP Logistic 3.638 21 0.92 0.92 0.92 0.92 
MLP tanh 3.568 20 0.90 0.90 0.90 0.90 
MLP ReLU 3.132 17 0.92 0.92 0.92 0.92 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; RBF: Radial Basis Function; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified 
Linear Unit. 

Fig. 4. Image classification performance of a Support Vector Machine (SVM) with different kernel functions, including the m-arcsinh generated via the proposed 
ActiGen-MOGA framework. This performance was evaluated via test accuracy and F1-score (0-1, meaning 0-100%) on the ‘LFW people’ dataset [19] in scikit-learn. 
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Fig. 5. Image classification performance of a Multi-Layer Perceptron (MLP) with different activation functions, including the m-arcsinh generated via the proposed 
ActiGen-MOGA framework. This performance was evaluated via test accuracy and F1-score (0-1, meaning 0–100 %) on the ‘LFW people’ dataset [19] in scikit-learn. 

Table 3 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated on the ‘LFW people’ dataset [19] in scikit-learn.  

Classifier Function Training time Number of epochs Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) N (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.083 15 0.83 0.84 0.83 0.83 

SVM Linear 0.230 28 0.78 0.80 0.78 0.79 
SVM Poly 0.483 41 0.05 0.00 0.05 0.00 
SVM Sigmoid 0.570 47 0.82 0.83 0.82 0.82 
MLP m-arcsinh 

(This study) 
7.101 33 0.86 0.86 0.86 0.86 

MLP Identity 6.225 28 0.84 0.84 0.84 0.83 
MLP Logistic 7.892 42 0.85 0.85 0.85 0.84 
MLP tanh 5.562 23 0.84 0.84 0.84 0.84 
MLP ReLU 4.755 21 0.84 0.84 0.84 0.83 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; RBF: Radial Basis Function; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified 
Linear Unit. 

Table 4 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated on the ‘Handwritten Digits’ dataset [2] in scikit-learn.  

Classifier Function Training time Number of epochs Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) N (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.037 6 0.95 0.95 0.95 0.95 

SVM Linear 0.033 5 0.93 0.93 0.93 0.93 
SVM Poly 0.043 8 0.95 0.95 0.95 0.95 
SVM Sigmoid 0.332 34 0.68 0.69 0.68 0.66 
MLP m-arcsinh 

(This study) 
28.650 124 0.92 0.92 0.92 0.92 

MLP Identity 5.452 22 0.91 0.91 0.91 0.91 
MLP Logistic 14.182 61 0.94 0.94 0.94 0.93 
MLP tanh 7.258 37 0.93 0.93 0.93 0.93 
MLP ReLU 7.834 41 0.92 0.92 0.92 0.92 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; RBF: Radial Basis Function; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified 
Linear Unit. 
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- For the SVM:  
- Achieved the best classification performance on 2 out of 9 datasets 

(Tables 3 and 4, Figs. 4-5).  
- Ranked second-highest in classification performance on 6 out of 9 

datasets (Tables 2, 5A-9A in the Appendix).  
- Recorded the fastest training time and the lowest number of epochs 

on 5 out of 9 datasets (Tables 2, 3, 5A, 10A, and 11A in the 
Appendix).  

- Secured both the highest classification performance and the fastest 
training time on 1 out of 9 datasets (Table 3, Figs. 4-5). 

- Ranked second-fastest in training time and the second-lowest num-
ber of epochs on 2 out of 9 datasets (Tables 4 and 9A in the 
Appendix). 

To provide an overall comparison of performance between ’m-arc-
sinh’ and other activation functions, we primarily used the weighted F1- 
score as a key metric across the mentioned datasets (as displayed in 
Table 12A). In general, the weighted F1-score resulting from the use of 
’m-arcsinh’ in both the SVM and the MLP models demonstrates a highly 
competitive performance. These findings underscore the substantial 
advantages of ’m-arcsinh’ in improving classification accuracy, reli-
ability, and computational efficiency, positioning it as a valuable tool in 
the realm of machine learning-based image classification. 

5. Discussion 

5.1. Synthesis of salient findings and implications 

In this study, the ActiGen-MOGA framework introduced a novel 
blended activation function (AF) named ’m-arcsinh’ for image classifi-
cation, marking a significant advancement. This framework not only 
showcased the potential of accelerating and semi-automating AF gen-
eration tailored to specific datasets and applications but also highlighted 
the exceptional reliability and computational efficiency of the ’m-arc-
sinh’ function when compared to existing gold-standard AFs. 

By reducing the dependence on subject matter experts and ensuring 
high algorithmic consistency, the ActiGen-MOGA framework demon-
strated its practical utility. For instance, the Support Vector Machine 
(SVM) employing the ’m-arcsinh’ AF outperformed the SVM with a 
polynomial kernel by an impressive margin of over 80 % in classification 
performance when tested on the ’LFW people’ dataset, all while 
achieving faster training times. Similarly, the Multi-Layer Perceptron 
(MLP) exhibited superior performance when utilizing the AF generated 
by the ActiGen-MOGA framework, surpassing the performance of the 
conventional Rectified Linear Unit (ReLU) AF. 

To solidify the framework’s reliability and versatility, extensive 
evaluations were conducted across multiple datasets. The ’m-arcsinh’ 
function, produced by the ActiGen-MOGA framework, emerged as a 
dependable and computationally efficient AF. It can be employed as a 
gold standard kernel and activation function for SVM and MLP algo-
rithms, respectively. 

In conclusion, the ActiGen-MOGA framework presents a trans-
formative opportunity to enhance knowledge discovery and elevate the 
reliability and explainability of classification systems in the ever- 
evolving landscape of future computing systems. 

5.2. Detailed discussion 

The presented findings underscore the substantial success of the 
ActiGen-MOGA framework in the realm of image classification. The 
competitive classification results, especially those depicted in Figs. 4-5 
and Tables 3, 5A-11A (found in the Appendix), reveal the framework’s 
effectiveness. It introduced the ’m-arcsinh’ blended activation function 
(AF), as illustrated in Eq. (7) and Figs. 2-3, showcasing its adaptability 
and scalability across both Optimal Separating Hyperplane (OSH)-based 
algorithms, represented by the Support Vector Machine (SVM), and 

Artificial Neural Networks (ANNs), represented by the Multi-Layer 
Perceptron (MLP). 

These findings have several crucial implications. First, they highlight 
the immense potential of the ActiGen-MOGA framework in automating 
the generation of AFs for image classification. This process, which was 
once heavily reliant on time-consuming and potentially biased human 
expertise, can now benefit from a more objective and efficient approach. 
The framework’s utilization of Genetic Algorithms (GAs) ensures the 
generation of optimal AFs, alleviating the challenge of identifying 
globally optimal AFs. 

The reliability of ’m-arcsinh’ is further substantiated by multiple 
metrics detailed in sub-section 2.4, surpassing many established AFs. For 
instance, when compared to the sigmoid AF, ’m-arcsinh’ achieved a 
significantly higher F1-score of 0.97 for the SVM, while sigmoid scored 
only 0.21. Moreover, ’m-arcsinh’ exhibits remarkable computational 
efficiency, evident in its substantially shorter training times. For 
example, with ’m-arcsinh,’ SVM training took only 0.007 seconds 
compared to 1.312 seconds for SVM with a linear kernel and 311.706 
seconds for SVM with a polynomial kernel. 

These attributes collectively highlight the ActiGen-MOGA frame-
work’s consistent capacity to enhance image classification tasks for real- 
world applications. It notably reduces the dependence on human 
expertise in AF selection, relying on expert input solely for the initial AF 
family selection. Subsequently, the framework autonomously generates 
AFs tailored to multiple classifier categories. In the context of the largest 
image dataset (the ’LFW people’ dataset), the SVM employing ’m-arc-
sinh’ outperformed the SVM with a polynomial kernel by over 80 % in 
classification performance while maintaining the fastest training time. 
This demonstrates ’m-arcsinh’s’ efficacy in maximizing SVM margin 
width and enhancing linear separability more effectively than the 
polynomial kernel. Similarly, the MLP achieved a 3% performance 
improvement when using ’m-arcsinh’ compared to the Rectified Linear 
Unit (ReLU) AF on the same dataset. These results provide further 
validation of the ActiGen-MOGA framework’s accuracy, reliability, and 
computational efficiency. 

The straightforward mathematical formulation of ’m-arcsinh’ pro-
motes faster knowledge discovery in the quest for more reliable AFs in 
image classification. Moreover, the ActiGen-MOGA framework en-
hances data pipeline explainability and classification reliability by 
generating AFs adaptable to multiple image classification algorithms. 
This development is poised to accelerate the adoption of machine 
learning-based decision support systems in translational applications 
within the computing systems community. 

In conclusion, ’m-arcsinh,’ derived through the ActiGen-MOGA 
framework, emerges as a new gold-standard kernel and AF for both 
SVM and MLP, readily available in scikit-learn. Its adoption promises 
significant impact and increased efficiency in the computing systems 
community, marking a substantial advancement in the field of image 
classification. However, it is essential to acknowledge potential limita-
tions and sources of bias in the experimental design. This study has 
designed, developed, optimised, and validated the proposed AF on two 
families of classifiers, SVM and MLP. Thus, by design, the proposed 
unified AF (m-arcsinh) is not scalable to deep learning algorithms, e.g., 
Convolutional Neural Networks (CNNs), that are used to perform image 
classification, e.g., MNIST-digit, MNIST-fashion, CIFAR 10. In this case, 
other activation functions, such as hyper-sinh [44,45] and Quantum 
ReLU [46] are recommended, as intrinsically designed to scale with 
CNNs instead. To mitigate these, future research could explore larger 
and more diverse datasets and conduct cross-validation to ensure the 
robustness of the results. Additionally, considering the complexity of 
real-world applications, further investigation into the generalizability of 
’m-arcsinh’ across various domains and datasets would be beneficial. 

6. Conclusions 

In conclusion, our study presents a significant advancement in the 
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field of machine learning-based image classification through the 
development and evaluation of the ’m-arcsinh’ activation function, 
achieved via the ActiGen-MOGA evolutionary framework. The key 
findings of our research can be summarised as follows: 

1. Improved accuracy and efficiency: Our ’m-arcsinh’ activation func-
tion outperformed state-of-the-art alternatives in terms of accuracy, 
reliability, and computational efficiency. This enhancement was 
consistent across six out of nine diverse datasets, encompassing four 
distinct image classification tasks and utilizing two different classi-
fiers: SVM and MLP.  

2. Semi-automatic optimisation: The ActiGen-MOGA framework 
demonstrated its ability to semi-automatically optimise activation 
function families for selected classifiers. This reduced the need for 
extensive human intervention, making the framework highly acces-
sible and adaptable within the computing systems community.  

3. Translational impact: The ’m-arcsinh’ activation function holds 
substantial potential for enhancing the generalisation and compu-
tational efficiency of image classification-aided decision-making 
processes. Its superior performance can contribute to more accurate 
and efficient real-world applications. 

4. Transformative role of evolutionary algorithms: Our study un-
derscores the transformative potential of evolutionary algorithms in 
tackling novel optimisation problems. The creation of ’m-arcsinh’ 
serves as a prime example of how evolutionary approaches can lead 
to the development of more reliable activation functions, capable of 
scaling and generalising across various classifier types. 

Looking ahead, several promising directions for future research and 
applications emerge:  

1. Further optimisation: Continued research could focus on fine-tuning 
the ’m-arcsinh’ activation function and exploring its potential for 
optimisation in specialised domains or specific classifiers. This could 
lead to even more tailored and efficient solutions.  

2. Multi-modal data: Given the prevalence of multi-modal data in 
modern computing systems, extending the ActiGen-MOGA frame-
work to handle diverse data types and hybrid classification scenarios 
is an intriguing avenue.  

3. Additional real-world applications: The ’m-arcsinh’ activation 
function and ActiGen-MOGA framework offer practical utility in 
fields such as healthcare, security, and autonomous systems. Future 
applications might involve medical image analysis, biometric secu-
rity, and robotics, among others.  

4. Interdisciplinary collaboration: Collaborative efforts with experts 
from various domains, including computer science, medicine, and 
engineering, can further explore the potential impact of the proposed 
framework in solving real-world problems and advancing scientific 
knowledge. 

In summary, our research not only provides a novel AF but also 
showcases the broader possibilities of evolutionary algorithms in 
addressing complex optimisation challenges associated with deriving an 
optimal AF that can scale across different types of classifiers. By bridging 
the gap between diverse classifier categories, our framework holds the 
promise of supporting decision-making processes in the presence of 
noisy and multi-modal data, opening up new horizons for machine 
learning applications. 
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Appendix  

Table 5A 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated on the ‘Olivetti faces dataset [48] in scikit-learn.  

Classifier Function Training time Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.143 0.91 0.91 0.91 0.90 

SVM Linear 1.124 0.99 0.99 0.99 0.99 
SVM Poly 1.071 0.85 0.85 0.85 0.83 
SVM Sigmoid 1.364 0.00 0.00 0.00 0.00 
MLP m-arcsinh 

(This study) 
105.341 0.75 0.78 0.75 0.75 

MLP Identity 109.109 0.75 0.78 0.75 0.75 
MLP Logistic 94.982 0.75 0.78 0.75 0.75 
MLP tanh 103.759 0.75 0.78 0.75 0.75 
MLP ReLU 104.581 0.75 0.78 0.75 0.75 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified Linear Unit. 

L. Parisi et al.                                                                                                                                                                                                                                    



Knowledge-Based Systems 299 (2024) 112025

12

Table 6A 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated on the ‘OptDigits’ dataset [22] from the University 
California Irvine (UCI) Machine Learning repository.  

Classifier Function Training time Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.232 0.97 0.97 0.97 0.97 

SVM Linear 0.175 0.96 0.96 0.96 0.96 
SVM Poly 0.180 0.97 0.98 0.97 0.97 
SVM Sigmoid 2.384 0.71 0.75 0.71 0.72 
MLP m-arcsinh 

(This study) 
53.586 0.98 0.98 0.98 0.98 

MLP Identity 9.572 0.98 0.98 0.98 0.98 
MLP Logistic 27.457 0.98 0.98 0.98 0.98 
MLP tanh 15.750 0.98 0.98 0.98 0.98 
MLP ReLU 14.254 0.98 0.98 0.98 0.98 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified Linear Unit.  

Table 7A 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated on the ‘SPECTF’ dataset [7] from the University 
California Irvine (UCI) Machine Learning repository.  

Classifier Function Training time Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.004 0.91 0.91 0.91 0.91 

SVM Linear 0.004 1.00 1.00 1.00 1.00 
SVM Poly 0.003 1.00 1.00 1.00 1.00 
SVM Sigmoid 0.003 0.50 0.25 0.50 0.33 
MLP m-arcsinh 

(This study) 
0.047 0.54 0.76 0.54 0.41 

MLP Identity 0.080 0.54 0.76 0.54 0.41 
MLP Logistic 0.043 0.54 0.76 0.54 0.41 
MLP tanh 0.078 0.54 0.76 0.54 0.41 
MLP ReLU 0.096 0.54 0.76 0.54 0.41 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified Linear Unit.  

Table 8A 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated on the ‘Pen-based handwritten digits recognition’ 
dataset [1] from the University California Irvine (UCI) Machine Learning repository.  

Classifier Function Training time Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.728 0.99 0.99 0.99 0.99 

SVM Linear 4.651 0.99 0.99 0.99 0.99 
SVM Poly 0.196 1.00 1.00 1.00 1.00 
SVM Sigmoid 3.024 0.13 0.06 0.13 0.06 
MLP m-arcsinh 

(This study) 
17.736 1.00 1.00 1.00 1.00 

MLP Identity 18.692 1.00 1.00 1.00 1.00 
MLP Logistic 18.268 1.00 1.00 1.00 1.00 
MLP tanh 20.490 1.00 1.00 1.00 1.00 
MLP ReLU 19.362 1.00 1.00 1.00 1.00 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified Linear Unit.  

Table 9A 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated on the ‘Smartphone-Based Recognition of Human 
Activities and Postural Transitions’ dataset [56] from the University California Irvine (UCI) Machine Learning repository.  

Classifier Function Training time Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.920 0.92 0.92 0.92 0.92 

SVM Linear 0.727 0.95 0.95 0.95 0.95 

(continued on next page) 
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Table 9A (continued ) 

Classifier Function Training time Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) (0-1) (0-1) (0-1) (0-1) 

SVM Poly 8.408 0.76 0.78 0.76 0.76 
SVM Sigmoid 4.943 0.87 0.88 0.87 0.87 
MLP m-arcsinh 

(This study) 
4.816 0.88 0.90 0.88 0.88 

MLP Identity 3.126 0.86 0.89 0.86 0.85 
MLP Logistic 3.129 0.29 0.09 0.29 0.14 
MLP tanh 1.400 0.29 0.09 0.29 0.13 
MLP ReLU 4.645 0.17 0.03 0.17 0.05 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified Linear Unit.  

Table 10A 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated to predict Atrial Fibrillation on the ‘Myocardial 
infarction complications’ dataset [57] from the University California Irvine (UCI) Machine Learning repository.  

Classifier Function Training time Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.028 0.63 0.87 0.63 0.70 

SVM Linear 3.050 0.72 0.86 0.72 0.77 
SVM Poly 9.171 0.77 0.85 0.77 0.80 
SVM Sigmoid 0.054 0.10 0.01 0.10 0.02 
MLP m-arcsinh 

(This study) 
1.029 0.89 0.85 0.89 0.85 

MLP Identity 0.048 0.89 0.79 0.89 0.84 
MLP Logistic 0.167 0.89 0.79 0.89 0.84 
MLP tanh 0.083 0.89 0.79 0.89 0.84 
MLP ReLU 1.337 0.89 0.79 0.89 0.84 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified Linear Unit.  

Table 11A 
Image classification performance of a Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) with different kernel and activation functions respectively, 
including the m-arcsinh generated via the proposed ActiGen-MOGA framework. This performance was evaluated to predict Pulmonary Oedema on the ‘Myocardial 
infarction complications’ dataset [57] from the University California Irvine (UCI) Machine Learning repository.  

Classifier Function Training time Accuracy Weighted precision Weighted recall Weighted F1-score   
(s) (0-1) (0-1) (0-1) (0-1) 

SVM m-arcsinh 
(This study) 

0.035 0.73 0.90 0.73 0.79 

SVM Linear 5.542 0.76 0.90 0.76 0.81 
SVM Poly 14.911 0.83 0.88 0.83 0.85 
SVM Sigmoid 0.070 0.08 0.01 0.08 0.01 
MLP m-arcsinh 

(This study) 
1.485 0.92 0.92 0.92 0.92 

MLP Identity 0.139 0.84 0.90 0.84 0.87 
MLP Logistic 0.148 0.93 0.87 0.93 0.90 
MLP tanh 0.091 0.07 0.00 0.07 0.01 
MLP ReLU 0.679 0.93 0.87 0.93 0.90 

SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified Linear Unit.  

Table 12A 
The comparison of the weighted F1-score resulting from the m-arcsinh and other activation functions on the 9 datasets evaluated. The last two experiments come from 
the same dataset but using a different target or myocardial infarction complication to predict.  

Dataset SVM MLP 

m- 
arcsinh 

Linear Poly Sigmoid m- 
arcsinh 

Identity Logistic tanh ReLU 

‘Breast cancer Wisconsin’ [54] 0.97 0.98 0.98 0.21 0.91 0.92 0.92 0.90 0.92 
‘LFW people’ [19] 0.83 0.79 0.00 0.82 0.86 0.83 0.84 0.84 0.83 
‘Handwritten Digits’ [2] 0.95 0.93 0.95 0.66 0.92 0.91 0.93 0.93 0.92 
‘Olivetti faces’ [48] 0.90 0.99 0.83 0.00 0.75 0.75 0.75 0.75 0.75 
‘OptDigits’ [22] 0.97 0.96 0.97 0.72 0.98 0.98 0.98 0.98 0.98 
‘SPECTF’ [7] 0.91 1.00 1.00 0.33 0.41 0.41 0.41 0.41 0.41 
‘Pen-based handwritten digits recognition’ [1] 0.99 0.99 1.00 0.06 1.00 1.00 1.00 1.00 1.00 
‘Smartphone-Based Recognition of Human Activities and Postural Transitions’ 

[56] 
0.92 0.95 0.76 0.87 0.88 0.85 0.14 0.13 0.05 

Atrial Fibrillation on the ‘Myocardial infarction complications’ [57] 0.70 0.77 0.80 0.02 0.85 0.84 0.84 0.84 0.84 
Pulmonary Oedema on the ‘Myocardial infarction complications’ dataset [57] 0.79 0.81 0.85 0.01 0.92 0.87 0.90 0.01 0.90 
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SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; Linear: Linear kernel; tanh: hyperbolic tangent sigmoid; ReLU: Rectified Linear Unit. 
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