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Abstract:  

With China being the world's largest emitter of greenhouse gases and its aviation sector 

burgeoning, the environmental performance of Chinese airlines has global significance. 

Amidst rising demands for eco-friendly practices from both customers and regulators, the 

interplay between airport infrastructure and environmental performance becomes pivotal. 

This research offers an innovative methodology to gauge the environmental performance 

of Chinese airlines, emphasizing the distance traveled between airports using weighted 

additive utility functions. Leveraging neural networks, the study investigates the impact 

of various airport infrastructural characteristics on environmental performance. 

Noteworthy findings indicate that ground control measures, automatic information 

services at origin airports, surface concrete on runways at both ends, and a centerline 

lighting system in destination airports positively influence environmental performance. 

In contrast, longer and wider runways at origin airports, increased distances to control 

towers, and asphalt runways at destination airports adversely affect it. These insights not 

only underscore the importance of strategic infrastructure enhancements for reducing 

carbon footprints but also hold profound policy implications. As global climate change 

remains at the forefront, fostering sustainable airport infrastructure in China can 

significantly contribute to worldwide mitigation efforts. 
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1. Introduction 

The urgency of addressing climate change, driven largely by anthropogenic activities, has 

never been clearer. The aviation sector, while being indispensable for global connectivity, 

has drawn scrutiny for its considerable carbon footprint. Mitigating the adverse 

environmental impacts of this industry is crucial for achieving global sustainability goals. 

Within this context, understanding and improving the environmental performance of 

airlines, particularly in rapidly developing regions, becomes imperative. 

China, as one of the world's largest economies, plays a pivotal role in global climate 

change initiatives. As its aviation industry burgeons, there's a pressing need to align its 

growth with environmental sustainability. This paper seeks to contribute to this endeavor 

by presenting a novel approach to evaluate the environmental performance of Chinese 

airlines, shedding light on the significant influence of airport infrastructure on pollutant 

emissions. Such an analysis not only informs sustainable infrastructure development but 

also helps policymakers and industry leaders make informed decisions that balance 

economic growth with environmental responsibility. 

According to the statistics provided by the international civil aviation organization, the 

total number of passengers carried on scheduled services rosed to 4.5 billion in 2019, 

which is 3.6% higher than 2018. In terms of the number of departures, it reached 38.3 

million in 2019, which is 1.7% higher than 2018. With regard to the total scheduled 

revenue passenger-kilometers (PRKs), an indicator reflecting the total passenger carried 

by an airline or a group of airlines over a certain period of time, the statistics show that 

the figure reached 8686 billion, which is 4.9% higher than 2018. Although there has been 

a growth in relevant indicators reflecting the volumes of activities in the aviation industry, 

based on the statistics provided by Green Baggage as well as international council on 

clean transportation, flights produced 915 million tons of CO2 in 2019, which is slightly 

lower than the figure in 2018, which is 918 million tons.  

In recent years, China's civil aviation industry has experienced rapid development. In 

2019, China's domestic routes transported a total of 82.951 billion ton-kilometers, with 

passenger turnover reaching 852.022 billion person-kilometers, and cargo and mail 

turnover reaching 7.859 billion ton-kilometers, with an annual growth rate of more than 

5% (CAAC, 2020). Although these indicators have declined due to the impact of the 

pandemic, China remains one of the most active regions in global air transportation. 

However, high growth is accompanied by high emissions. In 2019, China's domestic 

airline carbon emissions reached 71.158 million tons, accounting for 8.2% of the global 

total emissions. The Chinese government has taken many measures to control aviation 

emissions. In the "14th Five Year Plan" of China's civil aviation, two indicators, namely 

carbon dioxide emissions per ton kilometer of transportation aviation and energy 

consumption per passenger at airports, will be reduced to 0.886 kg and 0.853 kg of 

standard coal by 2025, respectively (CAAC, 2020). 

In this research, an innovative stochastic-robust approach is proposed to calculate an 

overall environmental performance index for Chinese airlines. The index is based on the 

locally estimated scatterplot smoothing (LOESS) evaluation of the partial utility functions 

(PUFs) associated with each rotated criterion obtained through SVD. The methodology 

utilized in this study involves bootstrapping the original decision matrix, which consists 
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of columns representing various pollutants emitted by the airlines, as well as the distance 

traveled between two airports (criteria), and the lines represent different airline flights 

within China. In this study, an alternative method is examined for rescaling the rotated 

criteria. This method involves using quadratic programming to determine the optimal 

weights for the minimal covariance and joint entropy matrices of the estimated residuals 

of the Partial Utility Functions (PUFs) obtained through LOESS. By incorporating the 

singular values and these optimal weights, an overall utility function is derived, which 

provides a comprehensive assessment of the relative importance of the criteria. 

Furthermore, the relative importance of airport infrastructure characteristics on the 

pollutant emissions of airlines is explored through a hybrid approach using neural 

networks. 

This novel approach attempts to fill a research void with respect Chinese airline pollutant 

emissions. In fact, despite the rapid growth of China's aviation industry and its consequent 

environmental implications, there lacks a comprehensive and robust method to evaluate 

the environmental performance of its airlines, taking into account the intricacies of airport 

infrastructures. Hence, our primary objective is to introduce and validate a novel 

stochastic-robust approach to develop an environmental performance index for Chinese 

airlines, offering insights into the role of different airport infrastructure characteristics on 

pollutant emissions. Differently from previous studies, this paper stands out in blending 

LOESS and SVD to derive a comprehensive performance index by capturing the nuanced 

impacts of various airport infrastructures on emissions. Notwithstanding the theoretical 

and methodological issues, this research also contributes to policy decisions and 

sustainable growth strategies in the aviation sector. 

Our findings suggest that the environmental performance of the Chinese airlines is 

significantly and positively affected by 1) the ground control in both origin and 

destination airports; 2) automatic information service in origin airports; 3) the existence 

of surface concrete in the runways of both origin and destination airports; 4) the centerline 

lighting system in destination airports; whereas the environmental performance is 

signficantly and negatively affected by 1) larger runway length and width in origin 

airports; 2) longer distances to the control tower in origin airports; 3) asphalt runway in 

destination airports.  

The paper has the following structure. In the next section, the Chinese air transport 

industry, its history, current status, and future perspectives in terms of ESG are discussed. 

Section 3 of this paper provides a comprehensive literature review. It identifies the 

research gap by examining previous studies that have investigated the impact of airport 

infrastructure on the environmental performance of airlines. The review highlights the 

specific areas of focus, the main methodologies employed, and the key findings and 

conclusions drawn from these studies. The dataset and the novel approach developed in 

this paper are described in Section 4. The results are analyzed and discussed in Section 5, 

Section 6 serves as the conclusion of the paper, where various aspects are addressed. 

These include presenting the policy and managerial implications derived from the study's 

findings, discussing the limitations of the research, and providing suggestions for future 

research directions. 

Literature Review 
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The rapid growth of aviation demand has promoted economic development, but it has 

also brought significant adverse effects on the environment, especially greenhouse gas 

emissions (Sreenath et al., 2021). In addition to carbon dioxide (CO2), aircraft activities 

also generate other emissions, including carbon monoxide (CO), hydrocarbons (HC), 

nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM2.5) (Amanatidis 

et al., 1998; Koulidis et al., 2020). These aircraft emissions harm the environment and 

human health (Zhou et al., 2019; Safarianzengir et al., 2020; Yang et al., 2023). 

Accounting for aviation emissions provides a basis for promoting aviation carbon 

emission reduction. The main methods for calculating aviation emissions are the United 

States EPA (Environmental Protection Agency) method, the European EMEP (European 

Monitoring and Evaluation Program) method, and the ICAO (International Civil Aviation 

Organization) method. Based on the EPA method, scholars have calculated the pollutant 

emissions of aircraft engines at airports (including take-off and landing) (Zhou et al., 

2019; Baxter et al., 2020). The EPA method is mainly used to calculate aircraft carbon 

emissions during the LTO (Landing and Take-Off) phase. The EMEP method assessed 

the environmental impact of replacing existing aviation fuels with hydrogen or natural 

gas (Pereira et al., 2014). The EMEP approach focuses on analyzing the emission 

characteristics of an aircraft engine from a fuel perspective, ignoring the differences 

between engine types. The ICAO calculation method does not consider the differences 

between subsequent models, nor can it simultaneously calculate multiple types of 

pollutants (Wasiuk et al., 2016). 

To overcome the shortcomings of existing aircraft emission calculation methods and 

consider specific aircraft types and flight distances, scholars have proposed an improved 

fuel percentage method (BFFM2-FOA-FPM) to calculate aircraft emissions during the 

CCD (Climbing/Cruising/Descending) phase (Cui et al., 2022a, 2022b, 2022c). This 

method unifies the calculation of carbon dioxide and non-carbon dioxide emissions, 

making the results more accurate. 

There are a number of studies investigating the environmental performance of airlines. 

Using 48 world’s major full-service and low-cost carriers from six different regions 

between 2007 and 2010, Arjomandi and Seufert (2014) examine the environmental 

efficiencies of airlines under the boostrapped data envelopment analysis. The findings 

suggest that the Europe airlines have the best environmental performance, while low-cost 

carriers are more environmentally oriented comapred to the full-service carriers. Using 

nine listed Chinese airlines between 2013 and 2018, Chen et al. (2021) examine the 

environmental performance under a two-stage undesirable network slack-based measure 

approach. Similar as the findings of Arjomandi and Seufert (2014), they find that low-

cost airlines have the best environmental performance. Using 27 global airlines in 2010, 

Chang et al. (2014) evaluated the envrionmental performance through an extended 

environmental slacks-based measure data envelopment analysis model with the weak 

disposability assumption. The results report that the European and American airlines are 

less efficient than the asia-based airlines. The findings further suggest that the 

environmental performance is affected by poor fuel consumption. Using 12 US airlines 

over the period 2013 to 2016, Xu et al. (2021) examine the environmental performance 

through a directional distance function (DDF) data envelopment analysis (DEA) model, 

in which flight delay and greenhouse gas (GHG) emissions as joint undesirable outputs. 
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The findings show that fleet age, ownership type, freight traffic, market share, and carrier 

type affect airlines’ environmental efficiency. Using 149 airlines in the world over the 

period 2012 to 2016, Payán-Sánchez et al. (2022) investgiated the relationship between 

Network ambidexterity and environmental performance. The environmental performance 

is measured by the environmental performance indicator of the Atmosfair Airline Index 

(AAI). The results from the hirarchical regression analysis shows that code-sharing is a 

critical source for improving environmental efficiency and the moderating role of 

network ambidexterity in the impact of alliances on environmental performance is 

identified. Finally, using 252 airlines in the world over the period 2010 to 2016, Payán-

Sánchez et al. (2019) analyze whether the alliance membership of airlines has an effect 

upon their environmental performance. The measurement of environmental performance 

follows the one of Payán-Sánchez et al. (2022), while the impact of alliance membership 

on environmental performance is evaluated through the Regression and Analysis of 

Variance. The findings suggested that there is a strong and inverse relationship between 

environmental performance and belonging to an alliance. 

Few studies have attempted to propose and use neural networks in analyzing relevant 

relationships in the aviation/airline industry. Using 73 observations for cost-focused 

airlines and 62 observations for full-service arilines in the US between 1998 and 2009, 

Parast and Golmohammadi (2021) examined the effect of operational slack on the 

relationship between service disruption and quality. The investigation was facilitated by 

the use of multiple regression analysis and the authors also used nerual networks approach 

as the robustness test. The findings support the role of slack resources in mitigating the 

impact of service failure—in the form of flight cancellations—on passengers’ perceived 

service quality. Using a sample of 29 African airlines over the period 2010-2013, Barros 

and Wanke (2015) provided an analysis of efficiency with a two-stage Technique for 

Order Preference by Similarity to the Ideal Solution (TOPSIS) and neural network 

approach. In the first stage, TOPSIS was used to evaluate the airline efficiency, followed 

by the second stage, in which the neural networks approach was employed to evaluate the 

determinants of efficiency. The findings suggest that fleet mix, public ownership and 

network size are the efficiency drivers. Using the data collected from a cross-sectional 

questionnaire to 300 passengers at the Kuala Lumpur International Airport (KLIA) for 

duration of two weeks, Leong et al. (2015) examined the effects of SERVPERF on 

customer satisfaction and loyalty under the Structural Equation Modeling (SEM)–

artificial neural network approach. The findings show that 63.1% and 55.6% of variance 

in customer satisfaction and loyalty are explained are explained by SERVPERF. Using 

the US airline data between March 1st, 2020 to December 12th 2020, Truong (2021) 

examined the impact of COVID-19 on air travel using neural network and Monte Carlo 

simulation. The findings show that air travel is significantly affected by weekly economic 

index, daily trips by distance and travel restrictions. Rather than focusing on the airline 

industry, Wanke et al. (2023) investigate the sustainability of the Chinese transporation 

section and its drivers using the monthly data between January 1999 and December 2017, 

faciliated by the principal component analysis and neural networks. The findings show 

that trade and fixed asset investments, as well as monetary and fiscal policies have a 

signifcant and positive impact on sustainability in the Chinese transporation industry. The 

neural neworks approach was also proposed and applied in other economic sectors, such 

as the banking industry (Antunes et al., 2022). 
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3. Methodology 

Aircraft emissions include CO2, CO, HC, NOx, SO2, and PM2.5 (Cui et al., 2022a, 2022b, 

2022c). This paper uses emission data from China's domestic routes between 2014 and 

2019, obtained from the Aviation Emissions Accounting Databases 

(http://www.aeads.com.cn/). The data covers emissions from both the Landing and Take-

Off (LTO) cycle and the Climbing/Cruising/Descending (CCD) stage. The number of 

routes during this period was 311, 327, 367, 384, 415, and 492, respectively, while the 

number of flights was 1,947,211, 2,224,617, 2,277,024, 2,495,904, 2,610,068, and 

3,116,880, respectively. 

Table 1. Descriptive statistics summary for pollutants emitted and distance travelled 

between airports. 

Variables Unit Criteria Min Max Mean Median SD CV Skewness Kurtosis 

Distance km pc 245,02 3317,52 1223,54 1164,77 515,79 0,42 0,83 1,30 

CO2 CCD  nc 3,53 1196316,00 20515,93 11663,47 32900,61 1,60 10,36 211,09 

CO CCD  nc 3,12 3217,77 165,57 98,83 213,22 1,29 5,79 49,98 

HC CCD  nc 0,01 373,07 15,64 9,11 23,31 1,49 6,75 66,17 

NOx CCD  nc 0,31 6742,92 150,54 77,23 298,05 1,98 9,51 125,46 

PM2.5 CCD nc 0,04 49,57 2,16 1,28 2,84 1,32 5,96 54,14 

SO2 CCD  nc 0,00 1466,50 25,15 14,30 40,33 1,60 10,36 211,09 

CO2 LTO  nc 1,16 119981,81 4134,88 2315,42 5420,68 1,31 7,08 84,03 

CO LTO  nc 0,33 385,36 17,24 9,72 21,70 1,26 6,43 65,66 

HC LTO  nc 0,00 51,47 1,59 0,92 2,24 1,41 8,15 111,64 

NOx LTO  nc 0,28 656,50 16,13 8,17 29,89 1,85 10,59 156,26 

PM2.5 LTO  nc 0,01 7,37 0,26 0,14 0,36 1,39 7,87 96,44 

SO2 LTO  nc 0,00 147,08 5,07 2,84 6,64 1,31 7,08 84,03 

pc = positive criteria; nc = negative criteria 
LTO = landing and take-off 

CCD = climbing, cruising, and descending 

 

Table 2. Descriptive statistics summary (for the airports of origin). 

Variable Unit Type Min Max Mean Median SD CV Skewness Kurtosis 

Elevation meters Runway 3,05 3566,16 313,98 66,14 494,37 1,57 2,27 5,18 

Qnt Runways unit Runway 1,00 3,00 1,22 1,00 0,55 0,45 2,42 4,58 

Runway Length (Mean) meters Runway 2200,00 3804,65 3371,85 3400,00 307,12 0,09 -1,24 1,16 

Runway Width (Mean) meters Runway 44,80 60,00 49,33 45,10 6,08 0,12 0,93 -0,91 

Surface Asphalt unit Runway 0,00 2,00 0,14 0,00 0,43 3,04 3,16 9,39 

Surface Concrete unit Runway 0,00 3,00 1,03 1,00 0,60 0,58 0,95 2,82 
Surface Part Concrete or 

Asphalt unit Runway 0,00 1,00 0,05 0,00 0,23 4,20 3,96 13,66 

Approach Control unit 
Airport 
Infrastructuct 0,00 8,00 1,95 1,00 2,06 1,06 1,50 1,84 

Automatic Terminal 

Information Service unit 

Airport 

Infrastructuct 0,00 2,00 1,09 1,00 0,38 0,35 0,85 3,13 

Clearance Delivery unit 

Airport 

Infrastructuct 0,00 1,00 0,25 0,00 0,43 1,74 1,16 -0,64 

Ground Control unit 
Airport 
Infrastructuct 0,00 5,00 1,16 1,00 0,82 0,70 3,06 12,36 

Tower unit 

Airport 

Infrastructuct 1,00 3,00 1,18 1,00 0,46 0,39 2,52 5,68 
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Centerline Lighting System unit 

Lighting 

System 0,00 3,00 1,21 1,00 0,56 0,47 2,19 4,28 

High Intensity Runway Lights unit 

Lighting 

System 0,00 3,00 1,16 1,00 0,50 0,43 1,76 4,51 

ALSF 1 unit 
Lighting 
System 0,00 1,00 0,82 1,00 0,38 0,46 -1,71 0,92 

Precision Approach Path 

Indicator (PAPI) unit 

Lighting 

System 0,00 3,00 1,22 1,00 0,55 0,45 2,37 4,54 

Center row unit 

Lighting 

System 0,00 1,00 0,00 0,00 0,04 24,28 24,24 585,47 

Sequenced Flashing Lights unit 
Lighting 
System 0,00 3,00 0,91 1,00 0,80 0,88 0,91 0,75 

Touchdown Zone Lighting unit 

Lighting 

System 0,00 3,00 0,58 0,00 0,70 1,21 1,32 2,12 

ALSF 2 unit 

Lighting 

System 0,00 3,00 0,46 0,00 0,71 1,54 1,73 3,08 

Runway End Identifier Lights unit 
Lighting 
System 0,00 1,00 0,21 0,00 0,41 1,95 1,44 0,06 

Lights unit 

Lighting 

System 0,00 2,00 0,32 0,00 0,63 1,97 1,78 1,78 

SALS or SALSF unit 

Lighting 

System 0,00 1,00 0,12 0,00 0,33 2,65 2,27 3,17 

Medium Intensity Runway 
Lighting System unit 

Lighting 
System 0,00 1,00 0,01 0,00 0,08 12,32 12,24 147,71 

 

Table 3. Contextual Variables Descriptive statistics (for the airports of destination). 

Variable Unit Type Min Max Mean Median SD CV Skewness Kurtosis 

Elevation meters Runway 3,05 3566,16 284,55 32,61 548,35 1,93 3,00 10,97 

Qnt Runways unit Runway 1,00 3,00 1,26 1,00 0,66 0,53 2,22 2,98 

Runway Length (Mean) meters Runway 2566,10 3804,65 3374,77 3400,00 286,76 0,08 -1,14 0,79 

Runway Width (Mean) meters Runway 44,80 60,00 47,53 45,10 4,93 0,10 1,74 1,32 

Surface Asphalt unit Runway 0,00 2,00 0,28 0,00 0,56 2,00 1,88 2,47 

Surface Concrete unit Runway 0,00 3,00 0,93 1,00 0,69 0,75 1,29 3,02 

Surface Part Concrete or Asphalt unit Runway 0,00 1,00 0,05 0,00 0,21 4,46 4,24 15,94 

Approach Control unit 

Airport 

Infrastructuct 0,00 8,00 2,11 1,00 2,39 1,13 1,45 0,99 
Automatic Terminal Information 

Service unit 

Airport 

Infrastructuct 0,00 2,00 1,01 1,00 0,33 0,32 0,21 6,43 

Clearance Delivery unit 
Airport 
Infrastructuct 0,00 1,00 0,27 0,00 0,44 1,66 1,05 -0,90 

Ground Control unit 

Airport 

Infrastructuct 0,00 5,00 1,23 1,00 1,01 0,82 2,95 8,65 

Tower unit 

Airport 

Infrastructuct 1,00 3,00 1,18 1,00 0,52 0,44 2,78 6,44 

Centerline Lighting System unit 

Lighting 

System 0,00 3,00 1,24 1,00 0,67 0,54 2,17 3,06 

High Intensity Runway Lights unit 

Lighting 

System 0,00 3,00 1,14 1,00 0,57 0,50 1,91 4,74 

ALSF 1 unit 

Lighting 

System 0,00 1,00 0,70 1,00 0,46 0,66 -0,85 -1,27 

Precision Approach Path 
Indicator (PAPI) unit 

Lighting 
System 0,00 3,00 1,24 1,00 0,67 0,55 2,12 2,99 

Center row unit 
Lighting 
System 0,00 1,00 0,02 0,00 0,13 7,84 7,71 57,39 

Sequenced Flashing Lights unit 

Lighting 

System 0,00 3,00 1,14 1,00 0,77 0,67 1,41 1,85 

Touchdown Zone Lighting unit 

Lighting 

System 0,00 3,00 0,78 1,00 0,81 1,04 1,09 1,01 

ALSF 2 unit 
Lighting 
System 0,00 3,00 0,65 0,00 0,84 1,29 1,31 1,16 

Runway End Identifier Lights unit 

Lighting 

System 0,00 1,00 0,18 0,00 0,38 2,15 1,68 0,83 

Lights unit 

Lighting 

System 0,00 1,00 0,13 0,00 0,34 2,55 2,16 2,67 

SALS or SALSF unit 
Lighting 
System 0,00 1,00 0,15 0,00 0,35 2,43 2,02 2,06 
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Medium Intensity Runway 

Lighting System unit 

Lighting 

System 0,00 1,00 0,03 0,00 0,18 5,42 5,23 25,37 

 

3.1. Weighted-Additive PUFs 

In many cases, a decision-maker's preferences regarding the benefits derived from a 

specific product or service are captured through a utility function (Chakrabarti and Roy, 

2010). Although this study does not specifically examine the preferences of decision-

makers regarding consumption, in the context of overall environmental performance, we 

can conceptualize the utility function as the intrinsic benefit underlying different airlines' 

emission of fewer pollutants in relation to the distance traveled for a given airport pair. 

 

Figure 1 – Proposed methodology flowchart 

 

Jacquet-Lagreze and Siskos (1982) introduced utility functions as popular techniques in 

multicriteria decision-making. This approach is easily comprehensible to decision-

makers as it does not impose stricter constraints beyond the aggregation formula (Pavan 

and Todeschini, 2009). Typically, the process begins by normalizing the data locally for 

each criterion, ranging between 0 and 1, by considering the best and worst alternatives 

available. 

Consider a set of d pairs of airline travels from a specific origin airport to a designated 

destination airport. 𝑜  positive criteria (𝑝𝑜𝑠𝑑,𝑜)  and 𝑖  negative criteria (𝑛𝑒𝑔𝑑,𝑖)  for 

performance are included in each pair, where 𝑑 ranges from 1 to 𝑛, 𝑜 ranges from 1 to 𝑚, 

and 𝑖 ranges from 1 to 𝑠. The positive and negative criteria are represented by the matrices 

pos and neg, respectively, with dimensions of 𝑛 ×𝑚 and 𝑛 × 𝑠. The highest attainable 

utility value for each negative criterion 𝑖, across all 𝑑 airline-travel pairs, is determined 

using the 𝑚𝑎𝑥(𝑛𝑒𝑔𝑖) function. Similarly, the maximum utility value for each positive 

criterion 𝑜 is obtained by applying the 𝑚𝑎𝑥(𝑝𝑜𝑠𝑜) function to all 𝑑 airline-travel pairs. 

The calculation of normalized values for each negative criterion 𝑖 and positive criterion 

𝑜 for each airline is based on the reference values obtained from the maximum utility, as 

outlined below: 
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𝑥𝑑,𝑜 =
(𝑝𝑜𝑠𝑑,𝑜  −  𝑚𝑖𝑛(𝑝𝑜𝑠𝑜))

(𝑚𝑎𝑥(𝑝𝑜𝑠𝑜) − 𝑚𝑖𝑛(𝑝𝑜𝑠𝑜))
   ∀𝑜, ∀𝑑                                                                         (1) 

 

 𝑥𝑑,𝑖 =
(𝑚𝑎𝑥(𝑛𝑒𝑔𝑖) −  𝑛𝑒𝑔𝑑,𝑖)

(𝑚𝑎𝑥(𝑛𝑒𝑔𝑖) − 𝑚𝑖𝑛(𝑛𝑒𝑔𝑖))
   ∀𝑖, ∀𝑑                                                                          (2) 

 

Let's consider 𝑥𝑑,𝑜 as the normalized value of positive criterion o for airline-travel pair 𝑑, 

and 𝑥𝑑,𝑖 as the normalized value of negative criterion 𝑖 for airline 𝑑. Please note that the 

maximum values of positive criteria result in a normalized value of 1. On the contrary, 

the maximum values of negative criteria lead to a normalized value of 0. This facilitates 

the simultaneous incorporation of both positive and negative criteria in a normalized 

decision-making matrix 𝑥, which has a size of 𝑛𝑥(𝑚 + 𝑠). In Table 1, it is shown that 

distance represents the only positive criterion, while all other pollutants emitted during 

the travel between airports form the negative criteria. 

Additionally, let us define w as a column vector of weights allocated to the criteria 𝑐 
represented in 𝑥, where 𝑐 ranges from 1 to 𝑘, and 𝑘 represents the total number of criteria, 

which is equal to 𝑚 + 𝑠.  For each alternative 𝑑, the overall utility value 𝑉 is calculated 

in the following manner: 

𝑉𝑑 =∑ 𝑥𝑑,𝑐
𝑘

𝑐=1
∗ 𝑤𝑐 , where  ∑ 𝑤𝑐

𝑘

𝑐=1
= 1                                                                         (3) 

 

Furthermore, the decision matrix V with weighted normalization ca be expressed as 

follows: 

𝐕 = [

𝑥1,1 ∗ 𝑤1 ⋯ 𝑥1,𝑘 ∗ 𝑤𝑘
⋮ ⋱ ⋮

𝑥𝑑,1 ∗ 𝑤1 ⋯ 𝑥𝑑,𝑘 ∗ 𝑤𝑘
]                                                                                              (4) 

 

In this depiction, 𝑉 encapsulates the criteria with weighted normalization, with each sub-

column vector representing the partial weighted utility vector for all airline-travel pairs 

(𝑑) concerning a particular criterion (𝑐). This matrix serves as a crucial element for 

interpreting the results of the singular value decomposition (SVD), as discussed in the 

subsequent section. The significance of this decision-making matrix representation is 

emphasized in the next section, as outlined by Wanke et al. (2022). 

3.2. SVD 

 

In this research, the singular value decomposition (SVD) method is utilized to examine a 

rectangular decision-making matrix V. This matrix comprises environmental 

performance criteria for every airline-travel combination. The SVD process decomposes 

the matrix into three separate components, as described by Alter et al. (2000) and 

Greenberg (2000): 

 

𝑉𝑛×𝑘  =  𝐶𝑛×𝑛 ∗ 𝑆𝑛×𝑘 ∗ 𝐿𝑘×𝑘
𝑇                                                                                                       (5) 
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Although the interpretations of these components may sometimes be complex (Klema 

and Laub, 1980), in the context of this study, it can be inferred that: 

 

• The loading-factor matrix, denoted as 𝐿, captures the weights assigned to the k rotated 

criteria, which are derived through the use of "internal regressions”, a method outlined by 

Jolliffe et al. (2003), which involves analyzing the original criteria to obtain the new set 

of criteria. 

• The rotated criteria in 𝐿 define the k-dimensional space, which is scaled by the matrix 

𝑆. The singular values found in it represent the inherent significance or weight attributed 

to each rotated criterion. Acal et al. (2020) emphasize the significance of these singular 

values in determining the criteria’s relative importance. To facilitate practical 

calculations, the singular values can be assigned as weights in the form of a column vector 

s, which is applied to the matrix C, following the suggestion by Drineas et al. (2004). 

• The matrix 𝐶 is assigned as the utility coefficient matrix for the decision matrix 𝑥. It 

consists of various sub-column vectors that represent the coefficients of rotation for the 

original alternatives 𝑑 with respect to a specific criterion 𝑐, as explained by Zhao and Ye 

(2011). Consequently, the decision matrix obtained by multiplying 𝐶 and 𝑥 element-wise 

contains column vectors that represent the Partial Utility Functions (PUFs). These PUFs 

capture the utility values for all alternatives (or airline-travel pairs) 𝑑 in relation to each 

criterion 𝑐. 

Cx = [

𝑐1,1 ∗ 𝑥1,1 ⋯ 𝑐1,𝑛 ∗ 𝑥1,𝑛
⋮ ⋱ ⋮

𝑐𝑑,1 ∗ 𝑥𝑑,1 ⋯ 𝑐𝑑,𝑛 ∗ 𝑥𝑑,𝑛
]                                                                                         (6) 

 

As elaborated in the subsequent section, the modeling of the relationships between 

PUF𝑐 = 𝑓(x𝑐)  for all c involves the application of LOESS estimation. Here, 

PUF𝑐 represents the sub-column vector specific to each criterion c within the decision 

matrix 𝐶𝑥, while x𝑐 corresponds to the respective sub-column vector within the matrix 𝑥. 

3.3. LOESS 

Local polynomial regression, also known as moving regression, is an advanced technique 

that combines the concepts of polynomial regression and combined moving averages 

methods (Garimella, 2017). It encompasses various approaches, such as LOESS, which 

is a flexible non-parametric regression method. LOESS integrates polynomial regression 

models, specifically of degree 1 or 2, with a local search framework based on k-nearest 

neighbors (kNN) (Fox and Weisberg, 2018; Harrel, 2015). The key parameter of interest 

in LOESS is the coverage span of the neighboring data. In this research, the sum of 

squared residuals vector for each criterion 𝑐, known as the sum-square vector of the 

LOESS residual, is represented as Rc and is defined as follows: 

𝑅𝑐 =∑ (PUF𝑐 − Ax𝑐)
T ∗ w𝑑

𝑛

𝑑=1
(x𝑐) ∗ (PUF𝑐 − Ax𝑐)                                                      (7) 
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In the given scenario, a square matrix is denoted by 𝐴  containing coefficients that 

correspond to the degree of the polynomial fit. In contrast, the vector w𝑑  signifies a 

Gaussian vector comprising weights allocated to individual alternatives, 𝑑. These weights 

are calculated by considering the data range’s mean and variance in the local vicinity, 

which is determined through a k-nearest-neighbor (kNN) search. 

3.4. Compromise weighting 

To explore different weighting schemes for the criteria, quadratic programming is 

employed as an additional technique. This approach presents a contrast to utilizing the 

singular value vector, ws, derived from equation (5)’s main diagonal of 𝑆. In this case, 

the matrices of joint entropy and square covariance are created for the residuals calculated 

in equation (7), and these matrices are then minimized by optimizing the weight vectors 

𝑤𝑐 and 𝑤𝑒, respectively. The aim of minimizing the residual covariance is to ensure an 

impartial overall financial performance when integrating various partial utility functions 

for each criterion (Keeney and Raiffa, 1993). On the other hand, minimizing joint entropy 

is closely associated with maximizing mutual information (Smith, 2015), which results 

in the optimal combination of criteria that facilitates continuous improvement initiatives 

and the ability to learn from one another (Greco et al., 2001). Consequently, the following 

relationship holds: 

For the square matrix of residuals with minimal covariance (Cov(Rc)) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 0.5 ∗ wc
T ∗ Cov(Rc) ∗ 𝑤𝑐 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑤𝑐𝑐

𝑘

𝑐=1
= 1                                                                                                                                 (8) 

0 ≤ 𝑤𝑐𝑐 ≤ 1   ∀𝑐 

 

For the square matrix of residuals with minimal Joint Entropy (𝐸(𝑅𝑐)) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤𝑒
𝑇 ∗ 𝐸(𝑅𝑐) ∗ 𝑤𝑒 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑤𝑒𝑐
𝑘

𝑐=1
= 1                                                                                                                              (9) 

0 ≤ 𝑤𝑒𝑐 ≤ 1  ∀𝑐 

In conclusion, the calculation of the overall rotated utility value (RUV) for each 

alternative (d) utilizing compromise weights involves the estimation of the LOESS value. 

𝑅𝑈𝑉𝑑 =∑ 𝑥𝑑,𝑐 ∗ 𝑎𝑑,𝑐⏞    
𝐿𝑂𝐸𝑆𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑘

𝑐=1
∗  
𝑤𝑐𝑐 + 𝑤𝑒𝑐 + 𝑤𝑠𝑐

3
                                                                      (10) 

Where: 

∑ 𝑤𝑐𝑐
𝑘
𝑐=1 = 1  

∑ 𝑤𝑒𝑐
𝑘
𝑐=1 = 1  

∑ 𝑤𝑠𝑐
𝑘
𝑐=1 = 1  
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3.5. Stochastic-Robust SVD-based LOESS PUFs 

The complete proposed methodology is summarized in Figure 1, and the pseudo-code for 

Stochastic-Robust SVD-based LOESS PUFs is in Table 4. The procedures outlined in 

subsections 3.1 to 3.4 underwent 100 bootstrap replications. Each replication involved 

100 line-resamples drawn randomly, without repetition, from the original decision matrix 

𝑥. 

Table 4. Pseudo-code. 

1) Normalize decision matrix 𝑑 matrix using equations (1) and (2)  

2) Compute Utility Value Matrix 𝑉 following equation (4) 

3) for 𝐵 from 1 to 100 do 
 3.1) Create Matrix 𝑉′ by sampling rows from 𝑉 
 3.2) Decompose 𝑉′ using SVD 
 3.3) Construct matrix 𝐶𝑥 following equation (6) 
 3.4) Compute LOESS following eq (7) 
 3.5) Evaluate model (8) to find weights that minimize covariance matrix  
 3.6) Evaluate model (9) to find weights that minimize joint entropy matrix 
 3.7) Find 𝑅𝑈𝑉 values for criteria d following equation (10) 

end loop 

 

Given: 

• 𝒅: Set of pairs of airline travels (decision matrix) 

• 𝒏𝒃𝒐𝒐𝒕: Number of bootstraps replications 

Step 1: Normalize decision matrix 𝑑 using equations (1) and (2): 

𝑥𝑑,𝑜 =
(𝑝𝑜𝑠𝑑,𝑜  −  𝑚𝑖𝑛(𝑝𝑜𝑠𝑜))

(𝑚𝑎𝑥(𝑝𝑜𝑠𝑜) − 𝑚𝑖𝑛(𝑝𝑜𝑠𝑜))
   ∀𝑜, ∀𝑑                                                                                  

 𝑥𝑑,𝑖 =
(𝑚𝑎𝑥(𝑛𝑒𝑔𝑖) −  𝑛𝑒𝑔𝑑,𝑖)

(𝑚𝑎𝑥(𝑛𝑒𝑔𝑖) − 𝑚𝑖𝑛(𝑛𝑒𝑔𝑖))
   ∀𝑖, ∀𝑑                                                                                     

 

Step 2: Compute Utility Value Matrix 𝑉 following equation (4): 

𝐕 = [

𝑥1,1 ∗ 𝑤1 ⋯ 𝑥1,𝑘 ∗ 𝑤𝑘
⋮ ⋱ ⋮

𝑥𝑑,1 ∗ 𝑤1 ⋯ 𝑥𝑑,𝑘 ∗ 𝑤𝑘
]                                                                                                         

 

Step 3: for 𝐵 from 1 to 𝑛𝑏𝑜𝑜𝑡 do: 

• Step 3.1: Create Matrix 𝑉′ by sampling rows from 𝑉 

• Step 3.2: Decompose 𝑉′ using SVD such that 𝑉𝑛×𝑘
′  =  𝐶𝑛×𝑛 ∗ 𝑆𝑛×𝑘 ∗ 𝐿𝑘×𝑘

𝑇  

• Step 3.3: Construct matrix 𝐶𝑥 following equation (6) 
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Cx = [

𝑐1,1 ∗ 𝑥1,1 ⋯ 𝑐1,𝑛 ∗ 𝑥1,𝑛
⋮ ⋱ ⋮

𝑐𝑑,1 ∗ 𝑥𝑑,1 ⋯ 𝑐𝑑,𝑛 ∗ 𝑥𝑑,𝑛
]                                                                            

• Step 3.4: Compute LOESS following eq (7) 

𝑅𝑐 =∑ (PUF𝑐 − Ax𝑐)
T ∗ w𝑑

𝑛

𝑑=1
(x𝑐) ∗ (PUF𝑐 − Ax𝑐)                                        

• Step 3.5: Evaluate model (8) to find weights that minimize covariance matrix 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 0.5 ∗ wc
T ∗ Cov(Rc) ∗ 𝑤𝑐 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑤𝑐𝑐

𝑘

𝑐=1
= 1                                                                                                                         

0 ≤ 𝑤𝑐𝑐 ≤ 1   ∀𝑐 

 

• Step 3.6: Evaluate model (9) to find weights that minimize joint entropy matrix 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤𝑒
𝑇 ∗ 𝐸(𝑅𝑐) ∗ 𝑤𝑒 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑤𝑒𝑐
𝑘

𝑐=1
= 1                                                                                                                  

0 ≤ 𝑤𝑒𝑐 ≤ 1  ∀𝑐 

• Step 3.7: Find RUV values for criteria d following equation (10) 

𝑅𝑈𝑉𝑑 =∑ 𝑥𝑑,𝑐 ∗ 𝑎𝑑,𝑐⏞      
𝐿𝑂𝐸𝑆𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑘

𝑐=1
∗ 
𝑤𝑐𝑐 +𝑤𝑒𝑐 +𝑤𝑠𝑐

3
                                                                     

Investigating the relationship between airport infrastructure characteristics and the 

environmental performance of airlines holds significant societal benefits. Firstly, such 

research can lead to more sustainable and eco-friendly air travel practices, reducing the 

aviation industry's environmental impact. This includes lowering greenhouse gas 

emissions, noise pollution, and air quality degradation in and around airports, which 

directly benefits nearby communities and the environment. 

Moreover, understanding how infrastructure features like runway length and width, 

surface materials (asphalt or concrete), and lighting systems impact environmental 

performance can inform airport planning and development. It can guide decisions on 

runway design, construction materials, and lighting technologies, aiming for greater 

efficiency and reduced environmental disruption during airport expansions or 

renovations. 

Investigations into infrastructure characteristics also promote safety and operational 

efficiency. For instance, automatic terminal information services, clearance delivery, 

ground control, and tower systems not only contribute to environmental performance but 

also enhance the overall safety and reliability of air travel. This directly benefits 

passengers, airline staff, and aviation professionals by reducing the risk of accidents and 

delays. 
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In summary, research into the interplay between airport infrastructure characteristics and 

the environmental performance of airlines leads to a more sustainable, efficient, and safer 

aviation sector. These improvements benefit society by reducing environmental harm, 

enhancing safety, and improving the overall quality of air travel experiences for 

passengers and communities surrounding airports. 

 

4. Analysis and Discussion of Results 

 

 

  
Fig. 2. Correlogram (left) and significant correlation pairs (right). 

 

 

Fig. 2 illustrates the correlation findings for both the original and bootstrapped decision 

matrices. While it is expected for distance and pollutant emissions to be strongly and 

positively correlated in both LTO and CCD operations, one can note some significantly 

negative correlated pairs. These appear to be the key criterion for achieving higher overall 

environmental performance in Chinese airlines. According to the significant correlation 

pair list reported in Appendix 1, distance is negatively correlated with CO2, CO, and NOx 

emissions in CCD, and with PM2.5 and CO2 in LTO. This suggests the existence of 

groups of airports where infrastructure can play a significant role in reducing pollutant 

emissions. It is also noteworthy that there is a negative correlation pair between CO2 and 

PM2.5 emissions in CCD. This suggests that airport infrastructure could have an impact 

on pollutant emissions during climbing, descent operations, and cruise control. 
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Fig 3. Bootstrapped results for the singular values (S, on the left) and respective factor 

loadings (L, on the right). 

An intricate relationship network between positive and negative criteria is suggested by 

the results of the bootstrapped rotated criteria, as shown in Fig. 3. It can be easily observed 

that the most important rotated criteria predominantly determine the overall importance 

of the SVD, accounting for over 90% of the importance. Additionally, this set of criteria 

is almost equally composed of the original criteria. In contrast, the weights for the 

remaining rotated criteria vary significantly among the original criteria (refer to Fig. 3 on 

the right). Despite their declining importance, the remaining rotated criteria still 

contribute to the prediction of the overall utility function, which serves as a proxy for 

environmental performance concerning the distance between airports. This contribution 

is possible because these criteria reflect different trade-off balances among the original 

criteria, resulting in noticeable contrasts represented by the colors red and blue. 

The results obtained from the quadratic programming solutions for different weighting 

schemes of the rotated criteria, considering both the minimal covariance and joint entropy 

matrices, are presented in Figure 4 and Table 5. It is important to note that while rotated 

criterion 1 continues to hold the highest average importance, the relative significance of 

the other rotated criteria differs significantly from what is derived from the singular value 

decomposition (SVD). This finding suggests that the computation paths, whether through 

unbiased utility function calculation using the minimal covariance matrix or through 

learning approaches that facilitate continuous improvement where one criterion can be 

learned based on another due to maximal mutual entropy, deviate from the orthonormal 

base of the rotated criteria established by singular values. 

Table 5 presents the optimal average span values for the LOESS estimation of each 

rotated criterion. The average span values range from 0.74 to 0.85, with an overall 

compromise average span value of 0.80 being used. Furthermore, a polynomial degree of 

order 1 is applied when calculating the overall financial performance, approximated by 

the utility functions. These calculations are performed using the original decision matrix 

and the compromise weighting outlined in Table 5. 
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Fig. 4. Bootstrapped results for 𝑤𝑐 (left) and 𝑤𝑒 (right) weight vectors. 

 

Table 5. Compromise weights summary (Bootstrap averages) 

Rotated 

Criteria 

Importance 

Weights 

(Singular 

Values) 

Minimal 

Covar of 

Residuals 

(Minimal 

Bias) 

Minimal JE 

of Residuals 

(Maximum 

MI) 

Mean 

Compromise 

Weights 

Optimal 

Span 

Values 

Polynomial 

Fit of Order  

1 91.88 4.56 98.04 64.83 0.814 1 

2 4.66 9.4 0.31 4.79 0.742 1 

3 1.4 7.82 - 3.07 0.78 1 

4 0.76 8.5 - 3.09 0.827 1 

5 0.47 7.64 0.03 2.71 0.779 1 

6 0.33 6.93 - 2.42 0.805 1 

7 0.22 9.69 0.19 3.37 0.816 1 

8 0.13 8.27 - 2.8 0.802 1 

9 0.07 8.18 - 2.75 0.811 1 

10 0.05 8.78 0.17 3 0.819 1 

11 0.02 7.01 0.85 2.63 0.832 1 

12 - 5.86 0.41 2.09 0.846 1 

13 - 7.36 - 2.45 0.814 1 

 

Figure 5 illustrates the collective environmental performance of Chinese airline travel 

between airport pairs, represented by the weighted sum of partial utility functions, using 

different weighting schemes. The figure demonstrates that the environmental 

performance of Chinese airline travel remains relatively consistent across various 

weighting schemes when considering 10 or more rotated criteria in the computation of 

the utility function. However, the utility function, calculated using mean compromise 

weights from Table 5, was used as the dependent variable in a neural network regression. 

In this regression, the characteristics of both the origin and destination airport 

infrastructure (refer to Tables 2 and 3) were used as explanatory variables. 
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In terms of the neural network design, Figure 6 presents the results of 5-fold cross-

validation for various alternative structures, including the number of layers (ranging from 

1 to 4) and the number of neurons per layer (ranging from 100 to 400). The figure shows 

that the lowest Mean Absolute Error (MAE) values were obtained with a four-layer 

architecture consisting of over 300 neurons. To analyze the sensitivity of the neural 

network architecture, Olden et al. (2004) proposed analytical steps. Figure 7 displays the 

results of this analysis, showing the relative importance of infrastructure characteristics 

for both the origin and destination airports in terms of their impact on environmental 

performance. 

Readers should note that infrastructure characteristics were clustered by similarity, for 

the sake of readability and interpretation of results, into three smaller plots, namely: 

(overall) infrastructure, runway (infrastructure), and lighting (infrastructure). As regards 

the infrastructure features with the highest positive impact on environmental 

performance, it is noteworthy: the ground control in both origin and destination airports, 

as well as automatic information service in origin airports; the existence of surface 

concrete in the runways of both origin and destination airports; the centerline lighting 

system in destination airports. On the other hand, as regards the negative impacts on 

infrastructure performance, larger runway length and width in origin airports, longer 

distances to the control tower in origin airports, and asphalt runways in destination 

airports appear to be keys for improvement and design of public policies to better align 

Chinese airports with ESG initiatives. 

The research bridged a significant knowledge gap by highlighting the role of airport 

infrastructure in determining airlines' environmental performance. It showcased the 

importance of factors often overlooked, like runway materials and lighting systems, thus 

providing a nuanced understanding of their influence. By employing a novel combination 

of SVD, LOESS, and neural networks, the study introduced a new paradigm in the 

analysis of airlines' environmental performance. This approach yields more nuanced 

insights and offers a template for future studies in the field. The study’s findings bear 

significant policy implications, providing policymakers with concrete data and insights 

to inform future sustainable infrastructure development, ultimately contributing to global 

efforts to mitigate climate change. 
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Fig. 5. Overall environmental performance (as proxied by utility functions) for Chinese 

airline travels between airport pairs under different weighting assumptions. 
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Fig. 6. 5-fold cross-validation results 
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Fig. 7. Olden et al. (2004) sensitivity analysis on relative importance of business 

environment variables. 

 

5. Conclusions 

The environmental performance of Chinese airlines is becoming increasingly important 

due to growing concerns over climate change and air pollution. China is the world's 

largest emitter of greenhouse gases, and its aviation industry is one of the fastest growing 

in the world. Therefore, the environmental impact of Chinese airlines has significant 

global implications. There is a growing demand from both customers and regulators for 

airlines to adopt more environmentally friendly practices, such as investing in more fuel-

efficient aircraft and reducing their carbon emissions. Improving the environmental 

performance of Chinese airlines is not only important for meeting global climate targets, 

but it can also help to reduce air pollution in China's cities, where poor air quality is a 

major public health concern. Therefore, it is essential that Chinese airlines prioritize their 

environmental performance to reduce their carbon footprint, improve their operational 

efficiency, and demonstrate their commitment to sustainable development. Figure 8 

resumes the main findings of this work. 
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Figure 8 – Main findings of Chinese Environmental Performance of Airlines 

 

There is a strong link between airport infrastructure and the environmental performance 

of Chinese airlines. The infrastructure of airports, including runways, terminals, and 

support facilities, has a significant impact on the energy consumption and carbon 

emissions of airlines. More efficient airport infrastructure can help to reduce the time 

aircraft spend on the ground, lower fuel consumption, and decrease greenhouse gas 

emissions. Additionally, the use of more environmentally friendly technologies, such as 

electric ground support equipment and renewable energy sources, can further reduce the 

carbon footprint of airport operations. The Chinese government has recognized the 

importance of sustainable airport infrastructure and has made significant investments in 

the development of green airports, including the implementation of renewable energy 
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technologies and the use of eco-friendly building materials. As such, improving the 

environmental performance of Chinese airlines requires a comprehensive approach that 

involves not only airlines but also airports and the broader transportation system. 

Collaborative efforts between airlines and airports to adopt more sustainable practices can 

lead to significant reductions in carbon emissions and contribute to global efforts to 

address climate change. 

The current study significantly contributes to the literature in airport transportation and 

sustainability by proposing an innovative method to investigate the environmental 

performance of Chinese airports based on weighted additive utility functions given the 

distance travelled between airports. In addition, the impact of several infrastructure 

characteristics of origin and destination airports on environmental performance is 

examined through neural networks. Our findings suggest that ground control measures at 

both the origin and destination airports, along with automatic information services at the 

origin airports, and the presence of surface concrete on runways at both airports and a 

centerline lighting system in destination airports, have a noteworthy and favorable effect 

on environmental performance. Conversely, longer and wider runways at the origin 

airports, greater distances to control towers at the origin airports, and asphalt runways at 

the destination airports have a significant and detrimental impact. 

Managerial implications 

The research findings presented in this study offer valuable insights with direct 

managerial policy implications for the Chinese aviation industry.  To encourage more 

sustainable practices, policymakers could incentivize the adoption of environmentally 

friendly technologies and processes in airport construction and operations. This could 

include mandating the use of surface concrete on runways, investing in more efficient 

lighting systems, and providing support for the adoption of renewable energy 

technologies. Additionally, policymakers could focus on reducing the negative impact of 

infrastructure factors that have a significant impact on the environment, such as longer 

and wider runways and greater distances to control towers. By prioritizing sustainable 

airport infrastructure, policymakers can support the transition to a more environmentally 

friendly aviation industry in China and contribute to global efforts to mitigate the impact 

of climate change. 

Theoretical Policy Implications: 

From a theoretical standpoint, this research contributes to the development of 

environmental performance assessment methodologies within the aviation sector. The 

introduction of the environmental performance index based on weighted additive utility 

functions offers a theoretical framework for evaluating airlines' sustainability efforts. 

Researchers and policymakers can further refine this approach and adapt it to other 

regions and industries, contributing to the broader field of environmental performance 

measurement. The research also highlights the importance of airport infrastructure 

characteristics in influencing environmental performance. The theoretical implication is 

that infrastructure investments should be considered as a strategic aspect of sustainability 

policy. Policymakers can explore incentives or regulations that encourage airports to 

adopt eco-friendly infrastructure practices. Additionally, the study underscores the 

importance of runway design and materials in reducing emissions. This insight can inform 
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theoretical discussions on the environmental impact of infrastructure development, 

guiding policymakers in making informed decisions regarding runway construction and 

maintenance. In summary, this research not only offers practical guidance for airlines and 

airports to improve environmental performance but also contributes to the theoretical 

development of sustainability assessment methodologies and infrastructure-related policy 

discussions within the aviation industry and beyond. 

Although the current study proposed an innovative method to evaluate the environmental 

performance for Chinese airlines and used neural networks to predict the impact of several 

infrastructure characteristics of origin and destination airports on environmental 

performance, it still suffers a number of limitations as below: 1) the current study lacks 

the robustness check regarding the measurement of environmental performance; 2) lack 

of robustness check is also related to the investigation into the determinants of 

environmental performance. Besides the issue of lack of robustness, the data used in the 

current study covers the period between 2014 and 2019, considering that we are now 

nearly reaching the end of 2023, the data is a bit out of date. Finally, the current study 

focuses on the overall environmental performance evaluation, little insights can be 

provided in terms of the specific performance of different dimensions of environmental 

performance, which limits itself from its inability to provide more accurate and concrete 

policy implications. 

In order to deal with the above-mentioned limitations, we suggest that future research can 

focus on the following aspects: 1) the level of environmental performance can be double 

checked through using an alternative estimation technique. One of the methods that can 

be considered to use for this robustness check is the non-parametric data envelopment 

analysis (Wang et al., 2017); 2) the robustness of the results regarding the determinants 

of environmental performance can be further checked by using an altermative method. 

Some of the advanced methods that could be considered as an alterantive approach 

including the Geodetector model (Guo et al., 2022) and the integrated Multi-Layer 

Perceptron/Hidden Markov model (Tan et al., 2021); 3) future research can also consider 

to expand the data period to the most recent year, i.e. up to 2022, to see whether the results 

hold; 4) in order to provide more detailed information regarding the level of 

enviornmental performance and consequently make more concrete policy implications, 

future research could consider to decompose the overall environmental performance into 

different dimensions, including emission reduction, resource reduction and production 

innovation (Tan et al., 2017). 
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Appendix. Significant criteria correlation pairs (legends to Fig. 1 – right). 

 

Code      Significant Correlation Pair             Sign 

[1] "Distance CO2 CCD" (-) 

[2] "Distance CO CCD" (-) 

[4] "Distance NOx CCD" (-) 

[11] "Distance PM2.5 LTO" (-) 

[7] "Distance CO2 LTO" (-) 

[3] "Distance HC CCD" (+) 

[5] "Distance PM2.5 CCD" (+) 

[6] "Distance SO2 CCD" (+) 

[8] "Distance CO LTO" (+) 

[9] "Distance HC LTO" (+) 

[10] "Distance NOx LTO" (+) 

[12] "Distance SO2 LTO" (+) 

[16] "CO2 CCD PM2.5 CCD" (-) 

[13] "CO2 CCD CO CCD" (+) 

[14] "CO2 CCD HC CCD" (+) 

[15] "CO2 CCD NOx CCD" (+) 

[17] "CO2 CCD SO2 CCD" (+) 

[18] "CO2 CCD CO2 LTO" (+) 

[19] "CO2 CCD CO LTO" (+) 

[20] "CO2 CCD HC LTO" (+) 

[21] "CO2 CCD NOx LTO" (+) 

[23] "CO2 CCD SO2 LTO" (+) 

[24] "CO CCD HC CCD" (+) 

[25] "CO CCD NOx CCD" (+) 

[26] "CO CCD PM2.5 CCD" (+) 

[27] "CO CCD SO2 CCD" (+) 

[28] "CO CCD CO2 LTO" (+) 

[30] "CO CCD HC LTO" (+) 

[31] "CO CCD NOx LTO" (+) 

[32] "CO CCD PM2.5 LTO" (+) 

[33] "CO CCD SO2 LTO" (+) 

[34] "HC CCD NOx CCD" (+) 
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[35] "HC CCD PM2.5 CCD" (+) 

[36] "HC CCD SO2 CCD" (+) 

[38] "HC CCD CO LTO" (+) 

[39] "HC CCD HC LTO" (+) 

[40] "HC CCD NOx LTO" (+) 

[41] "HC CCD PM2.5 LTO" (+) 

[42] "HC CCD SO2 LTO" (+) 

[43] "NOx CCD PM2.5 CCD" (+) 

[44] "NOx CCD SO2 CCD" (+) 

[45] "NOx CCD CO2 LTO" (+) 

[47] "NOx CCD HC LTO" (+) 

[48] "NOx CCD NOx LTO" (+) 

[49] "NOx CCD PM2.5 LTO" (+) 

[50] "NOx CCD SO2 LTO" (+) 

[51] "PM2.5 CCD SO2 CCD" (+) 

[52] "PM2.5 CCD CO2 LTO" (+) 

[53] "PM2.5 CCD CO LTO" (+) 

[54] "PM2.5 CCD HC LTO" (+) 

[55] "PM2.5 CCD NOx LTO" (+) 

[57] "PM2.5 CCD SO2 LTO" (+) 

[58] "SO2 CCD CO2 LTO" (+) 

[59] "SO2 CCD CO LTO" (+) 

[60] "SO2 CCD HC LTO" (+) 

[61] "SO2 CCD NOx LTO" (+) 

[62] "SO2 CCD PM2.5 LTO" (+) 

[63] "SO2 CCD SO2 LTO" (+) 

[64] "CO2 LTO CO LTO" (+) 

[65] "CO2 LTO HC LTO" (+) 

[66] "CO2 LTO NOx LTO" (+) 

[68] "CO2 LTO SO2 LTO" (+) 

[69] "CO LTO HC LTO" (+) 

[70] "CO LTO NOx LTO" (+) 

[71] "CO LTO PM2.5 LTO" (+) 

[72] "CO LTO SO2 LTO" (+) 

[73] "HC LTO NOx LTO" (+) 

[74] "HC LTO PM2.5 LTO" (+) 

[75] "HC LTO SO2 LTO" (+) 

[76] "NOx LTO PM2.5 LTO" (+) 

[77] "NOx LTO SO2 LTO" (+) 

[78] "PM2.5 LTO SO2 LTO" (+) 

 

 

 


