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Abstract
Quality control has long been one of the most challenging fields of manufacturing. The develop-
ment of advanced sensors and the ease of collecting a high amount of data designate the machine
learning techniques as a timely natural step forward to leverage quality decision support and man-
ufacturing challenges. This paper introduces an original dataset provided by VALEO, coming from
a production line, and hosted by the ENS Data Challenge to predict defects using non anonymized
features, but without having access to the final test results to validate the part status (defective
or not). We propose in this paper a complete workflow from the data exploration to the modelling
phase while addressing at each stage challenges and techniques to solve them.
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1 Introduction

Figure 1: Production Line

The Fourth Industrial Revolution also referred to as Industry 4.0, is defined by the continuous
automation of conventional manufacturing practices through modern innovative technologies. For
instance, the application of Machine-to-Machine communication (M2M) and the integration of
the Internet of Things (IoT) in the manufacturing processes offer new opportunities and become
crucial to optimize the production procedure. This objective can be met by implementing efficient
self-monitoring techniques within the vision to produce autonomous machines that can diagnose,
adapt to and face issues with minimal human intervention. They generate a considerable amount of
information regarding a particular production sub-process. The collection of the overall produced
data generated from different sensors provides the manufacturer with numerous opportunities to
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improve the product quality sustainably through data-driven approaches [1].

Current advances in applied statistics [2] and computer science [3], and the availability of a
wide range of data analysis tools, offer a great potential the digital transformation of the manu-
facturing domain. The Machine Learning (ML) field, including Data Mining (DM) [4], Big Data
(BD) [5], Knowledge Discovery (KD) from databases [6], is considered one of the most promising
breakthroughs when it comes to data analysis, pattern identification and model extraction tasks.
However, these ML approaches are very diverse depending on the objectives of the prediction task
and the nature of the available data, offering challenges along with the named opportunities.

Looking at the manufacturing sectors that are quite likely to be optimized nowadays, such as
monitoring and control, the increasing amount of available data represents a major step through
and a challenge that needs to be efficiently handled. Furthermore, the high dimensionality and the
heterogeneity of the data resources harden the task of finding complex and (non-linear) patterns
in the data that comes from different types and sources of deployed devices. With such challenges
in mind, numerous manufacturers start reaching out to the academic community and the data
science community by providing access to necessary data resources in order to opt for advanced
and more adequate learning techniques that would boost manufacturing performances. For in-
stance, in 2016 the German engineering and technology company Bosch has offered a large-scale
dataset of a production line and organized a challenge on the Kaggle platform aiming at predicting
the manufacturing failures through anonymized features [7][8]. In this context, the manufacturing
engineering company VALEO hosted the Data Challenge ENS [9] to predict the failed products in
a production line.

This paper produces a review of the VALEO Data Challenge data, modelling approaches and
results, and consequently offers an insight and vision of how engineering, ML and data science
communities join forces within the new Industry 4.0 era. The rest of the paper is organized as
follows: Section 2 details the production line context of information gathering. Section 3 explores
the VALEO dataset. Section 4 details the dataset pre-processing phase followed by the modeling
phase results and discussion in Section 5. Conclusions and future work are discussed in Section 6.

2 Dataset Description

2.1 Production Workflow
The production line subject of this study is an assembly line for electric starter motors (see figure 1).
A starter is made of several components to assemble all together, to screw and to insert pieces
based on a-priori designed processes. During the assembling stage, different values (torques, angles,
etc.) are measured on different mounting stations. At the end of the line, additional measures are
performed on two test benches in order to identify and isolate defects. As a result, samples are
tagged either ‘OK’ or ‘KO’. The unitary production time for a starter on one full automatic line is
12s. Before starting the assembly process, each starter is given a unique ID, PROC_TRACEINFO,
to ensure traceability. Table 3, details the the different steps of the starter assembly.

2.2 Dataset Content
The VALEO Data Chalenge dataset contains data retrieved from stations OP70, OP90, OP110,
OP120 and OP130 (see figure 1). The neglected working stations at this stage are those for sub-
parts preparation. The process variables have 14 independent variable and 1 target variable (binary
classed). The variables have 14 numerical (floats and integers) and 1 categorical value. Table 2
details all the dataset features.
The unique ID code, PROC_TRACEINFO, e.g I-B-XA1207672-190701-00494 is read as follows:

• XA1207672 is the reference.

• 190701 is the assembly date (July 1st, 2019).

• 00494 is the unique code given to the product, whatever it happens, the product will have
this id number frozen forever.
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Working Station Description
OP 05 Re-introduction if needed (reworked

parts)
OP10 Bracket loading
OP20 CED loading
OP 30 Armature placement
OP 40 Yoke placement
OP 60 M8 placement
OP 70 Screwing
OP 80 Ring placement
OP 90 Ring insertion
OP 100 Cap assembly
OP 110 Screw M8
OP 120 Lapping
OP 130 Performance test
OP 140 Printer
OP 150 Noise subjective hearing and final

downloading

Table 1: Production Line Workstations.

This latter number is increased by 1 each time we process a new product, every 12s. Thus, the
next product will have I-B-XA1207672-190701-00495 as a unique code.

The product status is the result value of OP130 (test bench). Value 1 is assigned to OK samples
(passed) and value 2 is assigned to KO samples (failed). This is the combined result of multiple
electrical, acoustic and vibro-acoustic tests.

3 Dataset Exploration
We propose the following workflow adapted to the VALEO Data Challenge that allows flexibility
of task re-definition.

Figure 2: VALEO Data Challenge Processing Workflow.

One of the main challenges of this dataset is its high imbalance since the amount of OK and KO
products are highly imbalanced because only a small proportion of the products are failures. Train
and Test datasets are therefore highly imbalanced. Thus, a subsequent challenge for the modeling
techniques is the need to be able to handle this highly imbalanced data characteristic with impact
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Variable Source Description
PROC_TRACEINFO MES Unique identification number given.

Product reference including production
date

OP070_V_1_angle_value OP070 Measured angle of the first screwer of
the station.

OP070_V_2_angle_value OP070 Measured angle of the second screwer of
the station.

OP070_V_1_torque_value OP070 Real value measured of the setting (we
set the torque, and it gives the angle).
Screwer 1 applied torque on the prod-
uct.

OP070_V_2_torque_value OP070 Real value measured of the setting (we
set the torque, and it gives the angle).
Screwer 2 applied torque on the prod-
uct.

OP090_StartLinePeakForce_value OP090 Measured force (KISTLER sensor).
Start force of one curve applied to insert
one ring in the product (point 1).

OP090_SnapRingMidPointForce_value OP090 Measured force (KISTLER sensor).
Mid force of one curve applied to insert
one ring in the product (Point 2).

OP090_SnapRingPeakForce_value OP090 Measured force (KISTLER sensor).
Peak force of one curve applied to in-
sert one ring in the product (Point 3).

OP090_SnapRingFinalStroke_value OP090 Measured force (KISTLER sensor). Fi-
nal force of one curve applied to insert
one ring in the product (Point 4).

OP100_Capuchon_insertion_mesure OP100 Measured displacement (HEIDEN-
HAIN LINEAR RULE). Displacement
measure of one cap inserted in the
product.

OP110_Vissage_M8_torque_value OP110 Real value measured of the setting (we
set the torque, and it gives the angle) .
Torque applied on the long screw M8.

OP110_Vissage_M8_angle_value OP110 Angle measured on the product of the
screw M8.

OP120_Rodage_I_mesure_value OP120 Measured intensity consequent of the
tension applied as setting.

OP120_Rodage_U_mesure_value OP120 Measure of the setting value. We set
the tension and we read the intensity
to facilitate the lapping.

OP130_Resultat_Global_v OP0130 Result of the testing benches. Good or
Bad according final End Of Line (EOL)
testing of power and acoustic character-
istics.

Table 2: Dataset description.

to the entire workflow. Additional goals of this stage are to analyse the different process variables
and: 1) characterise the data quality; 2) identify factors that lead to detecting the non-ok parts;
3) Understand the interaction (correlation) between the features, e.g. how to map defects with
different process variables.

The dataset contains complementary features that are coming from the same workstations.
This may introduce noise in the collected data. Exploring outliers is a crucial step to minimize
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Training Test
OK KO OK KO
34210 305 7935 66

a. b.

Table 3: Data imbalance: a. The global dataset contains 42145 good parts and 371 defects b,
which falls under less than one percent of the entire dataset. It is analysed as a supervised binary
classification task as it is a prediction challenge with 2 outputs/classes. The task is to predict the
defect on starter motor production line as either ok or non-ok parts.

Figure 3: Missing data: OP100_Capuchon_insertion_mesure has 22987 missing values (54%).
The ratio of defects corresponding to the missing values (in the middle) is equivalent to the one
corresponding to the existing OP100 values.

noisy data effect. As shown in figure 3, large portion of the feature extracted from OP100 work-
station has missing values (54%). A positive statement is that the missing and existing values for
this feature have the same distribution with respect to the targeted outputs. It can be interpreted
as low correlation between the considered feature and the output.

The analysis of the daily production does not show a significant increase of the defected parts
production except for periods when the production rate was high. The production seems to be
quite cyclic. This is a valuable information for targeting new informative features.
As it was expected, the frequency distribution analysis confirms the presence of outliers in features
coming from the same working stations such as OP070, OP090, OP110 and OP120. The feature
extraction phase become a challenging step for the success of our binary classification problem.

4 Feature Engineering

4.1 Tagging Features by Binomial Distribution
As shown in table 4, 5 of the above features have 2 frequency peaks:

• OP070_V_1_torque_value

• OP070_V_2_torque_value

• OP090_StartLinePeakForce_value
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Figure 4: Daily production: good and bad parts.

• OP090_SnapRingMidPointForce_val

• OP090_SnapRingFinalStroke_value

In order to emphasize this particularity, OP070 and OP090 have been tagged with binomial dis-
tribution to enrich the list of features.

4.2 Time-based Features
PROC_TRACEINFO feature contains valuable details about the production time and the pro-
duced reference count. The time information has been extracted to create new features such as
day, month, day of the week and weekend. Time is also a rich source to identify cyclical patterns
in data. Therefore, additional features have been created to encode cyclical day, week and month
using two features each using sin and cos transformations.

4.3 Feature Aggregation
Aggregating time related features and production references allows us to extract derivative in-
formation about daily, weekly and monthly production and also the corresponding batches. The
original dataset features have been also aggregated with time based features to complete the time
sequenced production to better guide the modeling technique when detecting gaps in data.

4.4 Binning
Binning is the procedure of splitting the interval with all observed values into smaller sub-intervals,
called bins or groups, and assigning the central value characterizing this interval. All observations
that lay on an articular sub-interval form an associated bin. Binning is also a form of discretiza-
tion as it tunes continuous variables into categorical values. Binning is a widely used technique for
decreasing overall complexity and reducing the impact of statistical noise.
There are several unsupervised and supervised binning techniques. Commonly used unsupervised
techniques are equal-width and equal-size or equal-frequency interval binning. Supervised binning
techniques can be divided into two main categories: merging and decision tree-based approaches.
Commonly used merging based binning techniques are Monotone Adjacent Pooling Algorithm
(MAPA), also known as Maximum Likelihood Monotone Coarse Classifier (MLMCC) [10] and
ChiMerge [11]. On the other hand, common decision tree-based techniques are CART [12], Min-
imum Description Length Principle (MDLP) [13] and more recently, condition inference trees
(CTREE) [14]. To take advantage of this technique, the binning process must follow some specific
guidelines regarding (1) the missing values, (2) the minimum number of observations per bin and
(3) the accounts of good or bad.

For our study, we made the choice to combine several binning techniques to cover all the partic-
ularities of our dataset. As illustrated in table 4, our dataset is composed of variables with various
distributions making the choice of the binning technique more efficient for some of them and less
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OP070_V_1_angle_value OP070_V_2_angle_value

OP070_V_1_torque_value OP070_V_2_torque_value

OP090_StartLinePeakForce_value OP090_SnapRingMidPointForce_value

OP090_SnapRingPeakForce_value OP090_SnapRingFinalStroke_value

OP100_Capuchon_insertion_mesure OP110_Vissage_M8_torque_value

OP110_Vissage_M8_angle_value OP120_Rodage_I_mesure_value

OP120_Rodage_U_mesure_value

Table 4: Dataset exploration: frequency and distribution analysis.
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for others. Because of the large gaps for the range of some numerical feature, using fixed-width
binning may not be effective since there are empty or low-density bins. This problem can be solved
by positioning the bins based on. This can be done using the quantiles of the distribution. Quan-
tiles are values that divide the data into equal portions. 13 additional quantiles binning based
features have been created.

Monotone optimal binning [15] comes naturally as one of the the most efficient techniques.
Indeed, it satisfies monotonicity constraints, particularly, due to the use of Weight-of-Evidence
(WoE) for separating good accounts from bad accounts and the Information Value (IV) which
expresses the amount of information of the predictor in separating Goods from Bads in the target
variable.

4.5 Features Interaction
Datasets generally contain features that appear to be irrelevant with the class individually, but
when combined with other features, they may highly correlate to the class. Individually, the
features do not carry any details about the class, however, the combination of the two features
completely control the class. Most commonly feature interaction techniques are boosting based
such as Gradient Tree Boosting (GTB) [16], LambdaMART [17] and XGBoost which is the most
used in challenges [18]. The XGBoost system relies on the use of ensembles of decision trees to
tackle this issue. This choice is motivated by the natural behaviour of this particular data structure
that includes both interacting variables when they are in the same tree. However, the variables,
whose effects do not interact, are located in different trees.

4.6 Feature Selection
As detailed in previous sections, using binning techniques, features interaction analysis and time-
based extraction the total number of generated features is 287. Instead of using all the created
features, one may select the most relevant ones for our application. Reducing the number of fea-
tures allow to both reduce the computational cost of modelling and, in some cases, to improve the
performance of the model.

Feature selection methods are divided into three categories: supervised, semi-supervised and
unsupervised based on the availability of the target labels [19]. Statistical-based feature selection
methods involve evaluating the relationship between each input variable and the target variable
using statistics and selecting those input variables that have the strongest relationship with the
target variable. These methods can be fast and effective, although the choice of statistical measures
depends on the data type of both the input and output variables.

For our problem of binary classification, we adopt the IV and WoE as the appropriate statistical
measures to perform feature selection. Highly correlated features have also been filtered (with a
threshold of 0.95). The final number of features considered is 145.

5 Modeling Results and Discussion

5.1 Performance Metric
The Area Under the Receiver Operating Characteristic Curve (AUROC) [20] is for the robustness
of the algorithm. The classification results are provided as the probability of whether or not the
data belongs to one class. The ROC curve is created by plotting the true positive (TP) rate against
the false positive (FP) rate at various threshold settings. The AUROC usually ranges from 0.5 to
1 (perfect classification.).

5.2 Models Comparison
Since the missing values are caused by different manufacturing processes and are not missing at
random, they are replaced by 0 or a dummy value “-1”. Experiments showed that both choices
provide equivalent results. For this paper, we made the choice to use zero fillings of missing values.
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Used technique Test AUROC
Logistic Regression 0.63
Gaussian Naive Bayes 0.63
Decision Tree Classifier 0.56
Linear Discriminant Analysis 0.57
Random Forest Classifier 0.64
DNN based approach 0.74

Table 5: Evaluation of the selected models.

The combination of multiple binning techniques and mainly the use of optimal binning (with WoE
and IV) have mitigated the impact of OP100 missing values.

As illustrated in table 5, we compared several widely used supervised techniques. The AUROC
scores obtained with most of the techniques indicates the complexity of such a failure detection
problem. The use of ensemble methods like Random forest improves slightly the result compared
to the Decision Tree model which can be explained by its ability to overcome overfitting problem
when voting several Decision Trees.

Deep Neural Network (DNN) based approach provided the best score. This can be explained
by the diversity within the enriched data easily guiding the Neural Network to extract hidden
structures completing the already pre-computed knowledge within the Feature Engineering stage.

6 Conclusions and Future Work
The emergence of new technologies in the industry offers new possibilities to handle classical chal-
lenges such as quality control and failure prediction while combining the power of machine learning
techniques and the rich content of the collected data in manufacturing. In this article, we detailed
our approach for failure detection on the assembly line using the VALEO data challenge. The data
exploration phase allows us to better understand the content and the challenges of the dataset. It
was a crucial step to better target the feature engineering phase objectives. Despite the low scores,
except for the DNN based approach, the modelling phase showed the importance of exploring new
techniques that may isolate the easiest sample from hard samples in order to improve the predic-
tion scores and also the model confidence.

In future work, the DNN based approach will be used for missing data handling as well as
modeling. Focal loss will be considered for confidence increasing.
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