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Abstract. Quite recently, considerable attention has been paid to solar flare pre-
diction because extreme solar eruptions could affect our daily life activities and on
different technologies. Therefore, this paper presents a novel method of the devel-
opment of improved second-generation of the Automated Solar Activity Prediction
system (ASAP). The suggested algorithm improves the ASAP system by expand-
ing a period of training vector and generating new machine learning rules to be
more successful. Two neural networks are responsible for determining whether
the sunspots group will release flare as well as determining if the flare is an
M-class or X-class. Several measurement criteria are applied to determine the
extent of system performance also all results are provided in this paper. Further-
more, the quadratic score (QR) is used as a metric criterion to compare between
the prediction of the proposed algorithm with the Space Weather Prediction Center
(SWPC) between 2012 and 2013. The results exhibit that the proposed algorithm
outperforms the old ASAP system. Keywords: Solar flares, Machine Learning,
Neural network, Space, Prediction, weather.
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1 Introduction

Nowadays, space weather prediction in real-time is an important issue for many countries
because of extreme solar eruptions could influence our daily life activities and affect
various technologies. Wherefore, the U.S. National Space Weather Program (NSWP)
defined space weather as “conditions on the Sun and in the solar wind, magnetosphere,
ionosphere, and thermosphere that can influence the performance and reliability of space-
borne and ground-based technological systems and can endanger human life or health”
[1]. Wherefore, the significance of studying space weather is increasing.

Solar flares and Coronal Mass Ejections (CMEs) are solar events that have a signif-
icant impact on daily life and on different technologies at Earth [2]. As a result, these
solar activities can spew vast quantities of radiation and charged particles into space
this causes extreme ultraviolet and X-ray flux from flares reacted with the ionosphere
making widespread blackout situations for High-Frequency radio communications [3].
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In spite of the fact that the event of these activities cannot be stopped. However, predict-
ing when these solar activities are possible to occur could reduce possible damage to
industries, for example, space agencies, power generation and distribution industry, oil,
satellite operators and gas industry, and thus lead to a lowering in their economic effect.
Solar flare study has confirmed that Solar flares and Coronal Mass Ejections (CMEs)
are generally associated to active regions and sunspots [3-5].

There are predictive science researchers and different research organizations scat-
tered all over the world are involving in solar prediction and analysis. These predictions
usually rely mainly on experts with high knowledge in space weather, which may lead
to a discrepancy in space weather forecasting. To solve these problems, objective com-
puterized analysis of images surface of the sun can supply automated processing and
consistent execution by applying the enormous computational abilities of computers
with high-speed processing to analyse and compare huge amounts of new and historical
data. Thus, there is still a need for design high-performance forecasting system.

There are many challenges facing the scientists of space weather forecasting. We
can face those challenges by building an effective computer system has the ability to
the automated determination, classification, and representation of solar features and the
creation of a perfect correlation between these features and the appearance of solar
activities. In order to propose an effective system for space weather forecasting, we
need to apply real-time, high-quality space weather data and processing techniques to
forecast solar activities (Wang et al. 2003). The launch new satellites for space weather,
for example, the Solar Dynamics Observatory (SDO) has helped to provide accurate data
this helped a solar events observation. Therefore, that requires prediction methods which
conformity, and to benefit from, additional information in the data. Many predictions
systems for instance, those depend on sunspot detection models, classification, machine
learning algorithms, time-series analysis, and many more that have been suggested [6].

Previous studies indicate that there have been automated systems that can provide
real-time forecasting of significant solar flares that may influence our Earth. The perfor-
mance of the former automated systems that designed still will hope a better prediction
than subjective analysis. For example, The University of Alabama in Huntsville devel-
oped new a technique called (MAG4) system of forecasting an active region’s rate of
production of greater flares in magnetic energy [7]. This system prediction depended on
applying magnetogram data for the Sun. The principal work of this system is using the
Mclntosh active-region (AR) classes to prediction Solar Proton Events (SPE), CMEs,
and M and X class flares.

Hong et al. [8] designed a system called Automatic Solar Synoptic Analyzer (ASSA)
the main function of this system is identifying coronal holes, sunspot groups, and filament
channels that are three properties responsible the space weather. This system is built
depends on an artificial neural network technique with the ASSA coronal hole data
archive of the period from 1997 to 2013. In addition, this system-applied image of SOHO
EIT 195 and SDO AIA 193 used for morphological recognition and thereafter SOHO
MDI Magnetograms and SDO HMI Magnetograms applied for quantitative verification.
This system has the ability to predict three classes of solar flares are C, M, and X-flare.

We updated the Automated Solar Activity Prediction system (ASAP). It is an auto-
mated space weather forecasting system that contents from advanced image processing
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and machine learning techniques with solar physics. The update process included the
following steps: Increase the data used in the neural network training by increasing the
time period. We have used the data from Dec 1918 to June 2017. In addition, a new
training strategy was be used this paper. We will mention all the update details in the
next part of this paper.

The remainder of the paper is organized as follows: Sect. 2 outlines the images
processing method that is responsible for the automated detection and classification of
sunspots. The machine learning models that are trained on solar flares and historical
sunspot data are presented in Sect. 3; Sect. 4 discusses applying, integration, perfor-
mance, and evaluation for Machine Learning system. The concluding and suggestions
for future work are presented in Sect. 5 concludes the paper.

2 Detection and Classification for Sunspot

In 2008 Colak and Qahwaji [9] proposed a computer system that can automatically
detect, group, and classify sunspots depend on the Mclntosh classification. SDO/HMI
Continuum and Magnetogram images use in this system as input to reveal sunspot
regions and extract their features including their Mclntosh classifications. In this study,
this system working by integrated with a machine learning-based method to supply real-
time forecasting for the probable occurrence of significant flares like type-X or type- M,
as described in the next part in this report.

2.1 SDO HMI Images

The Solar Dynamics Observatory (SDO) supplies 13 various wavelengths of the sun.
Two instruments have been used are the Helioseismic and Magnetic Imager (HMI)
and the Atmospheric Imaging Assembly (AIA) instrument. In this study, we used two
types of images are HMI Continuum and HMI Magnetogram. HMI Continuum provided
images of the solar surface, incorporating a broad range of visible light for Solar Region
Photosphere. On the other hand, HMI Magnetograms show maps of the magnetic field on
the sun’s surface, with black and white. the black showing magnetic field lines pointing
away from Earth, On the contrary, the white showing magnetic field lines coming toward
Earth for Solar Region Photosphere [10].

2.2 Sunspot Detection and Classification Algorithms in Colak and Qahwaji
System

In this part of the report, we provide a brief about the worked algorithms of the sys-
tem Colak and Qahwaji. These algorithms include different functions such as sunspot
detection, grouping, and classification. The following steps for these algorithms:

1) Pre-processing of HMI images
e Continuum and magnetogram images used together to determine the solar disk,

radius and centre, make a mask and remove any information for example date
and direction from the image, calculate the Julian date and solar coordinates.
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e Magnetogram images only use in this algorithm. Map the magnetogram image
from Heliocentric-Cartesian coordinates to Carrington Heliographic coordinates.
Centre, radius and solar coordinates of the continuum image use a replacement
of centre, radius and solar coordinates of the magnetogram image of re-map to
Heliocentric-Cartesian coordinate.

2) Sunspot grouping

e MDI continuum images using to detect sunspot candidates by applying limited
intensity thresholding.

¢ MDI magnetogram images used to detect active region candidates by applying
morphological image processing algorithms such as intensity filtering, dilation,
and erosion.

e Use region growing approach to combine active region with sunspot candidates.
More details about this technique are described in [9].

e Apply neural networks to combine regions of opposite polarities so as to
determine the boundaries of sunspot groups.

e Sign the discovered sunspot groups.

3) MclIntosh-based Classification

e Applying neural networks and image processing in order to detect local features
from each sunspot in each group.

e Apply image processing in order to detect features from every sunspot group
these features are largest spot, distribution, length, and polarity.

e Used a decision tree approach to determine MclIntosh classification by used the
extracted features as input for a decision tree.

3 Apply Machine Learning for Solar Flare Prediction

Many experts in space weather contend has shown that flares exceedingly related to
active regions and sunspots [3-5]. A study of the solar physics literature characterizing
the association between sunspots and flares was introduced in [11]. In this system, all
information used as input to machine learning provided from historical data such as solar
catalogues and converted it in computerized learning rules that allow computers system
to analyse current solar data and supply solar flare forecasts.

3.1 Knowledge Representation of Solar Catalogues

The National Geophysical Data Centre (NGDC) provides sunspots groups catalogue
and solar flares catalogue. These catalogues are publicly available on the NGDC) web-
site. The NGDC sunspot catalogue contains the following data the date, time, location,
physical properties, and classification of sunspot groups, and the National Oceanic and
Atmospheric Administration (NOAA) number, on the flip side, the NGDC flare cata-
logue contains the following data dates, starting and ending times for flare eruptions,
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location, x-ray classification, and the National Oceanic and Atmospheric Administra-
tion (NOAA) number. The association is done through Atmospheric Administration
(NOAA) number for the flare that is associated with the active region detected. In this
section, a C++ platform created to automatically associate between sunspots and flares.
NGDC has sunspot data from various observatories and sometimes contains different
observations of the same sunspot group for various times of the same day. Flares and
sunspot catalogues examined to associate sunspot groups with the solar flares, which
are consider the main cause of these flares. All the recorded flares and sunspots for the
periods from 1st December 1981 until 30th June 2017, which includes 71475 solar flares
(43147 C-class, 5435 M-class and 417 X-class) and 271883 sunspot groups, are tested
using the association algorithm described in [11].
The association algorithm is based on the following conditions:

e A sunspot and solar flare are associated if it has the same NOAA number. Whereas,
sunspots and flares does not have NOAA numbers are filtered out from the lists.

e A solar flare catalogue should be listed after a sunspot within a predefined time
window. Four-time windows were used: 6, 12, 24, and 48 h.

e If more than one sunspot associated with the same solar flare, only the nearest sunspot
in time to the flare is considered as related, and the all remnant of sunspots are deleted.

Table 1. Illustrate the final association results for a sunspot and solar flare by the association
algorithm.

Time window | C M X Associated (A) | Not Associated | A + NA | Ignored
(NA)

6 17210 | 2877 | 252 |20339 53540 234,944 | 36,939
12 21615 | 3686 | 316 | 25617 24162 49779 | 185165
24 20011 | 3558 | 313 |23882 8290 32172 | 224554
48 20234 | 3583 | 318 |24135 3878 28013 |228713

Table 1 represents the final association results between flare and sunspot for the
periods from 1st December 1981 until 30th June 2017.

3.2 The Flare Prediction System

We applied the area of sunspot groups together with the McIntosh classes as the input for
solar flare forecast algorithm in order to produce forecasts for the M-class and X-class
flares. Our solar flare forecast algorithm is composed of two Neural Network (NN) illus-
trated in Fig. 1. Mclntosh classifications and sunspot numbers for everyday applied as
input to the neural network algorithms. Furthermore, we used tools like the Jack-knife
method [12] to evaluate the training and generalization efficacies of the neural network
algorithms. The first NN accepts four inputs. These inputs are the three McIntosh classes



The Automated Solar Activity Prediction System (ASAP) Update 707

and the sunspot area. On the other hand, this neural network provides one output in the
range of 0.1 to 0.9 in the next 6, 12, 24 and 48 h and a threshold of 0.5 is used to catego-
rize the generated outputs as 0.9 if >0.5 or 0.1 if <0.5, which represents flare or no-flare
respectively. It produces the probability that this sunspot group will produce a solar flare
inthe next 6, 12,24 and 48 h. Therefore, this first NN is trained using sunspot regions from
the NGDC sunspot catalogue and solar flare from the NGDC flare catalogue associations
as described in the previous section. The training vector includes four inputs numerical
values and their corresponding single output value (Flare = 0.9 or No Flare = 0.1) as
shown in Table 2. For instance, if there is a sunspot region with a McIntosh classification
of EFI and an area of 875 in millionths of solar hemisphere that is related with solar flare
then the training vector will be [0.7, 0.9, 0.5, 0.35; 0.9].

Table 2. Illustrate numerical values for the first neural network representing the McIntosh classes
and sunspot area as the inputs and their corresponding target.

Inputs Output
Mclntosh classes Normalized (with 2500) sunspot area | Flare= 0.9
No flare = 0.1

A=010 X=0 X=0

H=0.15 |[R=0.10 |O=0.10
B=020 |S=030 |[I=0.50
C=035 |A=050 |[C=0.90
D=0.60 'H=0.70
E=0.75 |K=0.90
F=10.90

The second NN is worked to determine the forecasted flare is going to be M-class
and/or X-class flare. The second NN trained using a training set that includes only the
three McIntosh classes for sunspot groups that related to M-class and X-class flares.
Therefore, the second NN includes three inputs and two outputs. The first and second
outputs represent the M-class and X-class flares, respectively. This neural network works
as follows:

o If the sunspot group is related only with an M-class flare, then the first output will be
more than or equal to 0.5 otherwise it will be less than 0.5.

e If the sunspot group is related only with an X-class flare, then the second output will
less than or equal to 0.5 otherwise it will be less than 0.5.

e If the sunspot group is related to M-class and X-class of a solar flare, all the corre-
sponding outputs will be greater than or equal to 0.5 otherwise it will be less than
0.5.

For instance, if there is a Mclntosh classification of FKI that is related only with
M-class and X-class solar flares during the same time then the training vector for
this example will be [0.9, 0.9, 0.5; 0.77, 0.56].
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Fig. 1. Solar flare prediction algorithm with training and testing data.

3.3 Optimization of the Neutral Networks

The two neural networks are optimized by comparing the forecast outputs from the
two neural networks against the actual outputs. From the comparison, the following
measures are calculated first: True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN). For this report, the significance of these measures is
described in this section below:

e TP represents the number of cases when a sunspot group is related with an actual flare
and a flare forecast is produced then this prediction is true.

e FP represents the number of cases when a sunspot group is related with an actual flare,
but no flare forecast is produced then this prediction is wrong.

e TN represents the number of cases when a sunspot group is not related with any actual
flare and no flare forecast is produced then this prediction is true.

o FN represents the number of cases when a sunspot group is not related with any actual
flare, but no flare forecast is produced then this prediction is wrong.

We are using the measures above to calculating the prediction performance of the
learning algorithm. These forecasting measures are:

e True Positive Rate (TPR), represents the possibility sunspot group finds that are suc-
cessfully forecasted as flaring. Higher TPR represents a better prediction performance.
This value is calculated by applying Eq. (1).

TP
TPR= —— (1)
TP + FN

e False Positive Rate (FPR), represents the possibility sunspot group finds that are
unsuccessfully forecasted as flaring. Minimum FPR represents better prediction
performance. This value is calculated by applying Eq. (2).
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FP

FPR= ————
FP +TN

2

True Negative Rate (TNR), represents the possibility of non-flaring sunspots group
finds that are unsuccessfully forecasted as non-flaring. Maximum TNR represents a
better prediction performance. This value is calculated by applying Eq. (3).

TN

TNP = —
FP + TN

3)

False Negative Rate (FNR), represents the possibility of flaring sunspot group finds
that are unsuccessfully forecasted as non-flaring. Minimum FNR represents better
prediction performance. This value is calculated by applying Eq. (4).

FN

FNP = ——
TP + FN

“4)

False Alarm Rate (FAR), represents the possibility of false flare forecasts. Minimum
FAR represents better prediction performance. This value is calculated using Eq. (5).

FP
FAR= ———— ®)
FP + TP

Mean Squared Error (MSE), this value represents the average of the squares of the
difference between the predicted flare cases and the actual flare cases for all sunspot
group detections. A minimum MSE value represents better prediction performance.
This value is calculated by applying Eq. (6).

IR R S PR
MSE_;E(p, ) (6)

Where, p; is the value of all output for the inputs given in the training vector, and r; is
the actual output given in the training vector, n is the whole number of symbols in the
training vector.

e Accuracy (ACC), this value represents how close the overall forecast produces are
to the actual values. Maximum ACC rates represent a better prediction performance.
This value is calculated by applying Eq. (7).
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TR +TN

ACC =
(TP + FN) + (FP +TN)

(7

e Heidke Skill Score (HSS), this value represents the chance factor of predicting. The
value of HSS is between —1 to 1. Negative values represent the prediction is based
on chance, 0 shows no-skill, and positive values represent perfect forecasting.

2 x (TP x TN) — (FP x FN))

hSS = ((TP + FN) x (FN + TN) + (TP + FP) x (FP + TN))

®)

More details on these measures can get from [13]. Several training experiments are
carried out while changing the number of nodes in the hidden layer as follows.

3.4 Optimization Strategies

For each association time window (6, 12, 24, and 48), the training and testing methods
for the first neural network was as follows:

e 10-time training experiments are carried out while changing the number of nodes in
the hidden layer from 1 to 15.

e The average and standard deviation to the forecasting measures were calculated for
different decision thresholds (0.5, 0.45, 0.4, and 0.35) and different time-window (6,
12, 24, and 48) for each experiment (Table 3).

Table 3. Shows the best number of nodes used in the hidden layer for the first neural network to
different decision thresholds (0.5, 0.45, 0.4, and 0.35) and different time-window (6, 12, 24, and
48).

Threshold | Time Nodes | Run TPR FPR FNR TNR FAR ACC SPC HSS MCC | TSS
window

0.35 6 6 Mean | 0.4340 | 0.0218 | 0.5660 | 0.9782 | 0.4597 | 0.9481 | 0.9782 | 0.4526 | 0.4565 | 0.4121

0.45 12 9 Mean | 0.6635 | 0.0506 | 0.3365 | 0.9494 | 0.3124 | 0.9090 | 0.9494 | 0.6207 | 0.6220 | 0.6128

0.35 24 3 Mean | 0.8669 | 0.1105 | 0.1331 | 0.8895 | 0.2350 | 0.8828 | 0.8895 | 0.7277 | 0.7311 | 0.7564

0.5 48 2 Mean | 0.8705 | 0.0823 | 0.1295 | 0.9177 | 0.1020 | 0.8962 | 0.9177 | 0.7901 | 0.7906 | 0.7882

Four sets of decision rules for the neural network were created by retraining
the full dataset of associations between sunspots and flares: flare_6.dat, flare_12.dat,
flare_24.dat, and flare_48.dat.

For each association time window (6, 12,24, and 48), the training and testing methods
for the second neural network was handled as follows:



The Automated Solar Activity Prediction System (ASAP) Update 711

e The number of hidden nodes for the second neural network was varied from 1 to 20.

e The only one measure that used to measure the second neural network performance
was the MSE.

e From the former table (Table 4), it was found the best neural network structure for
the second neural network are: 20 hidden nodes for 6 h forecast window, 18 hidden
nodes for 12 h forecast window, 19 hidden nodes for 24 h forecast window, and 20
hidden nodes for 48 h forecast window.

e Four sets of decision rules were created: intensity_6.dat, intensity_12.dat, inten-
sity_24.dat, and intensity_48.dat.

Table 4. Shows the best number of nodes applied in the hidden layer for the second neural network
to different time-window (6, 12, 24, and 48).

Number of Hidden Nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6 M 0.02340.02130.0213 0.0214 0.0214 0.0214 0.0314 0.0127 0.0079 0.0171 0.0068 0.0336 0.0117 0.0063 0.0039 0.0111 0.0037 0.0039 0.0064 0.003 1

X 0.02170.0206 0.0206 0.0206 0.0206 0.0206 0.0367 0.0180 0.0259 0.0204 0.0133 0.0332 0.0103 0.0128 0.0096 0.0181 0.0097 0.0067 0.0119 0.0068

12 M 0.02420.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242
X 0.01740.01450.0168 0.0168 0.0168 0.0168 0.01450.0196 0.0159 0.0107 0.0160 0.0171 0.0171 0.0126 0.0064 0.0105 0.0108 0.0038 0.0082 0.0065

24 M 0.02390.02180.02180.02190.0218 0.0159 0.0186 0.0158 0.0070 0.0048 0.0223 0.0073 0.0143 0.0128 0.0046 0.0049 0.0050 0.0043 0.0035 0.0051
X 0.01700.01590.01590.01590.0159 0.0167 0.0164 0.0173 0.0090 0.0065 0.0310 0.0077 0.0142 0.0154 0.0053 0.0072 0.0056 0.0066 0.0029 0.0090

48 M 0.02400.02160.0216 0.0216 0.0216 0.0121 0.0121 0.0149 0.0132 0.0275 0.0091 0.0219 0.0073 0.0059 0.0096 0.1734 0.0094 0.0054 0.0054 0.0052

X 0.01780.01670.0167 0.01670.0167 0.0153 0.0092 0.0162 0.0297 0.0269 0.0091 0.0219 0.0082 0.0107 0.0117 0.3186 0.0188 0.0101 0.0118 0.0109

4 Actual Implementation and Evaluation of Updates ASAP’s
System

The main principles work of ASAP’s system is integrating the imaging and machine
learning systems for the hybrid solar flare forecast. This system is shown in Fig. 2. The
inputs of this system are HIM images from SDO. The system starts its real-time working
by deals with SDO/HIM continuum and magnetogram images in the method illustrated
in Sect. 2 to issue automated MclIntosh classifications for the detected sunspots group.
After that, the Mclntosh classified sunspots and sunspot area are fed to the machine
learning system(first and second neural network) explained in Sect. 3 which is trained
with 37 years of data after applying the association algorithm. Based on the embedded
learning rules the system predicts if a solar flare is going to occur or not without time
windows were used (6, 12, 24, and 48 h). If a significant solar flare is forecasted then the
probability of this solar flare to be M-class or X-class flare is also predicted. The entire
system is implemented in C++.
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Fig. 2. The final updated ASAP system

4.1 Evaluation of the Updated ASAP System

The update ASAP’s system was tested on solar SDO HMI continuum images from
January 1, 2012, to December 31, 2013. Furthermore, the performance of the new
system was evaluated by comparing the produced forecasts with the actual flares as
registered by NOAA SWPCI in the NGDC X-ray solar flare catalogue and with old
ASAP. There were 67787 HIM continuum images available during this period at a
cadence of 96 images per day. These HIM continuum images and their correspond-
ing 67787 MDI magnetogram images were processed using the updated ASAP System
and four sunspot catalogues was generated which we refer to as ASAPDATABASE_06,
ASAPDATABASE_12, ASAPDATABASE_24, and ASAPDATABASE_48. Parts of the
ASAPDATABASE_06.

With a view to linking the sunspot groups detected by our system together with
x-ray solar flares registered in the NGDC catalogue, we had to update the association
algorithm, suggested in (Qahwaji and Colak, 2007), the main details of this algorithm
as follows:

e A special version of the association algorithm updated to find the associations between
the sunspots reported by new ASAP system and the flares reported in the NGDC flares
catalogues. These associations were found based on the availability of flare locations
and the possibility of having a flare event within the used association time window
(6, 12, 24, or 48 h).

e Read all the sunspot groups and their solar flare forecast as written in ASAP-
DATABASE_06, ASAPDATABASE 12, ASAPDATABASE_24, and ASAP-
DATABASE_48 files.

e Read all the actual M and X-class flares as written in the NGDC solar flare catalogue.

e Carry out an search to link all actual solar flare with its corresponding sunspot group,
The location based association is found according to the condition that the distance
between a sunspot group detected by ASAP and a solar flare registered by NGDC
is less than one 10° radius of corrected the sunspot location as calculated by ASAP.
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Furthermore, the difference in time between the detected sunspot group and its asso-
ciated flare must be less than 6, 12, 24, and 48 h, depending on the forecast lead time
window objective.

e X-class flares that are registered without a location in the NGDC catalogue are linked
according to time. In this case, if this flare linking with sunspots groups that are found
from the same image and same time, only the sunspot group that provides the X-Flarity
is evaluated as linked with the reported solar flare.

e The association algorithm updated calculates the values TP, TN, FP, and FN for
every single registered in ASAPDATABASE_06, ASAPDATABASE_12, ASAP-
DATABASE_24, and ASAPDATABASE_4S files according to the following decision
thresholds (Table 5):

Table S. The various thresholds for testing the results of the proposed solar flare prediction system.

Time window Flarity M flarity X flarity
Pg*(0.9 — 0.1) + 0.1 PMm*(0.9 —0.1) 4 0.1 Px*(0.9 —0.1) + 0.1
6 0.208 0.431 0.229
12 0.348 0.2291 0.476
24 0.467 0.454 0.53
48 0.695 0.673 0.737

e Pr = A/(A + NA) Percentage of the associated cases to the total number of cases.
e Py = M and above flares /all cases associated with flares.
e Px = X flares /all cases associated with flares.

The output of the association algorithm for ASAP system performance is evaluated
by applying different measures as explained below.

4.2 Verification the New ASAP’s System

The new ASAP system produces forecasts in numerical format, between 0.0 and 1.0, as
shown in Table 3. We used different measures for evaluating the forecasts of the new
ASAP system. This different measure divided into two types, the first type requires fore-
cast probabilities. So, the system directly converting them to percentages. For instance,
if the flaring output of the ASAP system is 0.35, it is supposed that the sunspot group
has a 35% flaring probability. On the other hand, the second type of categorical forecasts
(Yes/No). The system used a threshold value of 0.5 (50%) for deciding the final forecasts.
The first neural network includes output values 0.1 (10%) non-flaring and 0.9 (90%) flar-
ing to sunspot groups. The value of the hybrid system output is determined according to
the value of the threshold used if the resulting value is greater than the threshold, there
is a possibility of a flare is predicted to occur. Nevertheless, if the value less than the
threshold, there is not a possibility of a flare. The second neural network includes two
output values. The first output for M-Flare probability and the second output for X-Flare
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probability. The M-Flare probability and X-Flare probability are determined according
to the value of the threshold used if the resulting value is greater than the threshold, there
is a possibility of an M-Flare probability is predicted to occur. However, if the value less
than the threshold, there is not a possibility of an M-Flare probability. The same method
determines the probability of occurrence X-Flare.

With a view to calculate the success of the produced forecasts the association results
are investigated using four criteria are TP, FP, TN, and FN. We referred to these cri-
teria in the previous section. The solar flares in the NGDC catalogues during the ver-
ification period (January 1, 2012, to December 31, 2013) are compared with 309535
sunspot groups that were detected from 67,787 MDI image pairs and recorded in ASAP-
DATABASE_06.txt, ASAPDATABASE_12.txt, ASAPDATABASE_24.txt, and ASAP-
DATABASE_48.txt for old and new ASAP system. The forecast outputs are compared
for different time windows: 6, 12, 24, 48 h. Different prediction verification measures are
applied to evaluate our new output system and old ASAP system for each time window
as shown in Tables 6 and 7. These measures are arranged in tables as follows (Tables 6
and 7): Probability of Detection (POD), False Alarm Rate (FAR), Percent Correct (PC),
Heidke Skill Score (HSS) and Quadratic Score (QR). More details about these measures
in a recent paper by [13].

Table 6. Results of the proposed solar flare prediction system.

Time | Type POD FAR PC QR HSS

6 | Falrity |0.854406 | 0.499251 | 0.919021 | 0.0810 | 0.63015
M-flarity | 0.738095 | 0.85514 |0.988418 | 0.0116 | 0.242014
X-flarity | 0.4 0.9 0.999247 | 0.0008 | 0.159978
12 |Falrity | 0.906371 | 0.27322 |0.868493  0.1315 | 0.805872
M-flarity | 0.864865 | 0.614458 | 0.980164 | 0.0198 | 0.533176
X-flarity | 0.5 0.857143 | 0.998734 | 0.0013 | 0.222207
24 | Falrity |0.935178|0.076503 | 0.79621 |0.2038 | 0.928934
M-flarity | 0.888889 | 0.552795 | 0.966566 | 0.0334 | 0.594895
X-flarity | 0.6 0.769231 | 0.997706 | 0.0023 | 0.333318
48 | Falrity |0.942724/0.0417 | 0.709635 | 0.2904 | 0.950158
M-flarity | 0.873239 | 0.639535 | 0.946229 | 0.0538 | 0.51012
X-flarity | 0.777778 | 0.5625 | 0.996265 | 0.0037 | 0.559984

POD: the main function of this vector measures the probability of actual solar flares
being forecasted true by the ASAP system. The best results for this vector in 48-h time
window because the value of this vector is expected that POD would rise with time since
there are many significant flares happens in 48-time windows. In new ASAP system
for 24 h’ time difference POD demonstrates slightly improve in the whole solar flares
93.5%, 88.8% of the M-class flares, and 6.0% of the X-class flares are forecast correctly.
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Table 7. Results of the old ASAP system.

Time Type POD FAR PC QR HSS

6 Falrity 0.839884 0.600139 0.937993 2.68E+12 0.535244
M-flarity 0.531915 0.857143 0.990831 2.68E+12 0.224392
X-flarity 0.571429 0.973333 0.997467 2.68E+12 0.050773

12 Falrity 0.898763 0.440868 0.906802 2.68E+12 0.683951
M-flarity 0.625 0.78125 0.985088 2.68E+12 0.323255
X-flarity 0 1 0.998877 2.68E+12 —4.99E—-05

24 Falrity 0.932456 0.280298 0.858383 2.68E+12 0.808277
M-flarity 0.822917 0.594872 0.975718 2.68E+12 0.542088
X-flarity 0 1 0.997971 2.68E+12 —5.00E—05

48 Falrity 0.952738 0.188498 0.794965 2.68E+12 0.873182

M-flarity 0.938967 0.514563 0.961771 2.68E+12 0.638486
X-flarity 0.916667 0.947494 0.991637 2.68E+12 9.87E—02

Otherwise in old ASAP, the whole solar flares 93.2%, 82.2% of the M-class flares and
0% of the X-class flares.

FAR represents measures the proportion of the ASAP system predicting a solar flare
that in effect does not happen. The data shows that FAR produced from new ASAP
system improved by a reduced rate of this vector for all time window. False alarm rate
has to be reduced in order to improve the reliability of the system.

PC can be defined as a term measure the true forecasts rate of the ASAP system that
is the ratio of successful flare and no flare forecasts generated by ASAP system. The
data shows that for 24 h’ time window difference, 85.8% of whole the forecasts (flare
or no flare), 96.6% of M-class forecasts and 99.7% of X-class forecast.

In spite of the fact that PC rates for three-time window are extremely high, that means
if the ASAP system supplies just one output, which is no- flare, these PC rates would
still be big.

HSS: We have defined this term in the previous part of this report. However, this is a
very useful measure when occurrences of the solar flare events to be forecasted very rare.
Therefore, HSS is a very significant measure for evaluating forecast of ASAP system.
HSS results show that new ASAP forecasts are much more than chance especially for
flaring and M-class and X-class flare forecasts. Furthermore, HSS term can be used to
optimize the ASAP system by selecting different thresholds value (0.5, 0.45, 0.4, 0.35,
and 0.3 were used for our experiences as described earlier).

QR: The quadratic score (QR) represents the mean square error (MSE) of the probabilities
provided by the ASAP system. QR is used to calculate the accuracy in probability
predictions. In the previous part of this report, we showed the importance of calculating
and how to calculate MSE. We compared the results of the new ASAP system with
NOAA Space Weather Prediction Centre (SWPC) for the same years from 2012 to 2013
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and the 24 h and 48 h prediction results as shown in Table 8. In addition, the average
QR (or mean square error) between 2012 and 2013 are also calculated. The results of
the comparison showed that ASAP provides better accuracy in predictions than SWPC
for M-class and X-class flare predictions.

Table 8. The comparison between the proposed solar flare prediction system with SWPC for QR
factor.

Date Class | 24 48
2012-2013 (ASAP) | M 0.0334 1 0.0538
X 0.0023 | 0.0037
2012 (SWPC) M 0.15 |0.15
X 0.022 ]0.017
2013 M 0.043 10.12
X 0.02 ]0.024
Average M 0.0965 | 0.135
X 0.021 |0.0205

5 Conclusions and Future Research

In this paper, we have updated a fully automated hybrid system called Automated Solar
Activity Prediction (ASAP) which integrates image processing techniques and machine
learning approaches with solar physics. The main aim of this system is predicting auto-
matically whether detected a sunspot group will produce a solar flare and whether this
flare will be a C-class, M-class or X-class flare.

The results obtained in this research (HSS, POD, PC, and QR measures) very good
compared to the old system, especially when forecasting that a significant solar flare
is going to erupt. Particularly, HSS is quite hopeful which displays that new system
forecasts are much better than chance. On the other hand, the FAR measure was not
good. This is a problem that has to be tackled we are planning to find solutions to this
problem in the future. Furthermore, a comparison of QR results of the new system, old
ASAP and SWPC showed that the new system provides a better forecast than the ASAP
system and SWPC.

Future work will focus on finding solutions to the geometric impact on MDI images
near to the limb which considers one of the reasons to changes the classification of
sunspot groups that would lead to the wrong prediction. The lack of graphical details
for the limb is the major problem blocking us from getting accurate classifications.
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