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Abstract 

 
 

The uninterrupted spread of malaria, besides its seasonal uncertainty, is 

due to the lack of suitable planning and intervention mechanisms and 

tools. Several studies have  been carried out to understand the factors  

that affect the development and transmission of malaria, but these efforts 

have been largely limited to piecemeal specific methods, hence they do 

not offer comprehensive solutions to predict disease outbreaks. This the- 

sis introduces a ’holistic’ approach to understand the relationship between 

climate parameters and the occurrence of malaria using both mathemati- 

cal and computational methods. In this respect, we develop new climate- 

based models using mathematical, agent-based and data-driven modelling 

techniques. A malaria model is developed using mathematical modelling 

to investigate the impact of temperature-dependent delays. Although this 

method is widely applicable, but it is limited to the study of homogeneous 

populations. An agent-based technique is employed to address this lim- 
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itation, where the spatial and temporal variability of agents involved in 

the transmission of malaria are taken into account. Moreover, whilst the 

mathematical and agent-based approaches allow for temperature and pre- 

cipitation in the modelling process, they do not capture other dynamics 

that might potentially affect malaria. Hence, to accommodate the climatic 

predictors of malaria, an intelligent predictive model is developed using 

machine-learning algorithms, which supports predictions of endemics in 

certain geographical areas by monitoring the risk factors, e.g., temperature 

and humidity. The thesis not only synthesises mathematical and computa- 

tional methods to better understand the disease dynamics and its transmis- 

sion, but also provides healthcare providers and policy makers with better 

planning and intervention tools. 
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Table 1: Glossary 
 

Acronyms Meaning 
 

ABMs Agent-Based Models 
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IPCC Inter-Governmental Panel of Climate Change 
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KNN K-Nearest Neighbours 

K-M K-Means 

LVs Latent Variables 

LiR Linear Regression 

LoR Logistic Regression 

LMM Liverpool Malaria Model 

LIBSVM Library for Support Vector Machines 

LHS Latin Hypercube Sampling 

MA Moving Average 

MVs Measurement Variables 

NB Naive Bayes 

NCEP National Centre for Environmental Prediction 

  ODE Ordinary Differential Equation  
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PRCC Partial-Rank Correlation Coefficient 

Q-Q Quantile-Quantile 

SEM Structural Equation Modelling 

SVM Support Vector Machine 

SEIR Susceptible Exposed Infected Recovery 

SIS Susceptible Infected Susceptible 

SEI Susceptible Exposed Infected 

SA Sensitivity Analysis 

SSB Sum of Square Between 

SST Sum of Square Total 

VIF Variance Inflated Factor 

WHO World Health Organisation 

  XML Extensible Markup Language  
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1 

Introduction 

 
This chapter presents the motivation of writing this thesis, statement of the problem, 

research question, aim and objectives and justification of the study. In addition, the 

summary of contributions established out of this thesis and the connection between 

them is illustrated using a well-labelled diagram. 

 

1.1 Introduction 

 
The unceasing spread of malaria, besides its seasonal uncertainty, has long threatened 

people. The most vulnerable regions are Sub-Saharan Africa and India, and together 

they account for almost 80% of the global burden [6]. Although malaria is preventable 

and treatable, the lack of suitable mechanisms and tools for intervention planning prior 

to its season or outbreak remain a challenge. However, efforts to develop malaria 

intervention mechanisms have been undermined by spatial and temporal fluctuations 

due to factors influencing its transmission. 

The factors influencing malaria are multifaceted, for example, human movement 

patterns [19], climate factors [113], human age-structures [157], environmental condi- 
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tions [87], and the re-emergence of anti-malaria parasites and mosquitoes [22] among 

other. However, the complex nature of these factors within the occurrences of malaria 

makes any understanding of its dynamics and spatio-temporal pattern of transmission 

difficult. The most compelling factor influencing malaria’s spread is climate, which 

includes temperature, precipitation and humidity among other. Moreover, several stud- 

ies ([81, 101, 112, 132]) also show that malaria’s prevalence, seasonal incidences and 

outbreaks are driven by these climate factors, and each of these influence its trans- 

mission in different circumstances. The temperature influences the mosquito biting 

rate [172], survival [51], parasite development [37] and immature mosquito matura- 

tion [33], while precipitation and humidity provide mosquitos with breeding sites for 

reproduction [81] and increased biting competence [148] respectively. Furthermore, 

among the climate factors, temperature is the large-scale driver of malaria’s transmis- 

sion that influences all stages of a mosquito’s life cycle and supports the development 

of plasmodium species (the parasite causing the malaria infection). 

Malaria represents a serious health issue; more than 3.4 billion people worldwide 

[6], are exposed to its risks and it predominantly spreads in tropical and sub-tropical re- 

gions. This is because the climatic conditions experienced in the territory sufficiently 

support the mosquito’s survival and enables the plasmodium species to develop and 

reproduce faster. The influence of climate factors, particularly temperature, on the  

distribution of malaria, will greatly increase risks in the future, due to the likely in- 

crease in the earth temperature as a result of global warming. A recent campaign on 

the consequences of global warming, and the likelihood of malaria’s prominence in 

previously unexposed areas has prompted the World Health Organization (WHO) and 

other healthcare providers to further strengthen efforts towards intervention, preven- 

tion and control. The Inter-governmental Panel of Climate Change (IPCC) says that 
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gradual rises in temperature over time can alter the natural habitats of the mosquito 

by changing its prevalence and prolonging the season of malaria’s spread [145]. A 

marginal 0.5◦C increase in temperature could cause an approximate 30–100% increase 

in the mosquito population [162].  Similarly, a small shift in temperature, from 2◦C to 

3◦C could increase the number of humans vulnerable to malaria by up to 5% [167]. 

This shows that an increase in temperature as a result of anticipated global warming is 

a risk factor for malaria’s proliferation; hence, this needs careful consideration as part 

of a control strategy. 

To address these challenges, numerous studies [18, 36, 120, 129, 131, 133] among 

others, were carried out to investigate the influence of climate factors on the dynamics 

of malaria’s transmission as well as its spatial and temporal considerations. However, 

these efforts were largely limited to specific ’piecemeal’ methods, and therefore do not 

offer comprehensive solutions to predict the outbreak of malaria. This thesis introduces 

an integrated approach to investigate the causal relationship that exists between climate 

factors and the occurrence of malaria by deploying mathematical and computational 

methods. Climate-based models to predict malaria’s transmission will be utilized to 

carry out this investigation. In doing so, a new climate-based model will be develop 

using mathematical, agent-based and data-driven modelling techniques. 

 

1.2 Statement of the Problem 

 
The effects of malaria are far more profound in Third World countries due to very 

limited medical resources. When an intense outbreak occurs, most of these countries 

cannot cope with the high number of patients due to a lack of medicine, equipment 

and hospital facilities. Moreover, due to poverty, and economic insatiability, the pre- 
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vention or reduction of risk factors of this disease is very challenging, especially in 

these countries. Technology can offer alternative solutions by providing early detec- 

tion mechanisms that help to control the spread of the disease and allow for the advance 

management of treatment facilities to ensure a more timely health service, which can 

save thousands of lives. The availability of an early detection system will not only 

prevent or decrease a large scale spread of malaria by creating quarantine zones, but 

will also help healthcare providers to deliver the necessary medical care on time by 

managing resources and calling for international aid and support, if needed. 

 
1.2.1 Research Question 

 
This thesis focuses on investigating the relationship between climate factors and dy- 

namics in malaria transmission in order to develop a comprehensive model to predict 

the outbreak of malaria. Therefore, to address the problem, the following research 

question is formulated: How can a climate-based model be utilised for effective plan- 

ning and the management of intervention. To effectively answer this research question, 

the question is further streamlined to form three sub-questions as follows: 

i. How can the impact of temperature on mosquito influences human malaria? 

ii. How can the climate factors influences spatial and temporal distribution of malaria? 

iii How can the climate factors be used for aiding developing tool and strategising 

malaria intervention? 

 
These research question could be achieved using the aim and objectives outlined in 

subsection 1.2.2. 
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1.2.2 Aim and Objectives 

 
In order to bring a successful conclusion to the outlined questions under 1.2.1, the 

following specific objectives are considered: 

i. To develop a mathematical model and assess human infectiousness from the 

impact of temperature in malaria dynamics. 

ii. To develop and validate an agent-based model to investigate the dynamics of 

malaria on humans by incorporating population heterogeneity and spatio-temporal 

changes. 

iii. To develop an intelligent system using embedded machine learning algorithms 

that are capable of predicting the likelihood of a high incidence malaria season 

or outbreak 

These objectives are addressed in Chapter 3, 4 and 5 respectively. 

 
 

1.2.3 Significance of the Study 

 
The dynamic modelling of a climate-based malaria transmission model will enhance 

an understanding of the disease characteristics particularly at a micro and macro scale. 

This will harness a spatio-temporal understanding of the disease dynamics in different 

patches of a population so as to guide intervention. Furthermore, the model has an 

economic benefit in maximizing the intervention to the target population at the time of 

need. 
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1.3 Thesis Outline 

 
The key contributions of this thesis are exhaustively discussed in Chapter 3, 4 and 5. 

These contributions are categorized under three components, as shown in Figure 1.1, as 

Mathematical modelling, Agent-based modelling and Data-driven modelling. In sub- 

section 1.3.1, the logical connections between components, based on their limitations, 

are explained in detail. 

Figure 1.1: The components of this thesis contributions. 

 

 

1.3.1 Main Contribution 

 
This subsection presents the following summary of the key contributions of this thesis: 

 
a. Among the factors influencing malaria, temperature is key as it drives the para- 

site’s development, the mosquito’s survival and increases the vector competence. 

The effect of temperature on malaria has been extensively dealt with in the con- 

text of incubation in humans. However, this has been under-explored in the 
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context of an incubation period in mosquitos. This limitation results in a par- 

tial understanding of the relationship between temperature and malaria; hence, 

any prevention mechanism to determine an appropriate time for intervention can 

be highly ineffective. This is addressed by investigating a climate dependent 

malaria model with a delay in mosquito dynamics. 

b. Efforts have been taken to mitigate the transmission of malaria, but the com- 

plexity arising from population heterogeneity makes mathematical modelling a 

less effective strategy as mechanism for prevention. To effectively address the 

limitations of mathematical approach, an agent-based modelling was utilised. 

The model developed is not only capable of predicting the pattern of malaria 

dynamics in a population but also its peak season (see Chapter 4). Some part of 

this contribution has been previously presented in a conference on Fuzzy Sys- 

tems and Data Mining IV. The paper appears in the proceedings published in 

book series entitled ’Frontiers in Artificial Intelligence and Application’ (http: 

//ebooks.iospress.nl/volumearticle/50703. 

 
c. The lack of mechanism to predict malaria outbreaks or high seasons, particularly 

in developing countries is notable. The correlation between climate factors and 

the occurrence of malaria was utilised to develop a malaria predictive model; this 

was achieved by deploying machine learning algorithms. The model serves as 

an intelligent system for predicting the likelihood of a high incidence of malaria, 

and to thus inform healthcare providers to enable the better planning and man- 

agement of interventions (see Chapter 5). This contribution containing two con- 

ference papers: (i) Data Analytics of Climatic Factor Influence on the Impact 

of Malaria Incidence, presented during Symposium Series on Computational In- 

http://ebooks.iospress.nl/volumearticle/50703
http://ebooks.iospress.nl/volumearticle/50703
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telligence and published in IEEE explore. (ii) An Assessment on the Hidden 

Ecological Factors of the Incidence of Malaria, presented during conference on 

Digitalisation for Sustainable Society and published in Applied Science, MDPI. 

Full details of these contributions are discussed in Chapter 3, 4 and 5 respectively. 

 
 

1.3.2 Organization of the Thesis 

 
The remaining chapters of this thesis are organized as follows. Chapter 2 presents  

the complete cycle of malaria’s transmission and its mathematical representation is 

drawn from the classical model of malaria. Chapter 3 outlines the mathematical mod- 

elling of temperature influences on delay due to extrinsic incubation and maturation 

to the human infectiousness. A detailed theoretical evaluation, numerical simulation 

and sensitivity analysis of the model inputs were presented. In Chapter 4, the agent- 

based modelling technique of the mathematical model presented in equation 3.9 was 

analyzed. Chapter 5 presents a data-driven predictive model using embedded machine 

learning algorithms. Finally, Chapter 6 provides the conclusion of the entire thesis and 

identifies areas for further research. 

 
1.3.3 Summary 

 
This chapter has provided an overview of this thesis, whilst chapter 2 presents the theo- 

retical framework of malaria’s transmission. This consists of the malaria parasite cycle 

in humans and mosquitos, the mosquito’s development stages, and the mathematical 

formulation of malaria’s transmission and its properties. 
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2 

Background 

 
This chapter presents the complete cycle of malaria and mathematical formulations 

drawing from the classical model of malaria. Extensions of the classical model and its 

properties are also presented. 

 

2.1 Malaria 

 
Malaria is an infectious disease caused by the protozoan parasites of the genus plas- 

modium [49]. It is transmitted from human to human through effective bites by an 

adult female mosquito (see Figure 2.1). The female mosquitoes are responsible for the 

spread of malaria to humans [182]; in a biological context, they are called anopheles. 

These mosquitoes live in an environment where their conditions suitably support their 

survival and reproduction. 

 
Chapter 



10 

  2.1 Malaria 
 

 

 

 
 

 
 

Figure 2.1: Describes how malaria is transmitted from humans to humans, initiated 

by an infectious mosquito. 

 
2.1.1 Global distribution 

 
Globally, malaria occurs in tropical and sub-tropical regions, as shown in Figure 2.2. 

This owes to the favourable weather conditions of the regions support the mosquito’s 

survival and the parasites causing malaria to replicate faster. The tropical and sub- 

tropical regions are characterized by hot and humid summers with essential rainfall 

occurring in the hottest months [174]. 

Figure 2.2: The world map shows the magnitude of malaria’s occurrence within trop- 

ical and sub-tropical regions. 
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As shown in Figure 2.2, the transmission of malaria is high throughout sub-Saharan 

Africa. However, it shows that some areas in South-East Asia, the Eastern Mediter- 

ranean, Western Pacific, and the Americas are at risks of malaria. It was reported [6] 

that more than two-thirds of the world’s population are at risk of being infected. From 

this, over 200 million cases and a significant number of deaths close to half a million 

have been annually reported since 2010. 

To strengthen efforts to address the menace of malaria within endemic countries, 

the WHO and other healthcare providers have been appropriating substantial funds to 

fight malaria. 

 
2.1.2 Malaria Funding 

 
In 2017 alone, the governments of malaria endemic countries and international partners 

invested $3.1 billion towards its elimination worldwide. This amount was slightly 

higher than 2016, and has remained relatively stable since 2010 until 2017. Despite 

this spending, the progress made has been insignificant in achieving the 2016–2030 

target. The target aims to reduce the incidence and mortality rates from malaria at least 

by 40% worldwide before the end of 2020. As the date has drawn nearer and the target 

has become unrealistic, the WHO Global Technical Strategy (GTS) has further pushed 

the target to 2030. This has attracted an increase in funds to combat malaria to at least 

$6.6 billion per year with effect from 2020 [6]. 

Besides continued awareness campaigns against mosquito bites and protective mea- 

sures, research development and routine intervention are among the key areas that con- 

sumes enormous funds. 



12 

  2.2 Malaria transmission cycle 
 

 

 
 

2.1.3 Malaria Intervention 

 
Between 2015–2017, about 624 million Insecticide Treated-Nets (INTs) were dis- 

tributed worldwide. Of these, about 85% of ITNs were distributed through free mass 

distribution campaigns, 8% in antenatal care facilities, and 4% as part of immunization 

programmes. Also, its was estimated that 2.74 billion treatment courses of Artemisinin- 

based Combination Therapy (ACT) were procured by countries over the period 2010–2017 

[6]. 

The effective distribution of intervention materials requires time; it enables plan- 

ning and optimization by reaching out to the target population at a time of need. Thus, 

the lag effects between climate factors and the prevalence of malaria will be utilized. 

 
2.1.4 Factors responsible 

 
Several studies [18, 21, 30, 35, 36, 101, 132] have  shown the prevalence of malaria    

in places that are known to be associated with climate factors. These factors are 

rainfall, temperature and humidity; they support mosquitos by  providing  breeding 

sites for reproduction, an ecological niche for survival, and biting competence, re- 

spectively. In different circumstances, the human mobility pattern [105], insecticide- 

resistant mosquitoes [54], environmental conditions [87] and drug-resistant parasites [43] 

among others, also influence the prevalence of malaria. 

 

2.2 Malaria transmission cycle 

 
Succinct illustrations of malaria transmission are presented in section 2.1, whilst this 

subsection explains a complete cycle of malaria in detail. This enables an understand- 
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Physical Environment 

Biotic factors these 

are all livings, like 

plants, animals, 

bacteria, virus etc. 

Abiotic factors these 

are non-living things, 

like water, soil, air, 

temperature etc. 

Mosquito population Human population 

 

 

ing of the risk factors associated with malaria’s spread, and proffers precautionary 

measures. 

Three key elements are significant in malaria’s transmission: humans (striking 

hosts), mosquitoes (vectors) and the physical environment (habitat). Figure 2.3 il- 

lustrates how these elements influence each other in the transmission of malaria. 

Figure 2.3: The influence of the physical environment on malaria’s transmission 

 

Malaria’s transmission cycle is essentially divided into two sub-cycles which are 

called the parasite cycle and mosquito cycle, as shown in Figure 2.4. 

 
2.2.1 Parasite cycle 

 
Globally, over 100 species of malaria parasites exist, but only four are known to cause 

malaria [102], which are: Plasmodium falciparum, Plasmodium vivax, Plasmodium 

ovale and Plasmodium malariae. The Plasmodium falciparum is the most virulent and 

life-threatening among the species [41], hence, it is responsible for about 75% of the 

cases reported worldwide [71]. The malaria parasite development cycle takes place in 
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both human and mosquito hosts, hence Figure 2.4 illustrates the processes involved. 
 

 

Figure 2.4: The life-cycle of malaria parasites 

 

 
2.2.1.1 Human host perspective 

 
As mentioned in section 2.1, Anopheles is the potential vector for transmitting malaria 

into the human population. It bites a human and injects saliva containing the plasmod- 

ium sporozoites into the human bloodstream. When the sporozoites enters the human’s 

liver cells, it will grow to become a schizont, which later multiplies (schizogony) and 

produces 2,000–4,000 merozoites. Consequently, the merozoites will either infect other 

liver cells and repeat the process or proceed into the blood and enter the erythrocyte 
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(red blood cell) in the schizogonous cycle. The sporozoites in the liver last for about 

6–16 days, and an individual merozoite in a red blood cell will produce 6–24 mero- 

zoites. This process is repeated many times so that the number of infected erythrocytes 

in the bloodstream increases greatly. The duration of the cycle is the duration between 

successive bouts of fever, which corresponds with rupture to the red blood cells [182]. 

A part of merozoites will stop multiplying and asexually transform into male and fe- 

male gametocytes. 

 
2.2.1.2 Mosquito host perspective 

On the other hand, when a susceptible mosquito bites an infected human, it injects 

saliva and sips blood containing merozoites and gametocytes. The merozoites are di- 

gested in the mosquito’s gut but the gametocytes survive. Consequently, the female 

type gametocytes will transform into macrogametes (female gametes) and male coun- 

terparts to microgametes (male gametes). The macrogametes will be fertilised by the 

exflagellation of microgametes to give a zygote. The zygote develops into an ookinete 

over 12–48 hours and penetrates the wall of the midgut to become an oocyst. There- 

fore, the oocyst grows its content and divides into about 10,000 elongated sporozoites. 

However, this does not occur unless ambient temperatures range from 16–33◦C. The 

sporozoites burst out of the oocyst into the haemocoele of the mosquito and the major- 

ity migrate to the salivary glands [182]. 

 
 

2.2.2 Mosquito cycle 

 
Among the climate factors, rainfall provides a breeding site for mosquito reproduction, 

and thus completes the mosquito’s cycle. The Anopheles mosquito needs stagnant wa- 
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ter, a water body or a dump area to lay its eggs. A complete mosquito cycle comprises 

four stages: egg, larva, pupa and adult. The first three stages are called the aquatic or 

immature stages (see Figure 2.4). At these stages, the immature mosquito has to live 

inside water until they emerge as an adult. 

Only the Anopheles bites human beings and sucks blood for nourishment and the 

development of eggs. Each Anopheles can develop several hundred eggs at each blood 

meal and lay them in or around a water body. The eggs are either attached to each other 

to form a raft or individually float on water. Usually, eggs are hatched within 24–48 

hours after releasing larvae, which will later change to pupae before emerging as adult 

mosquito. This process may take one to several weeks, but depends on species and 

ambient temperatures. The newly emerged mosquito has to stand still around water to 

dry its wings before flying away. Thereafter, it will fly searching for humans or animals 

to feed on for several days. Adult mosquito can live up to four or eight weeks [182]. 

 
2.2.3 Symptoms of malaria 

 
When an infectious mosquito bites a healthy person, it takes about 7–30 days for the 

first malaria signs to manifests. The duration of this period is called intrinsic incuba- 

tion period (IIP). This period is usually shorter when infected by P. falciparum and 

longer for P. malariae. Sometimes, the manifestation of the first symptoms can be de- 

layed by prophylaxis (preventive measures), whether the malaria is uncomplicated or 

uncomplicated [93]. 
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2.2.3.1 Uncomplicated symptoms 

 
Mild or uncomplicated malaria usually lasts between 6–10 hours after the attack and 

with a cold stage (sensation of cold, shivering). This stage is followed by a hot stage 

(fever, headaches, vomiting; seizures in young children) and a sweating stage (sweats, 

return to normal temperature, tiredness). Most often the attacks occur every second 

day with P. falciparum, P. vivax and P. ovale and every third day with P. malariae. 

 
2.2.3.2 Complicated symptoms 

 
Severe or complicated malaria normally occurs in people with low or no previous im- 

munity. The P. falciparum is often the parasite causing severity, although this varies 

considerably from person to person. Particularly affected are individuals from unstable 

and non-malaria areas, children under five years of age, pregnant women and tourists. 

Severe malaria causes cerebral complications, such as the impairment of conscious- 

ness, seizures and coma. 

 
2.2.4 Diagnosis of malaria 

 
All the malaria symptoms mentioned in subsection 2.2.3 gives a sensitive diagnosis that 

can be confirmed through laboratory tests. However, a definite diagnosis of malaria 

depends on the presence of parasites in a blood smear examined under a microscope 

or via antigen identification through a Polymerase Chain Reaction (PCR). 
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2.3 Malaria Models 

 
In epidemiological studies, mathematical models are used to investigate and under- 

stand the dynamics of infectious diseases and to suggest strategies and policies for 

preventive measures. 

The first mathematical model of malaria transmission that appeared in the literature 

[140, 141] was later extended [100], and is now popularly known as Ross-Macdonald. 

Since then, several extensions have been made by incorporating new variables to the 

Ross-Macdonald model, which have addressed a wide range of problems [82, 135, 

136, 139, 152, 159, 166]. 

Figure 2.5 represents malaria transmission cycle shown in Figure 2.4 within a com- 

partmental model. The compartmental model is a technique used in mathematical 

modelling to describe the progression of a disease within a homogeneous population. 

This technique was first applied [140, 141] and then received greater attention, partic- 

ularly in the modelling of infectious diseases. Figure 2.5 outlines the transition of the 

human and mosquito populations through the compartments: 

 

r 

 
 

HUMAN 

DYNAMICS 

 

 

 

 

 
MOSQUITO 

DYNAMICS 

 

 

Figure 2.5: The Ross-Macdonald model structure describes the dynamics of malaria 

transmission. 
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Table 2.1: The definition of parameters used in the Ross-Macdonald model 
 

Parameters Description 

m 

a 

b1 
b2 
µ 

T 

r 

Number of mosquitoes per human host. 

Biting rate of the mosquitoes on their human host. 

Infectiousness of humans to mosquitoes. 

Susceptibility of human. 

Mortality of adult mosquitoes. 

Incubation period of parasites within the host vector. 

Rate of recovery of infected humans. 

 
The transition of human and mosquito population in the Figure 2.5 through the 

compartments are outlined below 

i. Flow of human from susceptible compartment to the infected compartment through 

recovery from infection. 

ii. Flow of mosquitoes from a susceptible compartment to the infected compartment 

and a move to the infectious compartment. 

iii. Human and mosquito populations are linked through the red dotted line showing 

the direction of transmission. 

As shown in Figure 2.1, malaria transmits from mosquito to human as well as from 

human to mosquito. Hence, in the following subsections, a mathematical formulation 

describing the dynamics will be explained for each transmission scenario. 

 
2.3.1 Transmission from mosquito to  human 

 
Suppose we consider the first human infected by a mosquito, and that each female 

mosquito bites a host on average a times per night. Assuming the density of female 

mosquito is denoted by m for every one human, each human is thus bitten ma times per 
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night. Of the density of female mosquitoes, m, only a fraction, w, of the mosquitoes 

have sporozoites in their salivary glands, and only a fraction, b2, of these are actually 

infectious (capable of transmitting malaria virus) to the human. This reduces the num- 

ber of infective bites per human per night to b2maw. Hence, an infective bite will 

lead to a new infection provided the person bitten is not previously infected. If y is 

the infected proportion of the human population, then new infections emerge the  rate 

b2maw(1 − y). Once the human is infected, the recovery will take place at rate r, i.e., 

the average time for an infectious humans to be cleared of malaria is 1/r. Therefore, 

the differential equation governing the proportion of infected humans, y, can be written 

as: 

ẏ  = mab2w(1 − y) − ry (2.1) 

where ẏ denotes the change of the proportion of infections per unit of time. The defi- 

nition of the parameters used in the formulations of equation 2.1 are presented in Table 

2.1. 

 
2.3.2 Transmission from human to mosquito 

On the other hand, the transmission of malaria from human to mosquito is described 

in this subsection. Suppose the mosquito population is divided into three categories: a 

susceptible proportion 1 − v − w that is uninfected; an infectious proportion w with 

sporozoites in the salivary glands, and a latent proportion v that is infected, but not yet 

infectious (sporozoites needs to be developed). The susceptible mosquitoes become 

infected by biting infected humans, of which a fraction, b1, contain gametocytes and 

are infectious. The proportion of latent mosquitoes increase at the rate b1ay(1−v −w). 

Hence, the newly infected mosquitoes would becomes infectious to humans if they 
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 v̇ = ab1y(1 − v − ŵ) − ab1 ŷ(1 − v̂ − ŵ)e−µT − µv 

 

 

survive the incubation period, T , required for the development of the gamatocytes 

into sporozoites. Assuming a mortality rate of µ, i.e., an average life span of 1/µ, a 

proportion e−µT survive this period. Of the rate, b1ay(1 − v − w)e−µT , move from the 

latent state to mosquitoes infected T days earlier. Note that proportions of the latent 

and infectious mosquitoes decrease exponentially through mortality. 

The process of infectiousness in a mosquito’s epidemiological state is governed by 

the following differential equations. 

 

 

ẇ = ab1 ŷ(1 − v̂ − ŵ)e−µT − µw 

(2.2) 

 

where: ŷ ≡ y(t − T ), v̂ ≡ v(t − T ) and ŵ ≡ w(t − T ) 

 
2.3.3 Basic reproduction number 

 
The basic reproduction number is a threshold quantity used to determine whether a dis- 

ease will persist or become extinct in a population. This quantity is sometimes called 

the basic reproduction ratio, and is symbolically denoted by Ro. Thus, Ro quantifies 

the average number of people infected by a single infectious person in a susceptible 

population [24, 100]. 

The basic reproduction number, Ro, can be derived for equation (2.1) and system 

(2.2). By using equation (2.1) through system (2.2), Ro is defined by 

 

R0 = 
ma2b1b2e−µT 

rµ 
(2.3) 

 

In the context of equation (2.1) to system (2.2), the quantity Ro is a threshold used 
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µ    

µ 

 

 

to determine the intensity of malaria’s transmission in a human population. Hence, 

malaria can be spread into a human population, if Ro > 1 (i.e., each infection gives 

rise to at least one additional case). 

By equating the equation (2.1) and system (2.2) to zero, and with the help of equa- 

tion (2.3), the prevalence of infection in both humans and mosquitoes can be given 

as: 

ŷ =  
Ro − 1 

Ro − a 

 

(2.4) 

ŵ = Ro − 1 
a     
µ 

e−µT 

Ro 1 + a 

 

Therefore, provided ŷ  and ŵ will be positive. This gives the basis for Ross’s threshold 

of malaria transmission [140]. Based on this condition, the following conclusions are 

resolved: 

i. The amount of malaria in a locality tends towards a fixed limit determined by 

the number of malaria-bearing mosquitoes and other factors. 

ii. If the number of malaria-bearing mosquitoes is below a certain threshold, that 

limit will be zero. 

The basic reproduction number, Ro, and herd protection threshold (HPT) for var- 

ious infectious diseases are presented in Table 2.2 to better understand the pattern of 

spread and preventive measures. 

This HPT is the essential level of protection given to a population through a mass 

vaccination programme in order to limit the transmission of a pathogen [144]. As it 

is practically impossible to effectively achieve 100% mass vaccination coverage, it is 

critical to determine the optimal threshold required for a population to be protected. 
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Table 2.2: Basic reproduction numbers and implied crude HPT for various diseases 

[23, 144, 168]. 
 

Infections Ro HPT(%) 

Diphtheria 6–7 84–85 

Influenza 2–4 50–75 

Malaria 5–100 80–99 

Measles 9–18 83–94 

Mumps 4–14 75–93 

Pertussis 5–35 90–94 

Polio 2–4a, 8–14b
 80–86 

Rubella 6–7 83–86 

Smallpox 5–7 80–85 
a Populations with good hygiene, b Populations with poor hygiene 

 

For a population to be protected, the number of immune individuals must be higher 

than HPT [23, 168]. Thus, the essential level of coverage can be illustrated using the 

formula: ≥ (1 − s). 

Table 2.2 presents the HPT values for various infectious diseases, and this calcu- 

lation is as follows. In a situation where 30% of a population is susceptible: HPT≥  

(1 − 0.30), at least 70% of the population must be covered by the vaccination to obtain 

herd protection or immunity. The HPT value is different for each infectious disease, 

and this will provide a valuable target for immunization programmes, thus influencing 

the critical minimum level of vaccine coverage [23, 168]. Furthermore, the HPT varies 

between regions as well as by the characteristics of a given population and its mixing 

patterns. 

 
 

2.3.4 Model with variability 

 
The inclusion of variability in a malaria model aims to capture the bite frequency by 

mosquitoes on a human population. In this model, it is assumed that humans can be 

infected several times by various strains of malaria parasites. It describes the mean 
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number of infections, say X, harboured by any one human host. On the other hand, 

mosquitoes are assumed to be infected only once with no recovery. This description 

enables the mosquito population to be separated into susceptible, latent, and infective 

mosquitoes. 

The generalization of this model follows from the model described in the literature 

[122]. The model describes the human population under N separate categories, each of 

which makes a proportion, φi, of the total population. This is based on the assumption 

that each category is homogeneous with respect to malaria’s infection, and this differs 

from other categories in terms of susceptibility to infection, b2, biting rate, a, and 

duration of disease, ρ = 1/r. Thus, each category of human is assumed to be infected 

randomly, so that the prevalence within a category would be Pi = 1 − e−Xi [122]. 

As shown in equation 2.1, humans are infected at a rate maib2,iw, where w denotes 

the proportion of infective mosquitoes. Susceptible mosquitoes are infected within 

the human category, i at a rate aibiPi. Hence, the rate at which mosquitoes become 

infected and the average of all categories is given by 

h = φiaibi(1 − e−Xi ), for i = 1, 2, · · · , N (2.5) 
i 

 

Then, equation 2.5 can be further expressed as: 
 

 

Ẋ  = maib2,iw − riXi (2.6) 

 
 

Using equation 2.5 and 2.6, the average human infectiousness corresponding to cate- 

gory i is given by 

u̇  = µ − φiaib1(1 − e−Xi )u − µu (2.7) 
i 
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i i 1 

0 
ā2 ā b ā ρ ρ̄ b 

i 

 
 

From equation 2.7, the frequency of susceptible mosquitoes is expressed as: 

 

ẇ  = e−µT 
  

φ a b  (1 − e−X
ˆ
i )û − µw (2.8) 

 

where X̂ = Xi(t − T ) and û = u(t − T ) for the frequency of infectious mosquitoes. 

Using equation 2.5 through 2.8, the basic reproduction number of the malaria model 

with variability can be given as: 

 

R  = R̄ 

 

1 + 
var(a) 

+ 2 
cov(a, b2) 

+ 2 
cov(a, ρ) 

+ 
cov(ρ, b2) 

1 

(2.9)
 

 

  

 

where R̄ 
0 

māb1b̄2e−µT 
r̄µ denotes the basic reproduction number due to the mean pa- 

rameters in the population, x̄ denotes the mean of x, var(x) denotes the variance of x, 

cov(x, y) denotes the covariance of x and y. 

 
2.3.5 Model with immunity 

 
The inclusion of immunity is essential to realistically describe the dynamics in malaria 

transmission. Using a model without considering immunity might lead to an unrealistic 

understanding of the malaria transmission pattern. The general model of malaria with 

immunity consists of three differential equations denoting changes in the proportions 

of susceptible humans, denoted by x, infected humans, denoted by y, and immune 

humans, denoted by z (see Figure 2.6). 

2 2 

= 

0 
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Infected human 

(y) 

ẋ = δ − δx − hx − γz 

 

 

birth 

immunity lost 

 

h r 

 

 
death 

 
death 

 
death 

 

 

Mosquito 

population 

 

Figure 2.6: The malaria model with immunity in human population. 

 
The transition in Figure 2.6: 

 
i. Flow of susceptible humans’ transit to infected class at rate h. 

 
ii. Flow of infected humans’ transit to immune class at rate r. 

 
iii. Flow of immune humans after loss of immunity and transit to susceptible class 

in the absence of any form of intervention at rate γ. 

The malaria model with immunity is an extension of the model proposed in [26, 

27], and the differential equations governing Figure 2.6 are given by system 2.10, while 

the definition of the parameters are presented in Table 2.3. 

 
 

ẏ = hx − (r + δ)y 

ż = ry − (γ + δ)z 

 
(2.10) 

 

The immunity for disease like malaria is boosted by new infections [175], and only 

lasts for τ years in the absence of new infections. If τ is equal to the mean residence 

Susceptible human 

(x) 

Immune human 

(z) 
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Table 2.3: The definition of parameters used in Ross-Macdonald model with immu- 

nity. 
 

Parameters Description 

h 

r 

γ 

δ 

1/δ 

Rate at which susceptible individuals becomes infected. 

Rate at which infected individuals are recovered and move into immune class. 

Rate at which immune individuals becomes susceptible again. 

Deaths rate occur and are unaffected by disease status. 

Life-expectancy. 

 
time in the immune class, that is τ  = 1/(γ + δ), where the parameter γ is given by 

equation 2.11 according to the definition in [26]. 

 

 

γ(h) = 
(h + δ)e−(h+δ)τ 

(2.11)
 

1 − e−(h+δ)τ 

 

Thus, the infection rate, h, can be given as follows 
 

h = ma2b b e−µT 
y
 
 

(2.12) 
1 2 

µ + ay 

 

The analysis of the malaria model with immunity in system 2.10 at the equilibrium 

point leads to a basic reproduction number, shown below 

 

Ro = 
ma2b1b2e−µT

 

(r + δ)µ 
(2.13) 

 

2.3.6 Model with asexual stage vaccine 

 
The asexual stage vaccines act within the parasites to protect individuals from infection 

(anti-sporozoite) or from developing parasitaemia and the disease (anti-blood stage 

vaccines).  In the mass vaccination of a proportion p (of all newborns for example)  

an asexual stage vaccine is stimulated. This is achieved by letting a proportion p be 
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0 

ẋ = δ(1 − p) − δx − hx − γz 

0 0 
δ + γ 

R0 δ 

 

 

born as immune and a proportion 1 − p as susceptible. In using the malaria model 

with immunity described in system 2.10, and the resultant model with an asexual stage 

vaccination built upon it with no other changes to the model, this is given by 

 
 

ẏ = hx − (r + δ)y 

ż = δp + ry − (γ + δ)z 

 
(2.14) 

 

By solving equation 2.14 along the equilibrium point, the basic reproduction num- 

ber is given by 

R
t    

= R 

(

1 − 
    δ 

p

  

(2.15) 

 

where Ro denotes the basic reproduction number of the model with no vaccination 

shown in equation 2.13 and γ0 denotes the rate of loss of immunity in the absence    

of any infection (h  = 0).  Hence, malaria cannot invade a population if the basic 

reproduction number R
t 
< 1. This condition leads to equation 2.16, and thus indicates 

 

malaria’s eradication threshold. 

p > 

(

1 − 
 1  
 (

1 + 
γ0 

  

(2.16) 

2.3.7 Model of transmission-blocking vaccine 

 
A malaria transmission model with a blocking vaccine acts within the asexual stages of 

the parasites but do not protect individuals from infection. In this model, the vaccine 

blocks the transmission of malarial infection from human to human through a mosquito 

bite. 

However, a mass vaccination scenario with a transmission-blocking vaccine can 

0 
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o 

ẋv = δp − (δ + h)xv − vxv 

0 0 
(δ + v)(r + δ + v) 

Ro r + δ δ 

 

 

be stimulated by splitting the described model with immunity into two categories (see 

system 2.10). The first category represents (1 − p) proportion of the population that is 

not vaccinated. This is almost identical to the model with immunity except that immu- 

nity against the asexual stage of the parasite is lifelong. Then, in the second category, 

the proportion, p of the population receives the vaccine. This category is infected and 

later becomes immune at the same rate as the unvaccinated category. However, it does 

not make any contribution to transmission during the period when the vaccine is ef- 

fective. The vaccine loses its effectiveness at a rate v. Hence, the differential equation 

governing the model of transmission with the blocking vaccination can be given by 

ẋu = δ(1 − p) − (δ + h)xu − vxu 

 

ẏu = (r + δ)yu + vyu 

 ẏ v = hxv − (r + δ)yv − vyv 

 
(2.17) 

  
ż = r(yu + yv) − δz 

 

where the subscript v denotes the vaccinated, and the subscript u is the unvaccinated 

category. The basic reproduction number of the system 2.17 is given by 

R
tt   

= R 

(

1 − 
  δ(r + δ) 

p

  

(2.18) 

where Ro denotes the basic reproduction number of the model with no vaccination (see 

system 2.14). Hence, malaria cannot invade a population if R
tt   

< 1, and this condition 

would be satisfied if 

p > 

(

1 − 
 1  
 (

1 + 
   v  

 (

1 + 
v 
  

(2.19) 
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2.3.8 Relationship between DDE and ODE malaria model 

 
Using the malaria model in Figure 2.7, the relationship between delay differential equa- 

tion (DDE) and ordinary differential equation (ODE) is as follows. 

 

Figure 2.7: A malaria model with a SIS and SEI structure in human and mosquito 

populations respectively. 

 

 

2.3.8.1 Model formulation with delay 

 
Assuming the humans dynamics are typified as susceptible-infectious-susceptible (SIS) 

and the dynamics in the mosquito population is characterised by susceptible-exposed- 

infectious (SEI), as shown in Figure 2.7. The classes are described as: SH : susceptible 

humans, IH : infectious humans SV : susceptible mosquitoes, EV : exposed mosquitoes, 

IV : infectious mosquitoes. Then, each state variables in Figure 2.7 is defined using 

differential equation (see system 2.20). The definition of parameters under subsection 

2.3.8.1 is provided in Table 2.4. 

   

influx of mature 

mosquito 

death death death 

Exposed 

mosquito 

Susceptible 

mosquito 

Infected 

human 

Infectious 

mosquito 

Susceptible 

human 
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− 

x(t)  =  
  IH (t)  

y(t)  = 

ẋ(t) = mabz(t)(1 − x(t)) − γx(t) 

 

 

 

(SH (t) + IH (t)) 
 

 

  Iv(t)  

 
(SV (t) + EV (t) + IV (t)) 

 

 

where x(t) denotes the proportion of infectious humans at time t; y(t) means the pro- 

portion of infectious but not yet infectious mosquitoes at time t and z(t) is the propor- 

tion of infectious mosquitoes at time t. Hence, by using system 2.20, the following 

differential equation governing Figure 2.7 is expressed as: 

 

ẏ(t) = acx(t)(1 − y(t) − z(t)) − µy(t) − Ωy(t) 

ż(t) = acx(t − τ )(1 − y(t − τ ) − z(t − τ ))e−µτ − µz(t) 

where: Ωy(t) = acx(t − τ )(1 − y(t − τ ) − z(t − τ ))e−µτ 

 
(2.21) 

The differential equation in system 2.21 has two equilibrium points; the disease- 

free equilibrium point is given by x0 = 0, y0 = 0 and z0 = 0, and endemic equilibrium 

point expressed by 

ma2bce−µτ γµ 
x∗ = 

ma2bce−µτ + acγ 
(

1 − e−µτ 
 (

ma2bce−µτ − γτ 
 

 

 

 
(2.22) 

e−µτ ma2bc + mabµ 

z∗ = 
ma2bce−µτ − γµ 

ma2bc + mabµ 
 

The system of DDE, shown in 2.21 can further be form a system of ODE by ignor- 

ing the time delay and assuming that the ratio of the proportion of exposed mosquitoes 

to infectious mosquitoes is at an equilibrium. This implies: 

(2.20) 

= 

E (t)   V  

(SV (t) + EV (t) + IV (t)) 

z(t) = 

y∗ 
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(   

(   

o 

ẋ(t) = mabz(1 − x) − γx 

 
 

 

y(t) = 
1 − e−µτ 

e−µτ 
z(t) (2.23) 

 

By substituting equation 2.23 in system 2.21 and by ignoring the delay, it becomes: 
 

 

ż(t) = acx 

which further simplifies as: 

(

1 − 
1 − e−µτ 

e−µτ 
z − z 

 
e−µτ − µz 

(2.24) 

ẋ(t) = mabz(1 − x) − γx 

ż(t) = acx(e−µτ − z) − µz 

 
 

(2.25) 

 

Remark: The ODE Ross-Macdonald model has the equivalent equilibrium points as the 

DDE Ross-Macdonald model. Using the method of [165], the basic reproductive num- 

ber is denoted by Ro, where the disease-free equilibrium point loses stability. However, 

most frequently, the basic reproductive number for malaria from the Ross-Macdonald 

model is given by 

R̂  = 
ma2bce−µτ γµ 

(2.26) 

 

The disease-free equilibrium point is locally asymptotically stable when Ro < 1, and 

unstable when Ro > 1. The expression for Ro shows that malaria can be eliminated by 

increasing the mosquito death rate, µ or reducing the mosquito biting rate, a. 
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Table 2.4: Definition of the parameters used for the model in Figure 2.7 
 

Parameters Description 

m 

a 

b 

c 

γ 

µ 

τ 

Number of female mosquitoes per human host. 

Number of bites per mosquito per unit of time. 

Prob. of transm. from infectious mosquitoes to human to human per bite. 

Prob. of transm. from infectious human to mosquitoes per bite. 

Recovery rate of humans. 

Death rate of mosquitoes. 

Extrinsic incubation period. 

 

2.4 Summary 

 
Chapter 2 presents the theoretical framework of a malaria parasite transmission cycle, 

both in humans and mosquitoes. This was addressed by using the Ross-Macdonald 

model and by discussing its properties, such as the variable ramifications and basic 

reproduction number. Chapter 3 presents a climate dependent malaria model with a 

delay in mosquito dynamics. 
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3 

A Climate Dependent Malaria Model 

with Delay in Mosquito Dynamics 

This chapter provides a mathematical model of the dynamics of malaria with temperature- 

dependent incubation periods in the mosquito exposed and juvenile mosquito matura- 

tion. The impact of delay due to the extrinsic incubation period and juvenile maturation 

on the dynamics of the malaria transmission was investigated, and performed a sensi- 

tivity analysis. 

 

3.1 Introduction 

 
A number of studies have been recently carried out to understand the impact of climate 

change on malaria transmission. The climate factors, such as temperature, rainfall and 

humidity, influence malaria’s transmission in different ways. Temperature is the large- 

scale driver of malaria, which directly influences aquatic development process [33], 

parasite development [37], survival [51] and biting rate [172] of the mosquito. In dif- 

 
Chapter 
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ferent circumstances, rainfall can create breeding sites for mosquito reproduction, and 

consequently increases the likelihood of malaria prevalence. In contrast, high rainfall 

negatively distorts the aquatic mosquito’s metamorphosis to adult. Nonetheless, study 

has further shown that a causal relationship exists between rainfall and the risk of 

malaria [101]. For that reason, understanding the population dynamics of mosquitoes 

and the relationship with climate factors is crucial to the study of mosquito-borne dis- 

eases [48]. The control of mosquito abundance in a human population remains a key 

challenging issue affecting the persistence of vector-borne diseases [184]. Therefore, 

it is important to include aquatic dynamics of mosquito in malaria models to enable 

effective and realistic control and preventive measures. 

Recent studies have, respectively, focused on the impact of temperature on malaria 

risk with diurnal temperature fluctuation, vector population and the shift in optimal 

temperature [35, 36, 112]. There have also been efforts to study the effects of tem- 

perature and rainfall on the spatio-temporal risk of malaria [120], and the impact of 

variability in temperature and rainfall on the transmission of malaria [131]. Similarly, 

a non-autonomous deterministic model for assessing the effect of temperature vari- 

ability on malaria transmission dynamics was studied [21]. A climate-based malaria 

model with periodic birth rate and age structure in the vector population was also an- 

alyzed [98]. Moreover, the climate-dependent modelling of malaria transmission dy- 

namics to predict a malaria outbreak season was studied [164] to guide public health 

policies. Compartmental epidemic models in periodic environments were explicitly 

analyzed to study the impact of periodic contacts or migrations on the disease trans- 

mission [171]. Furthermore, several other models have been developed to study the 

impact of mosquito maturation delay on vector-borne diseases. For instance, the role 

of non-linear birth and maturation delay [121] and the sensitivity of maturation delay 
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on temperature [147] applied a Richer birth function; furthermore the stability analysis 

of a population model with maturation delay [186] was studied, as were the roles of 

maturation delay and vaccination with optimal control [123]. 

Previous studies [21, 116, 131, 163] have not dealt with the impact of tempera- 

ture on extrinsic incubation period (EIP) delay, referring to the time taken for malaria 

parasites to complete its development in a mosquito. This period hinders the develop- 

ment of efficient and effective prevention and control mechanisms, which should not 

only focus on controlling the human infection, but also address the vector control. In 

particular, a common drawback [116] amongst studies is the focus on transmission in 

humans by considering the so-called intrinsic incubation period (IIP). This refers to 

the time taken by malaria parasites to complete their development in humans. Fur- 

thermore, the incubation period in humans is not a requirement for the prevention 

and control of malaria in the light of climate factors, but is rather used for clinical 

diagnostic purposes or outbreak detection [151]. For this reason, EIP is foremost con- 

sidered a mechanism for the prevention and control of malaria transmission. More- 

over, the climate-dependent maturation delay of the aquatic mosquito is a determin- 

ing factor for the abundance of adult female mosquitoes, thus its incorporation in the 

model of malaria transmission would offer well-grounded dynamics. Likewise, stud- 

ies [21, 116, 131, 163] have considered the climate-dependent rate of transfer due to 

maturation. This rate is density-dependent, but does not take into account the spatio- 

temporal variability of the aquatic mosquito maturation. 

This chapter addresses these limitations by studying malaria transmission from the 

perspective of mosquito dynamics. Based on the framework formulated in [116], the 

impact of EIP (in mosquito) on human infectiousness due to malaria will be analyse. 

A new mathematical model will be develop and introduce a temperature-dependent 
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incubation state into the exposed mosquito population. In order to describe the effects 

of temperature variability on spatio-temporal infectiousness in humans, therefore, two 

categories of incubation period for the exposed mosquito population, namely a short 

and a long period are considered. These periods are described by exponential dis- 

tribution and step function respectively. An aquatic state is further introduced in the 

proposed model to capture the influx of adult mosquitoes through maturation from the 

immature stage. This provides an insight into rates at which the parasite and matura- 

tion of immature mosquitoes develop at different temperature scenarios. The model 

proposed in this chapter closes the knowledge gaps to those presented in the previous 

studies [21, 116, 131, 163]. Its building blocks can together provide possible measures 

to mitigate, prevent, control and predict the likelihood of malaria outbreak. 

 

3.2 Model Formulation 

 
In this section, and using a schematic diagram 3.2, firstly, a detailed description of 

how malaria pathogens transmit within its hosts, via human and mosquito. Secondly, 

the formulation of differential equations governing the proposed model and discuss its 

epidemiological positivity and bounded properties will be present. 

The proposed model in this chapter is motivated by the malaria models used in 

[21, 116, 131, 163]. A significant difference is given by the derivation of a new malaria 

model that incorporates delay due to mosquito maturation and extrinsic incubation. 

This accounts for the spatial and temporal risk of malaria on human infectiousness 

since both mosquito maturation and extrinsic incubation depends on temperature and 

rainfall [18]. 

The human population at time t denoted by Nh(t) is split into four mutually ex- 
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Figure 3.1: Schematic diagram of the model (3.9), showing malaria transmission dy- 

namics. 

 
clusive epidemiological categories represented by the following state variables: the 

susceptible class Sh(t), exposed class Eh(t), infective class Ih(t) and recovered class 

Rh(t), such that: 

Nh(t) = Sh(t) + Eh(t) + Ih(t) + Rh(t). (3.1) 

 
Similarly, the mosquito population at time t denoted by Nm(t), is divided into two 

categories,  namely mature mosquitoes NA(t) and immature mosquitoes (eggs,  larvae 
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and pupae) Am(t). Hence, the mosquito population at time t is given by 

 

Nm(t) = Am(t) + NA(t). (3.2) 

 

Furthermore,  the NA(t) is split into four sub-categories,  i.e.,  susceptible  mosquitoes 

Sm(t), short-term exposed mosquitoes Es (t), long-term exposed mosquitoes El (t) 
m m 

and infectious mosquitoes Im(t). Thus, the total mosquito population at time t be- 

comes: 

Nm(t) = Am(t) + Sm(t) + Es (t) + El (t) + Im(t). (3.3) 
m m 

 

In Figure 3.1, adult mosquitoes in an exposed state are divided into two classes, namely 

Es (t) and El (t), to distinguish the short and long term EIPs. Herein the EIP refers to 
m m 

the time taken for a plasmodium species (malaria parasites) to develop within its host 

mosquito while the development time taken in the human host is called the intrinsic 

incubation period (IIP), for instance, when a susceptible mosquito bites an infectious 

human, and sips human blood that contains gametocytes (cell in plasmodium species). 

Gametocytes transits the plasmodium to the mosquito from which the mosquito will be- 

come infected. At this stage, the infected mosquito is not capable of spreading malaria 

to susceptible humans until the EIP cycle is completed (usually taking around 10-14 

days [36]). A form of the parasite, called sporozoite, will migrate to the mosquito sali- 

vary gland, and thereafter the mosquito will become virulent. The time in which the 

plasmodium species develops within the mosquito is driven largely by environmental 

temperature [36]. For instance, in a region where the the temperature pattern is pre- 

dominantly lower, the EIP usually takes a longer time than a region with a relatively 

higher temperature. Consequently, the EIP is a large-scale risk factor for determining 

malaria’s infectiousness in the human population, and it dynamically varies over space 
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Kc m m 

 

 

and time. 

In the proposed model, the states Es (t) and El (t) is introduced in the exposed 
m m 

mosquito dynamics to account for temporal changes in human infectiousness. While 

both short and long term incubation was introduced in exposed human class by [116] 

which captured the dynamics of malaria in a human host, while noting that the pro- 

posed model is exclusively different as temperature-dependent extrinsic incubation pe- 

riod is introduce to the mosquito dynamics. 

 
3.2.1 Aquatic Mosquito State 

A matured female mosquito needs blood from humans and animals as meal for nourish- 

ment and egg development. Most often, mosquitoes lay their eggs directly into water, 

and sometimes lay near water bodies or moist areas on a farmland. The development 

from egg to adult usually takes about 1-2 weeks depending on the environmental niche; 

this is significantly large compared to the average lifespan of an adult mosquito, which 

is about 3 weeks [147]. In Figure 3.1, the parameter αE(T ) denotes the temperature- 

dependent eggs deposition rate for adult female mosquitoes. All the compartments 

would then have an equal egg deposition rate of αE(T ) in the aquatic mosquito state 

Am(t). This state is limited to certain resources, such as the breeding sites and nu- 

trients available to sustain the population of immature mosquitoes. Assuming that a 

carrying capacity of Kc for the Am(t) and propose Kc > Am(t) ∀ t, which accounts for 

the possibility of unbounded growth in the immature mosquito population [130, 131]. 

Thus, the logistic growth rate (see Figure 3.1) for the immature mosquito population 

is given as follows 

αE(T ) 
(

1 − Am(t) 
) 

[Sm(t) + Es (t) + El (t) + Im(t)]. 
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The development of mosquitoes from egg to adult is density dependent, thus a  

Richer function is taken for the birth rate into the adult mosquitoes [123, 169]. Con- 

sider the maturation of the aquatic stages from egg to adult mosquitoe, and let the 

finite and positive constant τ1(T ) as shown in Figure 3.1 be the maturation time of 

the mosquito (meaning the average time required for an egg to develop into an adult 

mosquito).  Assuming µa(T ) is the natural death rate of mosquitoes in the immature 

stages, then the term e−µa(T )τ1(T )  represents the survival probability of the aquatic 

stages [75]. Thus, the immature mosquito’s maturation into an adult female mosquito 

with delay τ1(T ) can be written as 

pEA(T̂ )Am(t − τ1(T ))e−µa(T )τ1(T )e−Am(t−τ1(T )), 

where the term Am(t−τ1(T )) represents the immature mosquito at τ1(T ) and e−Am(t−τ1(T )) 

reflects the survival probability of becoming an adult over the maturation period. The 

malaria infection is transmitted to susceptible adult female mosquito (called anophe-  

les) following effective contact with an infectious human (via blood meals), at a tem- 

perature rate λb(T ). When the anopheles successfully obtain blood meals from an in- 

fectious human host, they will then rest for a few days while the blood ingested will un- 

dergo the process of egg development and infectiousness [35]. In essence, mosquitoes 

suffer a natural death at a temperature-dependent rate µm(T ), and moreover unlike hu- 

mans, experience no recovery after infection. The link between malaria’s prevalence  

and climate factors, particularly with rainfall, has shown to coincide with the malaria 

season, which increases its incidence by creating breeding sites for mosquito abun- 

dance. However, excessive rainfall can negatively affect the reproduction cycle of the 

mosquito by flushing out the breeding space. 
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( 

 
 

3.2.2 Exposed Mosquito State 

 
Suppose that the exposed mosquitoes will remain in the exposed class after entering 

the compartment until they are infectious. The population of mosquito decreases ex- 

ponentially by natural death within the compartment as time t increases. Thus, the 

exposed mosquitoes’ compartment is defined by 

 

Em(t) = 

∞ 

λbSm(t − u)Ih(t − u)e 

0 

 
−µmuP (u)du (3.4) 

 

where P (u) is the Probability Distribution Function (pdf) that describes the exposed 

mosquitoes undergoing a latent period at time t after entering the exposed compart- 

ment. Also, P (u) has the following properties: 

i. P : [0, ∞) → [0, 1] is a non-increasing piece-wise continuous function with 

many possible finite jumps and satisfying: P (0+) = 1 and limt→∞ P (u) = 0 

ii. The integrand of P (u) in the interval (0,1) is positive definite. 

Noting that the exposed mosquito compartment is classified as short and long-term 

EIP to describe the influence of temperature. Let p ∈ (0, 1) be the probability that an 

exposed mosquito experiences a short and long term incubation period upon successful 

contact with an infected human. Then, P (u) can be represented by P (u) = pPs(u) + 

(1 − p)Pl(u), where Ps and Pl are explicitly defined in equation (3.5) and (3.6). The 

short-term EIP is modelled according to the exponential distribution with an average 

θ(T )−1, and thus the random variable U represents the probability at which the exposed 

mosquitoes survive the short-term EIP. The exposed mosquito population that survives 

the EIP is characterized by the survival function of the exponential distribution. The 

parametrized pdf is given by 
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(∞ 

m m 

 

 

Ps(u; θ(T )) = θ(T )e−θ(T )u, u > 0, (3.5) 

 

For the long-term EIP, a step-function is assumed for the mosquito with a long term 

incubation and denoted by a fixed time τ [116]: 

Pl(u) = 1, ifu ∈ [0, τ ] and Pl(u) = 0, ifu ∈ (0, ∞) (3.6) 

 
The step-function here is to describe the long term EIP pattern in the exposed mosquitoes 

due to the influence of temperature. By substituting properties (i) and (ii) into the math- 

ematical representation in equation (3.4), the short and long term EIP in the exposed 

mosquitoes compartment now becomes 

 

Es (t) = 

 
 

El (t) = 

pλbSm(t − u)Ih(t − u)e−µmuPs(u)du 

0 
τ 

(1 − p)λbSm(t − u)Ih(t − u)e−µmuPl(u)du 

0 

 

 
(3.7) 

 

By differentiating (3.7) with respect to time t, then obtain 
 
 

E˙ s (t) = pλb(T )Sm(t)Ih(t) − (µm(T ) + θm(T )) Es (t) 

E˙ l (t) = (1 − p)λb(T )Sm(t)Ih(t) − (1 − p)λb(T )ψ(τ2, µm, T ) − µm(T )El (t) 
m m 

(3.8) 
 

The malaria model depicted by the schematic diagram in Figure 3.1 can thus be de- 

scribed using differential equations, as shown in system (3.9). This involves four states 

of the human population, four states of the adult female mosquito population and a 

combined state of aquatic mosquitoes containing eggs, larva and pupa. 
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 Ėh(t) = λa(T )Sh(t)Im(t) − (αh + µh) Eh(t) 

 Rh(t) = γhIh(t) − (µh + ωh) Rh(t) 

Ė  s (t) = pλb(T )Sm(t)Ih(t) − (µm(T ) + θm(T )) Es (t) 

Ė  l (t) = (1 − p)λb(T )Sm(t)Ih(t) − (1 − p)λb(T )ψ(τ2, µm, T ) − µm(T )El (t) 

 İm(t) = θm(T )Es (t) + (1 − p)λb(T )ψ(τ2, µm, T ) − µm(T )Im(t) 

m m 

 

 

 

Ṡh(t) = η − λa(T )Sh(t)Im(t) − µhSh(t) + ωhRh(t) 

 
 

 I˙h(t) = αhEh(t) − (µh + δh + γh) Ih(t) 
 

Ȧ

 
 
(t) = α (T ) 

(

1 − 
Am(t) 

  

N 
 

 

(t) − µ (T )A (t) − φ (T )ϕ(τ  , µ  , T̂ ) 

m E A c 
 

a m EA 1 a 

Ṡm(t) = φEA(T )ϕ(τ1, µa, T̂ ) − λb(T )Sm(t)Ih(t) − µm(T )Sm(t) 
 
 

 
m m 

 
 

 
 

The initial conditions of the system (3.9) state variables are given as: Sh(0) > 0, Eh(0) 

≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0, Am(0) > 0, Sm(θ) = φsm(t) > 0, Es (0) ≥ 0, El (0) ≥ 

0, Im(θ) = φim(t) > 0, where φsm(θ) and φim(θ) are positive continuous functions for 

θ ∈ [−τ, 0]. For convenience, the system (3.9) is scale down by replacing the terms 

ϕ(τ1, µa, T̂ ) and ψ(τ1, µa, T ) such that: 
 

ϕ(τ  , µ  , T̂ ) = A (t − τ  (T̂ ))e−µa(T )τ1(T̂ )e−Am(t−τ1(T̂ )) 
1 a m 1 

(3.10) 

ψ(τ1, µm, T ) = Sm(t − τ1(T ))Ih(t − τ1(T ))e−µm(T )τ1(T )
 

where φEA(T ) denotes the probability that an egg can survive to become an adult 

mosquito,  and is defined functionally by φEA(T )  =  −0.00924T̂ 2  + 0.453T̂  − 4.77 

[112].  On the other hand, λa(T ) = bcm(T ) = abm and λb(T ) = acm(T ) correspond  

to forces of the malaria infection transmission. The meaning of the state variables, 

parameters and their corresponding values can be found in Table 3.1 and Table 4.3. In 

(3.9) 

K 

˙ 

m m 

m 
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equation (3.9) and (3.10), all the temperature dependent parameters are assumed to be 

continuous, bounded, positive and ω-periodic. As in [21], we also let T = T (t) and 

Tˆ = T (t) + δT to denote air and water temperature at time t, respectively. 

 

3.2.3 Temperature-Dependent Model 

 
The system (3.9) has temperature-dependent parameters, including the adult mosquito 

biting rate cm(T ), adult mosquito mortality rate µm(T ) and adult mosquito egg depo- 

sition rate αE(T ). A quadratic function is used to describe the relationship between 

temperature and these parameters as defined in [112]: 

 

cm(T ) = −0.00014T 2 + 0.027T − 0.322 

µm(T ) = −ln(−0.000828T 2 + 0.0367T + 0.522) 

αE(T ) = −0.153T 2 + 8.61T − 97.7 

 
 

(3.11) 

 

However, rainfall is also another factor that influences the dynamic of mosquitos [131], 

which is largely related to their immature stages. In the event of excessive rainfall, 

aquatic mosquitoes usually suffer negative effects because the mosquito eggs, larva 

and pupa are flushed from the water body to a potentially unfavourable environment, 

which might eventually affect their survival and growth rates. Consequently, there 

would be a reduction in the population of immature mosquitoes emerging as adults. 

Hence, the per-capita temperature-dependent death rate of the immature mosquitoes, 

µa(T ) is defined in [133], and given by 

 

µa(T ) = 1/[8.560 + 20.654[1 + (T/19.759)6.827]−1] (3.12) 
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Therefore, each of these temperature-dependent parameter functions in equation (3.11) 

and equation (3.12) are visualised in Figures 3.2–3.5. 

 

Figure 3.2: Adult mosquito death rate (µm(T )) as a function of temperature (in ◦C). 
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Figure 3.3: Adult mosquito biting rate (cm(T )) as a function of temperature (in ◦C). 
 
 

Figure 3.4: Immature mosquito death rate (µa(T )) as a function of temperature (in 
◦  C). 
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Figure 3.5: Egg deposition rate of mosquito (αE(T )) as a function of temperature (in 
◦  C). 
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m 

 

 

 

Table 3.1: Descriptions of the state variables and parameters used in the malaria trans- 

mission model (3.1). 
 

Variable Definition 
 

Sh(t) Population of susceptible humans. 

Eh(t) Population of infected humans undergoing latency. 

Ih(t) Population infectious humans. 

Rh(t) Population of recovered/removed humans. 

Am(t) Population of aquatic mosquitoes. 

Sm(t) Population of susceptible adult female mosquitoes. 

Es (t) Population of infected adult female mosquitoes undergoing 

short-term latency. 

El (t) Population of infected adult female mosquitoes undergoing 

long-term latency. 

Im(t) Population of infectious mosquitoes. 

Parameter Definition 
                                            

η Recruitment rate of humans. 

ω Per capita loss of immunity. 

µh Per capita death rate of humans. 

µm Per capita death rate of adult female mosquitoes. 

µa Per capita death rate of aquatic mosquitoes. 

αE Per capita egg deposition rate by adult female mosquitoes. 

p Transition probability of an exposed mosquitoes undergo- 

ing short-term latency. 

αh Transfer rate of exposed humans to the infected class. 

γh Recovery rate of infectious humans without prior immunity 

to malaria infection. 

θ Transfer rate of infected mosquitoes undergoing latent pe- 

riod. 

τ2 Delay due to malaria parasite incubation period. 

a Probability of malaria transmission from infected 

mosquitoes to susceptible humans. 

b Probability of malaria transmission from infected  humans  

to susceptible mosquitoes. 

cm Per capita biting rate of mosquitoes on susceptible humans 

population. 

m Ratio of mosquito population to human population. 

φEA(T ) Recruitment rate of adult female mosquitoes. 

Kc Carrying capacity of immature mosquitoes. 

τ1 Delay due to maturation rate of immature mosquitoes. 

δh Per capita malaria induced death rate of infectious humans. 

λa Infection rate for susceptible human population. 

λb Infection rate for susceptible adult female mosquito popu- 

lation. 
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Kc 

Kc 

Kc 

m m 

 

3.3 Mathematical Analysis 

This section presents the theoretical results of the system (3.9) and discuss its analytical 

properties by invoking biological interpretations. In the sequel, all the temperature- 

dependent parameters of the system (3.9) are expressed as a function of time t. Then, 

it follows from system (3.9) that the rate of change in the total number of humans, Nh
I 

(t) = Sh
I (t) + Eh

I (t) + Ih
I (t) + Rh

I (t) satisfies: 

Nh
I (t) = η − µhSh − µhEh − µhIh − µhRh − δhIh 

= η − µhNh − δhIh 

≤ η − µhNh 

(3.13) 

 

Similarly, Nm
I  (t) = AI

m(t) + Sm
I  (t) + Es I(t) + El 

I
(t) + Im

I  (t) is rate of change of 

the total number of mosquitoes (comprises of immature and adult female mosquitoes) 

satisfies: 

Nm
I  (t) = αE (t) 

(

1 − 
Am(t) 

  

N (t) − µa(t)Am (t)− 
 

µm(t)(Sm(t) − Es (t) − El (t) − Im(t)) (3.14) 

 
= αE 

m 

(t) 

(

1 − 
Am(t) 

  

N 

m 

 

(t) − µ(t)Nm 

 
(t) 

 

where µ(t) = min{µa(t), µm(t)} [131]. As system (3.9) is non-autonomous, it is then 

paramount to study the malaria transmission dynamics in a periodic environment. For 

that reason, we assume the vector (mosquito) population stabilizes at a periodic state 

[98]. Furthermore, by invoking the assumption in [98] for the time periodic function, 

a positive number h0 exists, such that we can accordingly obtain equation (3.15): 
 

 

Nm
I  (t) = αE (t) 

(

1 − 
Am(t) 

  

N (t) − µ(t)L < 0 ∀ L ≥ h0 

 
(3.15) 

A 

A 

A 
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Lemma 3.3.1.  The system (3.9) with non-negative initial conditions satisfies Nh(t) > 

0, ∀ t ≥ 0. Hence, the system has a unique non-negative solution in C ([0], R9 ), and 

thus, all solutions are ultimately-bounded and uniformly-bounded. 

 
Proof. Following the system in [171], the system (3.9) can further be written in an 

abstract form as: 

Ẋ (T ) = B(X)X + H (3.16) 

 
with X = (Sh, Eh, Ih, Rh, Am, Sm, Es , El , Im), and m m 

−λa(t)Im − µh 0 0 ωh 0 0 0 0 0      

  

B(X) = 
 

 

  

 
 

 
 

where a45, a55, a76 and a86 are entries of B(X) and H = (η, 0, 0, 0, 0, 0, 0, 0, 0)T . 

Note that B(X) is a Metzler Matrix, i.e., matrix such that the off-diagonal elements 

are non-negative for all X ∈ R9 . Thus, using the fact that H ≥ 0, the system (3.9) is 

positively invariant in R9 , which means that any trajectory of the model starting from 

an initial state in the positive orthant R9   remains forever in C ([0], R9 ).  By applying 
 

the comparison principle [92] to equation (3.13) and equation (3.14), it follows that the 

solution exists ∀ t ≥ 0. Then, 

 

η 
lim sup[Sh(t) + Eh(t) + Ih(t) + Rh(h)] 
t→∞ µh 

 

and  
lim sup[Am(t) + Sm(t) + Es (t) + El (t) + Im(t) − N ∗ (t)] ≤ 0 
t→∞ 

m m m 

λa(t)Im −αh − µh 0 0 0 0 0 0 0 

0 αh −µh − δh − γh 0 0 0 0 0 0 

0 0 γh −µh − ωh 0 0 0 0 0 

0 0 0 0 −a45 αE(t) αE(t) αE(t) αE(t) 

0 0 0 0 a55 −λb(t)Ih − µm(t) 0 0 0 

0 0 0 0 0 pλb(t)Ih − µm(t) − θm(t ) 0 0 

0 0 0 0 0 a76 0 −µm(t) 0 

0 0 0 0 0 a86 θm(t) 0 −µm(t) 
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) A 0 

n 

 
 

where Nm
∗ (t) is the unique ω-periodic positive solution of equation (3.14) in C ([0], R+)\ 

{0}, and thus given by 

N ∗ (t) = e−
 t 

µm(s)ds ×    

 
  t

 

0 

 

( 
Am(s) 

)
 

s 
µm(ω)dω 

  τ 
αE (s)(1− 

 
Am(s) 

N (s)e Kc 
 

 

[
 s µm(s)ds] 

 
 

0    αE(s)  1 − K
c
 NA(s)e 0 ds + e[

 τ µm(s)ds]−1 

Follows from equation (3.13) and equation (3.14) that Nh
I (t) < 0 and Nm

I  (t) < 0, pro- 

vided that Nh(t) > η/µh and Nm(t) >  h0 respectively.  This implies that all solutions 

of the system (3.9) are uniformly bounded [98]. 

 

3.3.1 Malaria Dynamics Threshold 

In Figure 3.1, the disease compartments due to malaria infections in both the human 

and mosquito populations are define. These are classified as either exposed, infectious, 

or recovered, which includes variables such as Eh,  Ih, Rh,  Es , El , Im. Since the 
m m 

system (3.9) has two disease-free solutions, which are a trivial disease-free equilibrium 

and a non-trivial disease-free periodic solution. The non-trivial version of the disease- 

free equilibrium will be analysed, as the trivial disease-free equilibrium is ecologically 

unrealistic due to the fact that the mosquito population will not be included. Therefore, 

for convenience, the threshold quantity Qn(t) can be defined using Figure 3.1 as 

 

  αE(t)φEA(t)  
Q  (t) = (3.17) 

µm(t)(φEA(t) + µa(t)) 

0 

0 
m 
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Kc 

a 1 a 

 

 

To find the non-trivial disease-free state, the states Eh = Ih = Rh = Es = El = 
 

Im = 0 in the system (3.9) which implies a disease-free equilibrium condition as 
 

Eo = (Sh
∗,  Eh

∗,  Ih
∗,  Rh

∗ ,  A∗
m,  Sm

∗ ,  Es∗
m,  E l

∗ 
,  Im

∗ ) 

= (η/µh,  0,  0,  0,  A∗
m(t),  Sm

∗ (t),  0,  0,  0) 

 

(3.18) 

 

where A∗
m(t) and Sm

∗ (t) are the unique positive periodic solution of the system (3.9) 

(satisfying for Qn(t) > 1 ∀ t ≥ 0) and given by 

 

Ȧ (t) = α (T ) 

(

1 − 
Am(t) 

  

N (t) − µ (T )A (t) − φ 

 

(T )ϕ(τ  , µ  , T̂ ) 

 

Ṡm(t) = φEA(T )ϕ(τ1, µa, T̂ ) − λb(T )Sm(t)Ih(t) − µm(T )Sm(t) 

Hence, the local, asymptotically stability of the disease-free solution of equation (3.18) 

would be computed using the approach of the next generation operator [165]. 

 
3.3.2 Computation of Reproduction Ratio 

The computation of basic reproduction ratio of the system (3.9) will be explored ac- 

cording to the theory developed in [98, 171],  which is a generalization of the work  

in [165] for non-autonomous case. By linearizing the system (3.9) at the disease-free 

periodic state Eo  =  (η/µh,  0,  0,  0,  A∗
m(t),  Sm

∗ (t),  0,  0,  0), then a reduce system 

(3.20) is obtained, and given by 

(3.19) 
E A m EA 
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−α v 0 0 0 0h 

 22 

 

 

 
 

 Ėh(t) = λa(T )Sh(t)Im(t) − (αh + µh) Eh(t) 

Ė  s (t) = pλb(T )Sm(t)Ih(t) − (µm(T ) + θm(T )) Es (t) 

Ė  l (t) = (1 − p)λb(T )Sm(t)Ih(t) − (1 − p)λb(T )ψ(τ2, µm, T ) − µm(T )El (t) 

 İm(t) = θm(T )Es (t) + (1 − p)λb(T )ψ(τ2, µm, T ) − µm(T )Im(t) 

 

 

 

 

 
 

 I
˙
h(t) = αhEh(t) − (µh + δh + γh) Ih(t) 

 Ṙ 
h(t) = γhIh(t) − (µh + ωh) Rh(t) 

 
 

 
m m 

 
 

 
 

Hence, the matrices F (t) and V (t) denoting the new infection and the infection trans- 

fer respectively are computed below. 

0 0 0   0   0   f16 

0 0 0  0  0 0 
  

 v11 0 0 0 0 0  

  
0 0 0  0  0 0 

F (t) =   and V (t) =  
0 −γh   v33 0 0 0 

0   f42   0  0  0 0 

0   f52   0  0  0 0 

0   f62   0  0  0 0 

0 0 0 v44 0 0 

0 0 0 0 v55 0  

0 0 0 −θm(t) 0 v66 

 

The matrix F (t) is a next generation matrix of the system (3.20) showing the new 

infection terms of malaria. Denoting the matrix F (t) by F (t)|6×6, where entries f16 = 

η/µhλa(t), f42 = pλa(t)Sm
∗ , f52 = (1−p)λb(t)Sm

∗  and f62 = (1−p)λb(t)Sm
∗ e−µm(t)τ2(t). 

The remaining entries of F (t)|6×6 are all zeroes except those mentioned (f16, f42, f52, f62). 

Similarly, the matrix V (t) is a Metzler Matrix [42] showing the transition terms of the 

malaria infection of the system (3.9). The Metzler Matrix is denoted mathematically by 

V (t)6×6, having diagonal entries diag(v11, v22, v33, v44, v55, v66), where v11 = αh + µh, 

v22 = µh + δh + γh, v33 = µh + ωh, v44 = µm + θm and v55 = v66 = µm. Also, 

(3.20) 

m m 

m 
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ω 

 

 

the V (t)6×6 has left off-diagonal entries, off-diag(v21, v32, v64), where v21  =  −αh,  

v32 = −γh and v64 = −θm. The remaining entries of the V (t)6×6 are all zeroes, except 

those in diagonal and left off-diagonal as mentioned. 

The linearized system of the disease-free periodic state solution in equation (3.18) 

can be written in abstract form, given by 

 

y˙(t) = (F (t) − V (t))x(t) (3.21) 

 
where x(t) = (Eh(t), Ih(t), Rh(t), Es (t), El (t), Im(t))T . 

m m 

Let Y (t, s), t ≥ s, be the evolution operator of the linear ω-periodic system 

 
y˙(t) = −V (t)y (3.22) 

 
That is, for each s ∈ R, the 6 × 6 matrix Y (t, s) satisfies [98, 171] 

 

 

Ẏ (t, s) = −V (t)Y (t, s), ∀ t ≥ s, Y (s, s) = I (3.23) 

where I  is an identity matrix of order 6 × 6.  Let CT  be the ordered Banach space  

of all ω-periodic functions from R to R6, which is equipped with the maximum norm 

and positive cone C+{φ  ∈ Cω : φ(t) ≥ 0, ∀t  ∈ C} [98, 171].  Suppose that φ(s) ∈ 

CT (ω-periodic in s) is the initial distribution of infectious individuals in this periodic 

environment. Thus, F (s)φ(s) is the rate of new infections produced by the infected 

individuals who were introduced into population at time s [98, 171]. At time t ≥ s, 

then it follows that Y (t, s)F (s)φ(s) denotes the distribution of those individuals who 

were newly infected at time s and remain in the infected compartments at time t for 
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λ 

 

 

t ≥ s. 

 
ψ(t) = 

 
 
 

 
t 

Y (t, s)F (s)φ(s)ds = 
−∞ 

 

 

∞ 

Y (t, t − a)F (t − a)φ(t − a)da (3.24) 
 

 

Therefore, equation (3.24) describes the cumulative distribution of new cases of infec- 

tions at time t produced by all those infected individuals φ(s) and introduced at a prior 

time. Let us consider a linear operator L : CT → CT [98, 171], such that 

(Lφ)(t) = 

( ∞ 

Y (t, t − a)F (t − a)φ(t − a)da ∀ t ∈ R, φ ∈ C 
 

 
. (3.25) 

 

Hence, the reproduction ratio R0∗, is then defined by the spectral radius of L, thus 

represented by ρ(L). This is given as R0∗ := ρ(L);  however  it can be verified for  

the system (3.9).  Then, the result below follows from Theorem 2.2 in [171].  Let 

W (t, λ) be the monodromy matrix of the following ω-periodic system with parameter 

λ ∈ (0, ∞). 

Ẇ (t) = 

(

−V (t) + 
1 

F (t)

  

W (t), t ∈ R (3.26) 

Since F (t) is non-negative and −V (t) is cooperative, it follows that ρ(W (ω, λ)) is 

continuous and non-increasing for λ ∈ (0, ∞), and limλ→∞ρ(W (ω, λ)) < 1 [171]. 

Theorem 1. The disease-free-state (DFS) of the non-autonomous system (3.9), given 

by equation (3.19), is locally asymptotically stable if R0∗, is less than unity. The 

disease-free-state is unstable if R0∗ exceeds unity. 

Remark: The epidemiological quantity R0∗ measures the average number of sec- 

ondary infections generated by a typical infected individuals introduced into com- 

pletely susceptible population. The following result can be used to numerically com- 

pute the reproduction ratio R0∗ of the equation (3.9) (R0 is used instead of R0∗ in 

0 

0 

( ( 

T 
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our notation). Following from Theorem 1, the spread of malaria can be effectively 

controlled in a population when R0∗ < 1. 

The basic reproduction number associated with the autonomous version of the non- 

autonomous system (3.9), denoted by R0 = ρ(FV −1), where ρ = spectral radius of the 

next generation matrix. Its computation follows first by setting λa(T ) = λa, λb(T ) = 

λb, µa(T ) = µa, αE(T ) = αE, φEA(T ) = φEA, τ1(T ) = τ1, τ2(T ) = τ2, µm(T ) = µm 

and θm(T ) = θm in the system (3.9). Then, the associated R0 of the autonomous 

version of the system (3.9) is defined below 
 

R = 

I
  λaη 

(

λ (1 − p)e−µmτ2 + λ p
  θm  

 

 
  

 µhµm (αh + µh )(µh + δh + γh) a 
(θ + µm ) 

(3.27) 
 

 

3.4 Results Presentation and Discussion 

 
This section presents numerical simulations of the system 3.9 to illustrate the impact 

of temperature-dependent maturation and extrinsic incubation delay on the dynamics 

of human malaria. All the simulations were run using a package in R-software called 

deSolve. Subsequently, a sensitivity analysis was performed to determine the most 

dominant parameters influencing the spread of malaria against the proposed model. 

The set of parameters and values used for running the simulations can be found in 

Table 4.3 and their references therein. Furthermore, the ranges and baseline values of 

the temperature-dependent parameters of the system (3.9) were computed using their 

respective functional forms presented in subsection 3.2.3. 

m 
b 0 
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3.4.1 Numerical simulations 

 
The spread of malaria in a human population is largely leveraged by the density of im- 

mature mosquitoes that emerge as adults. In this, the maturation delay is the antecedent 

that drives the abundance of adult mosquitoes. Over and above, the maturation delay 

depends on climatic factors, and particularly the ambient and water temperature. 

By using the temperature-dependent maturation delay function in [112] given by 

τ1 = (−0.00094T 2 + 0.049T − 0.522)−1, and computed the total maturation delays 

as precedents between 16◦C to 34◦C. The delay values obtained were then used to 

assess their impact on the system (3.9) and observed the pattern presented (see Figures 

3.6–3.18). The plots shown in Figure 3.6 and 3.7 depicts the dynamics of immature 

mosquitoes with a maturation delay. In Figure 3.6,  a simulation was performed for  

τ1 = 107 days (at 17◦C equivalent) while the remaining parameters (see Table 4.3) 

were held constant, except αE = 5 eggs. A damping oscillation pattern to the point of 

stability was observed as the time increased. Similarly, another simulation was ran as 

shown in Figure 3.7, but for τ1 = 12 days (at 27◦C equivalent), and with αE = 5 eggs. 

A pattern similar to Figure 3.6 was observed, but they were different in amplitude and 

stability as the time increased. Furthermore, a simulation was ran repeatedly using τ1 

values other than those considered in Figures 3.6 and 3.7. 

In summary, it was observed that, at temperatures around 23◦C to 29◦C, the survival 

and development rate of immature mosquitoes was optimum (indicating that immature 

mosquitoes would emerge as adult at an average of 12 days). This result gives an 

insight into the temperature-dependent maturation delays with a greater influence on 

the abundance of adult mosquitoes. Moreover, these results further reaffirmed the im- 

pact of climate factors, and notably temperature by showing compelling evidence for 
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their influence on the spread of malaria and other related vector-borne diseases, such 

as dengue, West Nile Virus (WNV) among others. However, as part of the preven- 

tive mechanisms to control immature mosquitoes, the use of larvicide, sanitation and 

sewage control will strengthen the efforts to curb breeding sites. 

 

 

Figure 3.6: The effect of maturation delay on the dynamics of immature mosquitoes, 

Am(t) when τ1 = 107days, αE =  5 eggs, Kc  =  4  104, while all other parameters 

(see Table 4.3 of the model 3.1 were held constant during the simulation. 
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Figure 3.7: The effect of maturation delay on the dynamics of immature mosquitoes, 

Am(t) when τ1 = 12days, αE = 5 eggs, Kc = 4 104, while all other parameters (see 

Table 4.3 of the model 3.1 were held constant during the simulation. 

 
The plots shown in Figures 3.8 and 3.9 have metamorphosed from Figures 3.6 and 

3.7, illustrating the dynamics of the recruited susceptible adult mosquito population. 

This shows that a large number of immature mosquitoes emerging as adults increases 

the likelihood of an abundance of mosquitoes susceptible to becoming transmitters of 

malaria. Hence, this depends on temperature dependent maturation delay, which is the 

risk factor leveraging malaria’s transmission. Subsequently, the abundance of adult 

mosquitoes has a direct consequence on the rate of the malaria’s transmission in a pop- 

ulation.  The pattern shown in Figure 3.8 was produced by using the values for Figure 

3.6. Thus, as the maturation delay is, τ1 = 107 days (at 17◦C equivalent), the population 

of susceptible mosquitoes stabilizes faster. This indicates that at lower temperatures, 

say less than 17◦C, the maturation of immature mosquitoes takes longer, and thus many 

would eventually die. Similarly, another simulation was performed using the same pa- 
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rameter values for Figure 3.7 and this produced Figure 3.9. We fixed τ1 = 12 days (at 

27◦C, equivalent), and observed the pattern of the susceptible mosquitoes. Hence, the 

pattern shown illustrates that, at 27◦C, the immature mosquito dynamics were suitably 

supported. As a result, malaria would be likely to be transmitted due to the abundance 

of susceptible mosquitoes described by the long term damping oscillation. 

 
 

 

Figure 3.8: The dynamics of the susceptible mosquito pattern showing short term 

oscillation in the population, when τ1 = 107 days at approximately temperature of 

16◦C. 
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Figure 3.9: The dynamics of the susceptible mosquito pattern showing long term os- 

cillation in the population, when τ1 = 12 days at approximately temperature of 27◦C. 

In Figures 3.10 and 3.11, it was further performed a simulation and presented the 

pattern of infectious humans and mosquitoes. The impact of a temperature-dependent 

extrinsic incubation period on infectious human dynamics was examined, as shown in 

Figure 3.10. The parameter τ2 = 10, 11, 12, 13and14 while the other parameters (see 

Table 4.3) were fixed during the simulation. Thus, it was observed that as, τ2 increases, 

the number of infectious humans decrease and vice-versa. In addition, the result fur- 

ther substantiates that, at temperatures between 20◦C to 28◦C, the pathogens causing 

malaria hasten the extrinsic incubation period. Thereby, the spreading of the malaria 

infection would be effective in a population experiencing this temperatures regime. On 

the other hand, Figures 3.11 and 3.12 depict the pattern of infectious mosquito dynam- 

ics over time. This result shows the sensitivity of temperature on the abundance of 

infectious mosquitoes. The increase in value τ2 decreases the abundance of infectious 

mosquitoes to the point of stability, as shown in Figure 3.11. However, decreasing 
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τ2 would enable a large number of mosquitoes to become potential candidates for the 

spread of malaria (see Figure 3.12). 

 

Figure 3.10: The pattern of infectious humans, for τ2 = 10, 11, 12, 13and14 are indi- 

cated using the colours green, black, red, blue and brown respectively. 
 
 

Figure 3.11: The pattern of infectious mosquitoes over time t when τ2 increases. 
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Figure 3.12: The pattern of infectious mosquitoes over time t when τ2 decreases. 
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Figures 3.13 and 3.14 presents the simulation results of exposed mosquitoes un- 

dergoing a short and long term extrinsic incubation period, respectively. The pattern 

depicted in Figure 3.13 describes that, at ambient temperatures between 23◦C to 28◦C, 

the malaria parasites develop faster inside their host mosquito. However, at this range 

of temperatures 16◦C ≤ T  < 23◦C, the parasites develop at a slow phase due to a 

lower temperature regime.  While,  in this scenario,  28◦C ≤  T  < 34◦C the parasites 

also develop slower as the temperatures is more extreme and lethal to their survival. 
 
 

 

Figure 3.13: The pattern of exposed mosquitoes undergoing a short-term extrinsic 

incubation period; this scenario has been simulated for temperatures between 23◦C to 

28◦C. 
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Figure 3.14: The pattern of exposed mosquitoes undergoing a long-term extrinsic 

incubation period. We performed the simulation using temperatures greater than 28◦C 

but less than or equal to 34◦C, and greater than or equal to 16◦C but less than 23◦C. 

 
Figures 3.15 and 3.16 illustrate the pattern of susceptible human dynamics and 

exposed human dynamics. The pattern in Figure 3.15 reveals that an increase in τ2 

increases the population of susceptible humans; however, a decrease in τ2 increases the 

population of infectious mosquitoes that are able to infect more susceptible humans. 

Thus, this decreases the population of susceptible humans. As the human population 

are infected with malaria by infectious mosquitoes, humans have different chances to 

contact the infection. Hence, the variability in susceptible human populations against 

the dynamics of malaria transmission is presented in Figure 3.16. 
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Figure 3.15: The pattern of susceptible humans dynamics. 

 

Figure 3.16: The pattern of exposed humans dynamics. 

 
The Figures 3.17 and 3.18 presents the human recovery pattern increase as the 

increase in τ2. 
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Figure 3.17: The human recovery pattern from malaria infection. 
 

 

 

 

 

Figure 3.18: The human recovery pattern from malaria infection increases by small 

shifts. 
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3.5 Sensitivity Analysis 

 
The central idea for infectious disease modelling is to investigate and understand it 

transmission potential by determining the necessary factors responsible. This is to 

reduce human infectiousness by strategising effective prevention and control mecha- 

nisms. This chapter analyses a model for malaria transmission (see Figure 3.1), involv- 

ing 17 parameters, and each of these parameters have a causative influence on human 

infectiousness to varying degrees. The aim is to search and identify the most influen- 

tial parameters of the system (3.9), and accordingly, a sensitivity analysis (SA) will be 

performed against the model output. Then, the output variable of interest that will be 

used to perform the SA in the system (3.9) is the infected human dynamics, Ih(t). The 

SA methods are presented in the following subsections: 

 
3.5.1 Latin Hypercube Sampling Partial-Rank Correlation Coef- 

ficient 

The two techniques called Latin Hypercube Sampling and Partial Rank Correlation 

Coefficient (LHS-PRCC) [188] would be both deployed to perform the SA. These  

are two independent methodologies and are used for different purposes, but are often 

combined when applying to SA [188]. 

LHS is a stratified Monte Carlo sampling scheme [180, 188], in which each pa- 

rameter range is divided into N distinct equal intervals and this randomly draws one 

sample from each interval. In this approach, the entire range of each parameter and 

each interval for each parameter would be randomly sampled once. The LHS is more 

efficient than the Monte Carlo sampling approach [78], due to stratified sampling with- 

out replacement. This enables a rapid convergence as the number of samples increase 
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over the parameter space. 

PRCC is an efficient and reliable technique that uses LHS. This provides a measure 

of monotonicity between the parameters and output of interest after excluding the lin- 

ear effects of all parameters excepting the parameter of interest [180]. PRCC is a robust 

sensitivity measure that assists in the identification of most influential parameters and 

optimizes the model structure.  The population parameter ρxj y , denotes a correlation 

coefficient between two variables, xj and y and can defined as: 

 

  Cov(xj, y)  
ρxj y  =  

V ar(x )V ar(y) 
,
 

and j = 1, 2, · · · , m (3.28) 

 

where  ρxj y   =  ±1 is  a  constraint  on  the  correlation  coefficient,  while  Cov(xj, y), 

V ar(xj) and V ar(y) are covariance of xj and y, variance of xj and variance of y 

respectively. The correlation coefficient gives the measure of strength of a linear as- 

sociation between input xj and output y. Hence, the partial correlation coefficient 

between xj and y is the correlation coefficient between the two residuals (xj − x̂j) and 

(y − ŷ), where x̂j and ŷ are defined using the following linear regression models: 

 
k 

x̂j = c0 + cpxp and 

p=1 

k 

ŷ = b0 + bpxp (3.29) 

p=1 
p  j p/=j 

 

The PRCC values should lie between -1 and +1, such that the values of PRCC are 

sometimes called the sensitivity index. When a parameter has an absolute value of its 

PRCC close to one, then it indicates the parameter is sensitive or has a strong impact 

on the model. In general, the computation of LHS-PRCC involves seven steps that are 

well described in [104]. 
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3.5.2 Processing of Parameter Space 

 
In the system (3.9), there are 17 parameters, hence by doing the sensitivity analysis 

the robustness of the model output (Ih(t)) using the parameter space will be explored. 

All the parameter values and their ranges can be found in Table 3.2 (most of the values 

used were adopted from the literature and their references therein). First, as a baseline, 

the parameters τ1 and τ2 were chosen as control parameters to investigate their effects 

on the dynamics of human infectiousness Ih(t) at time t. Then, the LHS will be apply 

to explore a certain-dimensional parameter space. The package lhs in R software was 

used to simulate 10000 sample points in the 17-dimensional unit cube.  Each point   

in the unit cube sampling of the 17-dimensional parameter space was mapped using 

the minimum and maximum values for each. By doing so, a parameter set would be 

generated by rescaling the simulated LHS using the factor: 

 
υk = lhs[ , .] ∗ (υkmax − υkmin) + υkmin, k = 1, 2, · · · , 17 (3.30) 

 
where lhs[ , .] is the index of the lhs corresponding to the parameter column and where 

υk, υkmin and υkmax are the parameter default, minimum and maximum values, re- 

spectively. 

 
3.5.3 Sensitivity Analysis Results 

 
The Table 3.2 presents the results of the sensitivity analysis for the system (3.9) using 

LHS-PRCC. It follows that none of the associated confidence intervals of the PRCC 

values contain zero, hence all estimates of the model parameters are robust. In order to 

depict the PRCC values pattern presented in Table 3.2, and visualised in Figure 3.19. 
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From the results presented in Table 3.2, it is observed that the most influential 

parameters of the system (3.9) are αE|PRCC| =  0.80664,  Kc|PRCC| = 0.57280, 

b|PRCC| = 0.93165, cm|PRCC| = 0.80127 and τ2|PRCC| = 0.98257. All pa- 

rameters with values crossing the upper bound (greater than 0.5, as indicated in Fig- 

ure 3.19),  are strong and positively correlated with human  infectiousness.  However, 

the parameters µa|PRCC| =  | − 0.79813| and τ1|PRCC| =  | − 0.63662|,  with 

values crossing the lower bound (less than -0.5, as indicated in Figure 3.19), have a 

strong negative influence on human infectiousness. Furthermore, parameters, such as 

γh|PRCC| = | − 0.49634|, φEA(T )|PRCC| = 0.36423, µm|PRCC| = −0.47952, 

θm|PRCC| = 0.43543 and a|PRCC| = 0.33642 have a moderate correlation (since 

all their values lie between -0.5 to 0.5, as shown in Figure 3.19). Hence, the remaining 

parameters include: η|PRCC| = 0.02489, µh|PRCC| = 0.01056, ωh|PRCC| = 

0.02424 and αh|PRCC| = 0.18587 and are insensitive to causing variation in human 

infectiousness. 

An effective strategy to reduce the malaria infections would be suggested based on 

the associated PRCC values of the system (3.9) parameters. A high PRCC value for the 

egg deposition rate, αE|PRCC| = 0.80664 shows the possibility of a large number of 

adult female mosquitoes. This owes to the abundance of nutrients and the availability 

of breeding sites to enable the mosquitoes’ survival and reproduction, as indicated by 

the PRCC value parameter, Kc|PRCC| = 0.57280.  Moreover, the absolute value of 

the total maturation delay of aquatic mosquitoes, τ1|PRCC| = 0.63662 also shows a 

high association with the density of adult mosquitoes. Consequently, the abundance 

of adult female mosquitoes will trigger the biting of available humans, as indicated by 

cm|PRCC| =  0.80127.  The high and relatively suitable temperature,  supports The 

survival of mosquitoes, and the biting rate of humans will eventually increase. Hence, 
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once mosquitoes bite an infectious human and become infected, the temperature also 

supports the development of malaria parasites, which has been shown by the influence 

of τ2|PRCC| = 0.98257. Subsequently, the transmission of malaria continues as 

mosquitoes are infectious and capable of transmitting the infection, as indicated by 

the transmission probability, b|PRCC| = 0.93165. From the results of the model’s 

sensitivity analysis, hence suggest the strategy to prevent the spread of malaria due to 

the control of the following parameters cm, αE, Kc, µa, and µm. 

Table 3.2: Partial rank correlation coefficients of the system (3.9) parameters. 
 

Label Parameter PRCC Bias Standard Error 95% Confidence Interval 

a η 0.02489 0.00054 0.00751 0.00982, 0.03888 

b µh 0.01056 0.00032 0.00720 0.00263, 0.02530 

c ωh 0.02424 0.00033 0.00649 0.01116, 0.03609 

d αh 0.18587 0.00021 0.00741 0.17098, 0.20026 

e δh -0.04278 0.00022 0.00717 -0.05738, -0.02981 

f γh -0.49634 0.00060 0.00161 -0.62310, -0.39943 

g αE 0.80664 0.00017 0.00330 0.80027, 0.81304 

h Kc 0.57280 0.00024 0.00707 0.41687, 0.61038 

i µa -0.79813 0.00054 0.00335 -0.80365, -0.79066 

j φEA 0.36423 0.00029 0.00761 0.34947, 0.37936 

k µm -0.47952 0.00011 0.00571 -0.49112, -0.46860 

l θm 0.43543 0.00054 0.00703 0.42202, 0.54890 

m a 0.33642 0.00005 0.00746 0.12220, 0.45218 

n b 0.93165 0.00003 0.00100 0.92971, 0.93368 

o cm 0.80127 0.00003 0.00157 0.79780, 0.90450 

p τ1 -0.63662 0.00004 0.00805 -0.85264, -0.52021 

q τ2 0.98257 0.00003 0.00035 0.98185, 0.98320 

The PRCC values in bold indicates the sensitivity of the malaria model’s parameters. 
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Figure 3.19: Sensitivity of the parameters for the system (3.9) obtained using the 

LHS-PRCC sensitivity analysis. The Partial Rank Correlation Coefficients show the 

influence of each parameter on the dynamics of the infectious human population, Ih(t). 

 

3.6 Summary 

 
In this chapter, a mathematical model for malaria’s transmission was developed, and 

the impact of temperature on delay due to the extrinsic incubation and maturation in 

mosquito dynamics was analysed. The model was analysed both theoretically and 

numerically to investigate human infectiousness. Also, as part of the preventive mech- 

anisms, a sensitivity analysis was performed on the model and the most dominant 

control parameters were identified. However, the mathematical model has a limitation 
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due to its inability to effectively investigate heterogeneity arising in human character- 

istics in a population. Hence in Chapter 4, this limitation will be address by deploying 

Agent-based modelling. 
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4 

Agent-Based Modelling of Malaria 

Transmission Dynamics 

In this chapter, an agent-based modelling approach was developed to investigate malaria 

transmission dynamics and its appropriateness for future use was examined. 

 

4.1 Introduction 

 
In an effort to end the threat of malaria several studies (e.g., [21, 67, 116, 123, 129, 

131, 132, 148]) have been carried out using (mathematical) compartmental modelling 

techniques to model and understand the disease transmission dynamics, which helped 

researchers to investigate the progression of disease from a population perspective by 

characterising individuals according to their health status (e.g., susceptible, infected 

and recovered). Compartmental models are more often used compared to other types 

of models, such as stochastic models, complex network models, statistical process con- 

trol models, spatial models and machine learning-based models [150]. This is mainly 

 
Chapter 



77 

  4.1 Introduction 
 

 

 

 

because of their effectiveness in tracking disease progression and thereby transforming 

compartments into differential equations. Although compartmental models are pow- 

erful tools to investigate the disease dynamics, they impose a severe constraint, i.e. 

assuming homogeneity across the human population [79]. This means that each and 

every individual in the population has constant rates of infection, recovery and immu- 

nity loss. 

As a matter of fact, the human population is heterogeneous, and influenced by a 

broad spectrum of factors, including age, sex, spatial and temporal changes, human 

movement patterns, and social network patterns [90] amongst others. This limitation 

makes compartmental models inadequate for capturing the heterogeneities arising from 

the population dynamics of malaria. To address the limitations, we propose an agent- 

based modelling approach that alleviates the limitations imposed by compartmental 

models and permits modelling and analysing malaria dynamics for heterogeneous pop- 

ulations. 

Agent-based models (ABMs) are computational modelling tools consisting of agents, 

which communicate to each other within their environment and behave according       

to pre-defined rules. ABMs are powerful due to their stochasticity, spatial explicit- 

ness, and discrete-time-based simulation where each agent interacts in space and time 

[76]. ABMs often work as a bottom-up modelling approach, as population-based be- 

haviour emerges from interactions amongst autonomous agents [178]. This character- 

istic means that ABMs are more flexible because of their ability to consolidate hetero- 

geneous variables (e.g., host movement, heterogeneous implementation interventions) 

and stochastic (e.g., inter-patient variability at the time of infection,  time to recov-  

ery, and the location of infection) [153]. Furthermore, ABMs allow a high degree of 

heterogeneity in the creation, disappearance and movement of a finite collection of dis- 
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crete interacting individuals [178]. The stochasticity of ABMs permits variation due to 

randomness, and thus more accurately mimics the transmission of malaria; it thereby 

reduces the effects of systematic preference amongst the agents [153]. 

The agent-based malaria transmission models developed in this study enables us 

to investigate not only individual agents behaviour, but also how they communicate to 

each other according to predefined rules and their responses to climate factors. The 

agent-based models will be utilised to simulate the actual malaria cases in Tripura, 

Limpopo and Benin using the climate and demographic data obtained for these cities. 

Hence, the emerging results will be used to validate against the actual reported cases 

these cities. We also perform some statistical tests, such as t-test for 2-independent 

samples and correlation analysis, to evaluate the accuracy of the proposed model. 

 

4.2 Model Development 

 
This section provides a theoretical background for compartmental modelling, agent- 

based modelling and their application to the study of malaria. We first present a malaria 

transmission model, as shown in Figure 3.1, and describe its dynamics in human and 

mosquito populations; we also discuss the resultant complexity from the impact of 

temperature. 

Malaria spreads into the human population through bites by the anopheles mosquito 

(female type), seeking human blood for nourishment and egg production. Figure 3.1 

presents the compartments describing the human and mosquito dynamics, in which the 

human dynamics are structured using SEIR (susceptible, exposed, infected and recov- 

ered) attributes, and mosquito dynamics are structured using ASEI (aquatic, suscep- 

tible, exposed and infected) attributes. Temperature is incorporated into the model to 
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account for its influence on the biting rate, survival rate, parasite development, juvenile 

maturation rate and mortality rate. 

 
4.2.1 Mathematical Model 

A compartmental model is a mathematical modelling technique that has long been used 

to investigate epidemics and public health policies. The ‘classical model’ [103] was the 

first mathematical technique that appeared in the literature that studied malaria trans- 

mission. Since then, several remarkable extensions have been made (e.g.,[21, 27, 28, 

60, 67, 100, 116, 123, 129, 131, 132, 148]) that build upon this model, addressing var- 

ious emerging problems. In the mathematical modelling of malaria, a compartmental 

model (see Figure 3.1) is used to describe the disease status transition using a set of dif- 

ferential equations [80]. The population within a particular compartment in a disease 

transmission model is assumed to be homogeneous, well-mixed and split (for instance, 

the SIR model) into compartments based on health status, for example., susceptible, 

infectious and recovered. Hence, each compartment of the disease transmission model 

is defined by its own differential equations [62]. As shown in Figure 3.1, the human 

population is split into four compartments depicted by the rectangular boxes labelled 

Sh, Eh, Ih, Rh indicating susceptible, exposed, infectious and recovered humans, re- 

spectively. Similarly, the mosquito population is split into five compartments that in- 

clude its juvenile stages, labelled Am, Sm, Es , El , Im indicating aquatic, susceptible, 
m m 

short-term exposed, long-term exposed and infectious, respectively. The differential 

equation governing the compartmental model shown in Figure 3.1 is given in system 

3.9. Table 3.1 detailed the definition of the parameters in Figure 3.1 while their values 

including their references (see Table 4.3). This model can be used to better understand 
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the dynamics in a malaria transmission. However, mathematical models have proven 

suitable for modelling systems at a macro-scale rather than at fine granular levels. 

 
4.2.2 Agent-Based Modelling 

 
In contrast to a mathematical model, an agent-based model is generally characterised 

by a bottom-up modelling approach. The agent-based approach enables individual 

agents to interact within their environment and behave according to predefined rules 

[173]. In addition, individual entities are represented by discrete autonomous agents 

communicating among themselves in a space to produce non-intuitive emergent pat- 

terns at the population level [119]. Moreover, agent-based modelling represents purely 

rule-based algorithms, which start from scratch and continue until the desired model 

represents the real-world phenomena of interest. In general, agent-based modelling is 

characterised by its ability to capture heterogeneity, spatial and complex interactions, a 

micro-scale perspective, discrete time considerations and non-intuitiveness. All agents 

involved in the agent-based modelling of the malaria transmission dynamics in Figure 

3.1 (including their detailed descriptions) are presented in the following subsections. 

 

4.2.2.1 Human Agents 

 
An infected human agent can transmit the malaria infection to susceptible mosquitoes 

provided that the incubation period of the malaria parasite in the human is complete. 

This period is called intrinsic incubation period (IIP), which literally refers to the start- 

ing time when an infected mosquito has successfully infected a susceptible human, and 

the pathogen has started to greatly increase in number inside the host body [85]. Sub- 

sequently, when the pathogen has multiplied and reached a certain threshold, malaria 
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symptoms would then manifest. Furthermore, the chances of infection transmission 

would be very high during this period. The IIP is accounted for in Figure 3.1 and 

particularised as an exposed compartment in the human dynamics. In essence, agent- 

based modelling tries to realistically imitate the behaviour of individual agents and 

their interactions in the environment. The transmission of malaria is characterised by 

spatial and temporal considerations, in which the movement of people, whether short 

or long term, supports the spread of the malaria infection. For obvious reasons, people 

move from place to place within their environment for different purposes. This study 

considers the movement of people within their environment regardless of where they 

are heading, and thus observe the emerging patterns. Although mosquitos usually bite 

at night, other species bite during the day; however this study track the pattern of the 

infection spread irrespective of day or night. 

 
4.2.2.2 Mosquito Agents 

 
The mosquito agent is a carrier of the malaria parasite, and moves freely through a 

space in search of humans to bite, and thus transmits the parasite. Naturally, mosquitoes 

have certain characteristics that compose their life-cycle, which includes: biting rate, 

mortality rate, egg-deposition rate, birth rate and immature mortality rate. 

A malaria infection starts, if a susceptible mosquito bites an infected human, fol- 

lowing which it becomes infected at a probability of b. Conversely, when such an 

infected mosquito bites a susceptible human, it infects the human with a probability 

of a. In Figure 3.1 we have illustrated the individual transition in the compartments 

(SEIR) and their respective probabilities. 



82 

  4.2 Model Development 
 

 

 

 

4.2.2.3 Pathogen Agents 

 
The pathogen is a parasite causing the malaria infection, which in a biological sense 

is called the plasmodium species. Plasmodium transfers to the susceptible mosquito 

through biting an infectious human and by sipping blood that contains the pathogen. 

Hence, the mosquito will become infected but not capable of transmitting the malaria 

infection to susceptible humans until the ingested blood containing the pathogen has 

developed. This will then follow some developmental stages before the mosquito be- 

comes infectious. The time it takes for the pathogen to complete its development inside 

the mosquito is called the extrinsic incubation period (EIP). This period is sensitive 

to environmental temperature [112], meaning at a relatively high or low temperature 

spectrum the EIP could be shorter or longer, respectively. 

 
4.2.2.4 Environment Agents 

 
The environment as an agent leverages the spread of malaria and is ever-changing   

in space and time as the climate changes. The environment plays a vital role in the 

transmission of malaria, and enables the movement of people and mosquitoes, provid- 

ing mosquitoes with breeding sites for egg deposition and the maturation of juvenile 

mosquitoes. In order to realistically represent the spatial movement of humans and 

mosquitoes, an artificial environment was created in the Netlogo platform (see Figure 

4.8), in which both humans and mosquitoes are displayed in the environment repre- 

senting the spatial distribution of agents in a town, city, or community settlement. 
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4.3 Materials and Methods 

 
This section presents a vivid description of the methodologies used to achieve the 

aim of this study. Three cities were selected, each from a different country; these 

were Tripura district in India, Limpopo province in South Africa and Benin city in 

Nigeria. World map data [10] were deployed to produce the maps of the three cities. 

However, since the entire city regions were difficult to handle or study, we resorted to 

the reduction of complexity in order to alleviate the computational task. 

A statistical technique was adopted to reduce the computational task and guide the 

selection of the best performing model. The tools for simulation and computational 

functions of the temperature-dependent parameters of the malaria transmission model 

in Figure 3.1 are also presented. 

 
4.3.1 Case Study 

 
This paper aims to investigate the dynamics of malaria in human and mosquito pop- 

ulations through agent-based modelling and mathematical modelling. The model de- 

veloped will be validated against reported cases of malaria for different populations. 

To do this, data from three cities in different countries were considered, this including 

Tripura district in India, Limpopo province in South-Africa and Benin City in Nige- 

ria. These countries are known for their malaria endemic status [72], and apparently 

have different seasons for transmission, climate patterns, parasites and vector species. 

For instance, Tripura district is known for its high malaria incidence, and its predom- 

inant species of malaria parasites are the plasmodium falciparum. This species alone 

is accountable for about 90% of the cases reported, and plasmodium vivax comprises 

the remaining 10% [59] of cases in the district. In Limpopo province, malaria is still 
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endemic, as incidence in the area is characterised by the low altitude and climate [38]; 

moreover, it is connected to other regions in sharing boundaries with some parts of 

Zimbabwe and Mozambique where malaria incidence is similarly high. Furthermore, 

the malaria season in Limpopo coincides with its warm and rainy summer that starts 

in September and goes through to May of the following year [55]. According to the 

World Health Organization (WHO), Nigeria is rated among the highest malaria en- 

demic countries across the globe [57], and Benin City is the capital of a state called 

Edo located in the southern part of Nigeria. The City has a tropical climate, which is 

characterised by a longer rainy season over a 12-month period and the average annual 

temperature is 26.1◦C. This rainfall pattern (with an average 2025mm annual precip- 

itation) is regarded as the most likely influential climate factor leading to the high 

incidence of malaria cases. 

 
4.3.2 Sources of Data 

 
The reported cases of malaria for Tripura district, Limpopo province and Benin City 

were taken from published sources [8, 20, 59] respectively. Since the occurrence of 

malaria is connected to climate factors, as such temperature data will be use for the 

computation of temperature-dependent parameters in the malaria model. This study 

uses the average monthly temperature data,  as temperature is the large-scale driver 

of malaria transmission since it influences the mosquito survival, the parasite devel- 

opment, its biting rate and the aquatic development of the juvenile mosquito. The 

following is the record of the average monthly temperature, for Tripura district [59], 

Limpopo province and Benin City [7]. The temperature data were collected for the 

same period of time, namely a year, in which the cases of malaria were reported (see 
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Table 4.1 for detailed information). 

Table 4.1: Information on the cases of malaria and temperature distribution for a pe- 

riod of one year as reported in the three cities 
 

Months Cities 
 Tripura district, 2011 Limpopo province, 2015 Benin City, 2011 
 Reported cases Mean temperature Reported cases Mean temperature Reported cases Mean temperature 

January 240 18 863 27.4 58 26.4 

February 298 29.95 1843 26.6 110 27.2 

March 552 27.5 1588 25 199 27.4 

April 254 27.9 411 22.3 258 27.5 

May 1398 29.4 85 18.2 534 27 

June 1817 29.1 38 15 512 25.6 

July 1833 29.05 25 15 396 24.5 

August 1760 29.35 49 17.9 787 24.5 

September 1181 29.3 123 21.5 1092 24.9 

October 684 27.55 192 24.2 129 25.9 

November 614 23.15 144 25.9 201 26.7 

December 431 17.95 83 26.9 54 26 

 

 
 

4.3.3 Relationship Between Malaria Occurrence and Temperature 

As temperature is a large-scale driver of malaria transmission, it is crucial to check 

and substantiate the existing relationship. This would enable to understand the spatial 

and temporal dynamics of malaria incidence. Figures 4.1–4.3 presents the relation- 

ships between the average monthly temperature distribution and the occurrences of 

malaria for Tripura district, Limpopo province and Benin City. As seen in Figure 4.1, 

the relationship existing between the plots is relatively positive, showing that an in- 

crease in the mean monthly temperature causes a significant increase in the pattern  

of malaria incidence in Tripura. As shown in Figure 4.1, the occurrences of malaria 

remain at high levels in the months starting from May until September.  This shows   

a relatively unceasing pattern of malaria that spreads in Tripura, and could be possi- 

bly due to the average monthly temperature distribution that falls around the optimal 

temperature conditions (ranging between 25◦C–27◦C [148]) which favour plasmodium 

parasite development. In Figure 4.2 the relationship is different from that observed in 
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Figure 4.1; this indicates the negative impact of a lower temperature regime due to the 

abundance of mosquitoes and parasite development. The parasite causing malaria will 

cease to develop when the temperature is below 14.5◦C for plasmodium vivax and pla- 

sodium malariae, and 16◦C for plasmodium falciparum [128]. Occurrences of malaria 

in Limpopo have lag effects of 1-2 months around the average monthly temperature 

distribution. This demonstrates the relationship between the malaria parasite incuba- 

tion period and temperature [117]. The malaria season in Limpopo starts during the 

last quarter of a given year and continues until the first quarter of the following year. 

In Figure 4.3, the pattern of malaria occurrence in Benin City is optimally driven by 

the average monthly temperature, which ranges from 25◦C–27◦C [148]. Moreover, the 

pattern of malaria incidence in Benin is perennial; its peak season starts February and 

lasts until November of the same year. 
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Figure 4.1: The plot describes the cases of malaria and temperature distribution re- 

ported in Tripura district, India [59]. 
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Figure 4.2: The plot describes the cases of malaria temperature distribution reported 

in Limpopo province, South Africa [7]. 
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Figure 4.3: The plot describes the cases of malaria temperature distribution reported 

in Benin City, Nigeria [7]. 
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4.3.4 Complexity Reduction 

The entire regions covering the cities shown in Figures 4.4(a–c) are too large in terms 

of population size and land size. To alleviate the computational difficulties, the region 

under study will be scaled down. Using the population size of the cities and land mass, 

the population density of the cities can be obtained from ρ = N/A, where ρ = popu- 

lation density, N = total human population and A = total land area. Table 4.2 presents 

the population density of the cities, showing that all cities have different densities. 

Hence, the cities were scaled down according to their densities, and the consideration 

was to study the areas covering the dimensions: 1km×1km in Tripura, 3km×3km in 

Limpopo and 1km×1km in Benin (as indicated in Figures 4.4(a–c)). Based on the 

reduced dimensions of the cities, as shown in Figures 4.4(a–c), the sub-population, or 

target population, of the demarcated areas were as follows: 1:35 (representing 350 peo- 

ple), 1:4 (representing 400 people) and 1:13 (representing 1300 people) respectively. 
 

 

Figure 4.4: Illustrates the scaling down of the Tripura district. 
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Figure 4.5: Illustrates the scaling down of the Limpopo province. 
 

Figure 4.6: Illustrates the scaling down of the Benin City. 

Table 4.2: Demographic information of the study areas. 
 

 Cities 

 Tripura district Limpopo province Benin City 

Population size 3,673,917 5,554,657 1,495,800 

Land area 10,492km2
 125,754Km2

 1,204Km2
 

Population density 350/km2
 44/Km2

 1242/Km2
 

Target population 350 400 1300 

Life Expectancy 69 62.77 54.5 
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4.3.5 Statistical tests 

 
It is a verifiable fact that synthetic data are often generated to represent original data 

even though they are relatively different. However, George Box says [40] that all 

models are wrong, but some are useful. This study focuses on the application of 

agent-based modelling and mathematical modelling to study malaria dynamics in a 

population; and thus compare the results against the real cases. In fact, it is difficult 

to pinpoint the model that is best representation of the reported cases of malaria in 

each of the cities by merely looking at plotted patterns. To address this challenges, a 

t-test for two independent samples [88] and a product-moment correlation [109] were 

utilised. These statistical tests are robust for testing whether there is a significant dif- 

ference between the means of the two independent samples (model generated cases 

and reported cases of malaria). The statistical tests results are discussed in Section 4.5 

while its summary is presented in Table 4.5. 

 
4.3.6 Parametrization 

 
Fundamentally, malaria transmission is leveraged by climate factors and, in particu- 

lar, temperature is the large-scale driver of its transmission. As shown in Figure 3.1, 

the mosquito related parameters, like the mosquito biting rate cm(T ), adult mosquito 

mortality rate µm(T ), immature mosquito mortality rate µa(T ) and adult mosquito 

egg deposition rate αE(T ), all depend on temperature. Since there was no empirical 

evidence or values of these temperature-dependent parameters for the cities selected, 

the functional relationship between these parameters [112] were utilised to determine 

the precise values corresponding to the demographic and climate information in Table 

4.2.  The temperature-dependent function of the parameters were described using  the 
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polynomial of degree two; their mathematical representations are shown in equation 

3.11. Similarly, the temperature-dependent linear function describing the immature 

mosquito mortality rate was defined in [133], and is shown in equation 3.12. 

Using the temperature records of these cities (see [59] for Tripura district and [7] 

for Limpopo province and Benin City), the values of the temperature-dependent pa- 

rameters can be obtain, and summarised in Table 4.3. The values are used in our 

simulations. Other parameters, e.g. the human birth or recruitment rate η, and the per 

capita human death rate µh, can be calculated using the population size and human 

life expectancy of the cities (see Table 4.2). This information was accessed in the cen- 

sus database of the cities through online published sources (following the references 

[11, 12, 13, 14, 15, 63]).  The formulas used for computing the human birth and death 

rates are η = µh × N  and µh = 1/(LE × I), where N  is the total human population 

size, LE is the human life expectancy and I is the index denoting the rate per month 

or day [98]. 
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Table 4.3: The parameter values and their ranges. 
 

 

1.7 × 10−5/day 5.5 × 10−5 − 1.1 × 10−2/day 

5 × 10−2/day (4.76 − 7.14) × 10−2/day 

1.84/day 1 − 500/day 

 
2.3 × 10−3/day 1.4 × 10−3 − 1.7 × 10−2/day 

10 10 − 14/days 

 
0.29/day 0.10 1.0/day 

m 

ϑ(T̂) 0.343/day 0.333 − 1.0 [131] 

Kc 4 × 104 50 − 3.3 × 106 [21, 131] 

τ1 12 10 − 37days [112, 131] 

δh 3.454 × 10−4 0 − 4.1 × 10−4/day [21] 
 

Symbol Baseline Range Reference 

η 

ωh 

µh 

µm 

4 × 10−5/day 

4 × 10−5/day 

(3.91 − 5) × 10−5/day 

(3.42 − 3.91) × 10−5/day 

[116] 

[21] 

[21] 

[21, 124] 

µa 
αE 

p 

αh 

γh 

1.04 × 10−1/day 

0.25 

5 × 10−3 

1 × 10−3 − 2 × 10−1/day 

- 

(2 − 7) × 10−3 

[21, 98, 131] 

[21, 98, 131] 

[116] 

[131] 

[21] 

θm 

τ2 
a 

9.1 × 10−2/day 

2.4 × 10−1/day 

2.9 × 10−2 − 3.3 × 10−1/day 

7.2 × 10−2 − 6.4 × 10−1/day 

[21] 

[132] 

[21, 50, 124, 131] 

b 
cm 

2.2 × 10−2/day 

2 

2.7 × 10−3 − 6.4 × 10−1/day 

- 

[21, 50, 131] 

[21, 50, 124, 131] 
[116] 

 



95 

  4.4 Experimentation 
 

 

 
 

4.3.7 Simulation Toolkits 

 
Two simulation platforms were used: VenSim [16] is for mathematical modelling and 

NetLogo [176] is for agent-based modelling. However, agent-based models can also 

be implemented through programming languages, such as C, Java and Python.  The  

C programming language was used to develop Repast, Soar and Swarm platforms. 

These platforms are primarily designed for social sciences, general learning problems 

and general purpose agent-based systems, respectively [17]; however, Java is a ver- 

satile programming language used in building many platforms, including: AnyLogic, 

Cougaar, JADE, MASON, Repast, SARL, Soar, Sugarscape and Swarm. In Python, 

agent-based models are implemented in a framework called Mesa, a modular frame- 

work for building, analysing and visualising agent-based models [46]. 

 

4.4 Experimentation 

 
In this section, we present our experiments by running the malaria model shown in 

Figure 3.1 using a mathematical modelling and agent-based modelling. A system dy- 

namic modeller in the VenSim platform was used to design the causal loop diagram 

shown in Figure 4.7, and the simulation of the malaria transmission model in Figure 

3.1. The NetLogo platform was subsequently utilised for agent-based modelling and 

simulation by tuning the values of the parameters in Table 4.3, e.g. average tempera- 

tures, population sizes, land masses, densities and human life expectancy. A detailed 

discussion of the experiments and processes is given below. 
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4.4.1 VenSim Simulation 

 
The digram in Figure 4.7 is a causal loop representation of the model in Figure 3.1 

using the VenSim system dynamic modeller. The values of the parameters in Table 

4.3 were picked and referenced to the cities’ climate and demographic information 

and supplied within the system dynamic modeller’s causal loop diagram in the VenSim 

platform (see Figure 4.7). Subsequently, the model was calibrated and the results were 

simulated within the ranges of the parameters; thus the dynamics of malaria transmis- 

sion were generated for each of the cities. The results obtained for each of the cities 

are presented in Table 4.4, and further depicted in Figures 4.13–4.15. 

A numerical solution of mathematical modelling is a deterministic or non-probabilistic 

outcome in which, within a particular set of parameters, the results of the simulation 

remain consistent for any number of trials. In agent-based modelling, the results of 

performing simulation from the same set of parameters is considerably different for 

every trail. 
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Figure 4.7: Simulation of the model shown in 3.1 using Vensim system dynamic mod- 

eller. The upper transition shows human population dynamics to malaria transmission 

while the lower transition shows mosquito population dynamics. 
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4.4.2 NetLogo Simulation 

 
The NetLogo platform recognises all mobile agents, like humans and mosquitos, as 

turtle, and static agent, like environment, as patches [176]. The visualisation dash- 

board provided in this platform is not sufficient to illustrate the number of human and 

mosquito agents. For this reason, the rescaled agent populations within the demar- 

cated areas of the cities, as indicated in Figures 4.4(a–c), will now be used for this 

study. Similarly, the mosquito population used for the simulation is actually difficult 

to determine as they are uncountable and are difficult to control. However, 1:2 ratio  

is often used for the human to mosquito population (as suggested by [85, 116]). For 

this reason, 1:40 mosquitoes (one real shaped mosquito in the NetLogo environment 

represents 40 virtual mosquitoes) were represented in the NetLogo space. Figure 4.8 

presents the initial setup of the agent-base model simulation interface of the malaria 

transmission model in Figure 3.1. In order to realistically mimic human and mosquito 

disposition in the world, we spatially distributed all agents in the NetLogo environ- 

ment, while the sliders and plotting spaces were used for the parameters and outputs 

of the simulation, respectively. 

 
4.4.2.1 Creating Environment 

 
The setup of the agent-based model of malaria transmission in Figure 3.1 using the 

NetLogo platform is presented in Figure 4.8. A NetLogo environment was created, and 

the following code is used for defining a hypothetical world (ask patches [set 

pcolor green]), then populate the space with human and mosquito agents. The 

human and mosquito agents are depicted by person and butterfly shapes, respectively. 

Subsequently, the human and mosquito agents were initialised in accordance with their 
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spatial dispositions in the environment by invoking [random-xcor,random-ycor], 

to account for systematic preferences during the simulation. In order to start malaria 

transmission within the created small environment, it is presumed that few of the hu- 

man agents have the malaria infection in their blood, and moreover, that humans are 

hosts of the pathogens causing the malaria [138], called Plasmodium species. Hence, 

for the malaria infection to effectively spread in the environment, the following as- 

sumptions would be considered: 

 

i. 10% of the human agents have the malaria infection. 

 
ii. All mosquitoes are adults and susceptible at the initial time. With the assumption 

that 10% of the human agents have malaria infection, the red colour will be use 

to distinguish infected human agents from healthy, this is to avoid bewildering 

the susceptible human counterparts. 

 

Then, by invoking the following command, (if random-float initial-number- 

of-humans < 10) to ask that 10% of the human agents to be infected and assigned 

a red colour. Meanwhile, the remaining human agents were healthier and maintained 

their white colour, as shown in Figure 4.8. Since all agents were displaced randomly 

in the created NetLogo environment, the next step is to define the sets of rules or in- 

structions for the agents to follow and behave accordingly. 

 
4.4.2.2 Agents Procedure 

 
The spread of malaria infection depends on how well the agents involved interact. 

People move from one place to another for several reasons, for example school, work, 

business or tourism. Thus, this movement increases the chance of becoming infected. 
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Therefore, the agents have to move within the NetLogo environment for the malaria in- 

fection to take effect (see Figure 4.12(a)), and the procedure (right-turn random 

360◦, left-turn random 360◦ and forward 1) accounts for agents move- 

ments. Subsequently, the instruction follows that, if any of the mosquitos come into 

contact with red coloured humans, as the interaction progresses the particular mosquito 

will then be changed to a blue colour (see Figure 4.12(a)) indicating infected. The in- 

fected mosquito will not be capable of transmitting malaria to the susceptible human 

until it completes its extrinsic incubation period (EIP). This period mostly lasts for 

about 7-14 days [128]; sometimes the mosquito and parasite species could also be an- 

other factor affecting the EIP. When the EIP is completed, the infected mosquito will 

then change colour to black (see Figure 4.12(a)) indicating infectious, and thus be- 

comes a potential candidate for the spread of malaria. The aftermath is the spread of 

the malaria infection to the humans coloured white upon successful contact and bites 

by infectious mosquitoes. Consequently, infectious mosquitoes will pick human blood 

for nourishment and egg production. Regardless of whether the mosquito is infected or 

infectious, both will deposit eggs around swamp areas or water bodies, and thus new 

mosquitoes will be recruited (hatch new-mosquito [set colour yellow 

forward 1]). 

To better understand the procedural stages involved in the simulation cycles of  

the malaria transmission model (Figure 3.1) using an agent-based model (as shown  

in Figure 4.12(a)). The Algorithm 1 and Algorithm 2 are developed to explain the 

human and mosquito procedures. 
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Algorithm 1 Summary of the human procedures 
 

1: let initial human population be i 

2: select 10% random-float of i and assign colour red 

3: if 10% of i with colour red then 

4: set status infected 

5: else 

6: if i coloured white then 

7: set status susceptible 

8: for(i in 1:n) 

9: set i to move random left or random right at 360◦
 

10: repeat step 3, for each iteration 

11: then step 8 

12: end if 

 13:   end if  
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Algorithm 2 Summary of the mosquito procedures 

1: let initial mosquito population be j 

2: all jIs are assumed susceptible 
3: for (j in 1:n) 

4: set j to fly random left or random right at 360◦ seeking iIs blood 
5: if any (j in 1:m) bite any (i in 1:n) with colour red then 

6: set status infected for j 

7: set colour blue 

8: repeat step 5 

9: else 

10: if status is susceptible then 

11: otherwise step 12 

12: for (j in 1:m) with status infected undergo extrinsic incubation period 

13: else 

14: if step 12 is completed then 

15: set status infectious 

16: set colour black 
17: repeat step 12 

18: repeat step 3 to 4 through step 14 until all jIs are infectious 

19: let λ be the average lifespan for jIs 
20: else 

21: if lifespan for each jIs in step 18 exceed λ then 

22: set status die 

23: repeat step 3 

24: else 

25: if all jIs execute step 21 to 22 then 

26: stop 

27: end if 

28: end if 

29: end if 

30: end if 

 31:   end if  
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Figure 4.8: A screenshot showing the interface of theABM using the NetLogo plat- 

form. 

 

The setup has three components, which are: 

 
i. The main environment, which is the world where all agents would be spatially 

distributed accordingly. 

ii. Three plane frames are meant to plot the simulation outputs in real-time as the 

agents interact in the environment according to predefined rules. 

iii. Then widgets, of two kinds namely the sliders and buttons, are used to interact 

with the agents through the calibration of model parameters and start/run. 
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4.4.2.3 Veracity of the Model 

 
To test the agent-based model shown in Figure 4.8, a trial simulation was performed 

and ran it 50 times by varying the referenced parameters in the sliders.  The pattern  

it produces was visualised in the plotting spaces while all agents communicate with 

each other in the environment according to the predefined rules. The plots shown in 

Figures 4.12(a–c) describes the pattern of infectiousness in humans, in mosquitoes, 

and susceptible human dynamics, respectively. The hypothetical values of the param- 

eters were calibrated in the sliders, to test the veracity of the agent-based model to the 

malaria transmission model in Figure 3.1. The pattern produced in Figures 4.12(a–c) 

clearly manifested the general characteristics of an epidemic model’s behaviour [32]. 

As the season of malaria transmission usually falls within a year depending on the 

length of the rainfall season, hence the simulation was pre-set to run for a year period 

in order to spot the peak malaria season. In Figure 4.12(a) a uni-modal peak season is 

connected with a period of abundance for mosquitoes and Figure 4.12(b) corroborates 

this. The results produced in Figures 4.12(a and b) further proved that the incidence of 

malaria is largely leveraged by the availability of adult mosquitoes [133]. 

In a population with a relatively low fertility and mortality rate, the pattern of 

malaria susceptibility in humans will decrease as the infection increases. Thus, Figure 

4.12(c) confirms that a susceptible human population shows a decreasing pattern as 

time increases. This shows the robustness of an agent-based model in its ability to 

study the characteristics of individual agents involved in the phenomena and mimics 

its real-world scenario. 
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Figure 4.9: This plot shows the spatial distribution of the malaria agents in the NetL- 

ogo environment. 
 

Figure 4.10: This plot shows the pattern of malaria’s infectiousness in human popula- 

tion with its season indicated by the topknot. 
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Figure 4.11: Describes the dynamics of the mosquito population in the spread of 

malarial infection to the human population. The plot also presented some embedded 

features of the mosquito like biting rate, the extrinsic incubation period, egg deposition, 

birth rate and death rate. 
 

 

 

 

 
 

 

Figure 4.12: The simulation plot showing the pattern of human susceptibility due to 

malaria infection in a population with relatively low fertility and mortality. 



107 

  4.5 Results Presentation and Validation 
 

 

 

 

By turning the values of the parameters within their ranges (Table 4.3) and with 

reference to the cities’ climates and demographic information, the pattern of malaria 

transmission will then be resolved. For each of the cities, the simulation was ran 100, 

and produced results on an average of the entire simulation cycle. 

 

4.5 Results Presentation and Validation 

 
This section presents the results of the simulating model in Figure 3.1 through an agent- 

based and mathematical modelling approach. For each of the cities, the simulation 

outputs is provided (see Table 4.4) and visualised them in Figures 4.13–4.15. The 

reported cases of malaria within the cities and the model’s results are combined in 

Table 4.4. By looking at the patterns of the results compared with the cases, a wide 

variance is noticed, as indicated by the magnitude of the values. This made it difficult 

to critically comprehend the patterns. However, to make them consistent, and since 

no zero instances was observed in the results, hence, logarithmic transformation [47] 

technique was applied to normalise the results in Table 4.4. Subsequently, the log- 

transformed values in Table 4.4 are plotted, as shown in Figures 4.13–4.15, and a 

detailed explanation follows. 

Figure 4.13 presents the cases of malaria reported in the Tripura district against 

the model results produced using an agent-based model and mathematical model (see 

Table 4.4). The plots were produced using the two modelling approach, and indicate 

a certain strength of relationship within the occurrences of malaria in the district. The 

peak season of malaria incidence was predicted, as evidenced by the trough and node 

pattern produced in both the modelling approach, which is near-similar to the cases 

reported. The agent-based modelling and mathematical modelling performed well in 
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predicting not only the pattern of malaria transmission in the district but also the sea- 

son. 

Similarly, Figure 4.14 shows a comparison between the cases of malaria reported 

in Limpopo province and the model generated results using an agent-based model and 

mathematical model (see Table 4.4). The pattern produced by the plots in Figure 4.14 

clearly shows that malaria occurrences in the province is represented well using the 

agent-based model results. However, the results produced using the mathematical 

model mimicked the pattern of the province malaria cases at the beginning of the sim- 

ulation but later drifts down. This is because mathematical models are suitable for 

trend determinations and the investigation of continuous phenomena. Hence, between 

the two modelling approaches, the agent-based model performed well in predicting the 

pattern of malaria incidence in the province. 

Figure 4.15 presents the plots of the reported cases of malaria in Benin City to- 

gether with model outcomes generated through an agent-based model and mathemat- 

ical model (see Table 4.4). The plots in Figure 4.15 show a moderate relationship 

between the cases reported in Benin and the simulated results. In particular, the math- 

ematical model produces a trend that follows a fluctuating pattern of malaria occur- 

rences in the City. This shows that mathematical modelling is a good candidate for 

trend determination. 
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Table 4.4: Reported cases of malaria in the three cities and the results of the simulation 

that used mathematical modelling and agent-based modelling. 
 

Months Cities 

 Tripura district, 2011 Limpopo province, 2015 Benin City, 2011 

 C log(C) A log(A) M log(M) C log(C) A log(A) M log(M) C log(C) A log(A) M log(M) 

Jan 240 2.38 320 2.51 91 1.96 863 2.94 293 2.47 33 1.52 58 1.76 133 2.12 28 1.45 

Feb 298 2.47 337 2.53 300 2.48 1843 3.27 594 2.77 61 1.79 110 2.04 191 2.28 134 2.13 

Mar 552 2.74 493 2.69 384 2.58 1588 3.20 341 2.53 43 1.63 199 2.30 219 2.34 251 2.40 

Apr 254 2.40 210 2.32 152 2.18 411 2.61 143 2.16 15 1.18 258 2.41 268 2.43 377 2.58 

May 1398 3.15 538 2.73 388 2.59 85 1.93 143 2.16 09 0.95 534 2.73 324 2.51 523 2.72 

Jun 1817 3.26 699 2.84 374 2.57 38 1.58 113 2.05 06 0.78 512 2.71 251 2.40 686 2.84 

Jul 1833 3.26 1520 3.18 812 2.91 25 1.40 51 1.71 04 0.60 396 2.60 134 2.13 848 2.93 

Aug 1760 3.25 750 2.88 543 2.73 49 1.69 142 2.15 03 0.48 787 2.90 610 2.79 986 2.99 

Sep 1181 3.07 630 2.80 329 2.52 123 2.09 120 2.08 02 0.30 1092 3.04 1567 3.20 1078 3.03 

Oct 684 2.84 575 2.76 315 2.50 192 2.28 192 2.28 02 0.30 129 2.11 720 2.86 1118 3.05 

Nov 614 2.79 554 2.74 302 2.48 144 2.16 201 2.30 02 0.30 201 2.30 675 2.83 1111 3.05 

Dec 431 2.63 347 2.54 289 2.46 83 1.92 132 2.12 02 0.30 54 1.73 112 2.05 1074 3.03 

where: C = Reported cases of malaria, A = Agent-based method results, M = Mathematical method 

results and log(C), log(A), log(M) are their corresponding logarithmic transformations. 

 

 

 

 

Figure 4.13: The reported cases of malaria in Tripura district and the simulated results 

produced using mathematical modelling and agent-based modelling were plotted to- 

gether. This aimed to recognize the best approach between the two that described the 

pattern of incidence in the district. 
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Figure 4.14: The reported cases of malaria in Limpopo province and the simulated re- 

sults produced using mathematical modelling and agent-based modelling were plotted 

together. This aimed to recognize the best approach between the two that described the 

pattern of incidence in the province. 



111 

  4.5 Results Presentation and Validation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.15: The reported cases of malaria in Benin City and the simulated results 

produced using mathematical modelling and agent-based modelling were plotted to- 

gether. This aimed to recognize the best approach between the two that described the 

pattern of incidence in the City. 
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4.5.1 Statistical Tests and Inferences 

 
The plots in Figures 4.13–4.15 demonstrates a pattern that means it is difficult to recog- 

nise the best performing model in predicting the occurrence of malaria between the 

agent-based and mathematical models. A t-test for two independent samples [88] to- 

gether with a correlation coefficient [109] were utilised and the best performing model 

was selected. The computational results of the parameters for the two statistical tech- 

niques were summarised and presented in Table 4.5. 

Table 4.5: Present the summarised results of the t-test for two independent samples. 
 

 Cities 

 Tripura district Limpopo province Benin City 

t-statistic C vs A C vs M C vs A C vs M C vs A C vs M 

t-value 1.6378 2.9560 1.3444 2.3861 0.0850 3.4243 

p-value 0.1157 0.0073 0.1925 0.0261 0.9330 0.0084 

r 0.7732 0.7768 0.9784 0.9318 0.7176 0.5420 

Decision pvalue > 0.05 pvalue < 0.05 pvalue > 0.05 pvalue < 0.05 pvalue > 0.05 pvalue < 0.05 

Remark Not sig Sig Not sig Sig Not sig Sig 

where: C = Reported cases of malaria, A = Agent-based method, M = mathematical method, t-value = 

test-statistic, p-value = highest threshold probability for rejecting the null hypothesis, r = coefficient of 

correlation use to measure a degree of association, Not sig = indicating there is no significant 

difference and Sig = indicating there is significant difference. 

 

Based on the results presented in Table 4.5, Figure 4.13 shows that there is no 

significant difference on average between the reported cases of malaria and the results 

produced through an agent-based model (pvalue = 0.1157, is greater than α = 0.05). 

Similarly, it is also observed that there is a significant difference in the results produced 

through the mathematical model compared to the reported cases of malaria in Tripura 

(pvalue = 0.0073). A moderate degree of association was found (see Table 4.5, r = 

0.7732 and r = 0.7768) between the reported cases of malaria and the model-based 

results produced using the agent-based model and mathematical model, respectively. 

The results in Table 4.5 affirmed no significant difference between the reported cases 
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of malaria and the results produced using the agent-based model in Limpopo and Benin 

(pvalue = 0.1925 and pvalue = 0.9330). However, the mathematical model results were 

found to be significantly different with the malaria cases reported in the two cities 

(pvalue = 0.0261 and pvalue = 0.0084).  Furthermore, a strong correlation between 

the cases of malaria in Limpopo and the agent-based model cases was found (r = 

0.9784 shown in Table 4.5), and this result was also similar to those produced by the 

mathematical model (r = 0.9318 shown in Table 4.5). However, in Benin the degree 

of association between the cases of malaria and the results produced using the agent- 

based model was moderate good compared to the mathematical model (r = 0.7176 

and r = 0.5420 respectively). 

In all the cities studied, the agent-based model performed well in predicting the 

occurrences of malaria incidence as opposed to mathematical model. However, the 

mathematical model was good for trend analysis and performed particularly very well 

for Tripura and Benin (see Figure 4.13 and 4.15) compared to Limpopo (see Figure 

4.15). 
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4.6 Summary 

 
This chapter presents the application of agent-based modelling to investigate the dy- 

namics of malaria, and compared the results with a compartmental modelling ap- 

proach. The results show that agent-based modelling is a good candidate for studying 

malaria in a heterogeneous human population. Moreover, compartmental modelling 

is appropriate for trend analysis as it suitably dealt with continuous phenomena and  

a homogeneous population. In Chapter 5, a data-driven model using machine learn- 

ing methods will be deployed to develop an intelligent system capable of informing 

healthcare providers with the means of anticipating a high malaria epoch or outbreak. 
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5 

Towards a Predictive Analytics-Based 

Intelligent Malaria Outbreak Warning 

System 

This chapter provides a data-driven modelling approach to investigate the dynamics in 

malaria transmission. Firstly, a regression model was explored with an autoregressive 

structure and later extended the methodology to account for the confounding the re- 

lationship among the climate factors. Hence, the most influential climate factors for 

malaria was identified. Secondly, an intelligent malaria outbreak prediction model was 

developed using machine-learning methods and an app was developed. 

 

5.1 Introduction 

 
In Chapter 3 and 4, mathematical and agent-based modelling was deployed to inves- 

tigate the dynamics and predict the pattern of malaria transmission. However, these 

 
Chapter 
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methods cannot conduct a predictive analysis because they depend on parameters that 

may not be known. In addition, although mathematical and agent-based model utilises 

temperature and precipitation, but the inability of these methods to include humidity 

could mean the dynamics of malaria transmission would be under-explored. Though, 

there is no established functional relationship between humidity and the occurrence 

of malaria.  Hence,  In Chapter 5,  the data-driven method will be deployed to offer   

a complementary approach to model-based methods by incorporating all the climatic 

predictors of malaria. 

Many works (e.g., [81, 101, 112, 132]) showed that malaria’s prevalence is con- 

nected to climate factors and, most importantly, to temperature, precipitation and hu- 

midity. This relationship has been fused to mathematical models [18, 21, 116, 129, 

131] and agent-based models [73, 83, 110, 137] to explore malaria transmission dy- 

namics, and hence suggest prevention mechanisms. These methods performed very 

well in providing strategies for prevention, intervention and policy formulation. How- 

ever, the modelling of temperature was used substantially, whilst the remaining factors 

contribute moderately to the spread of malaria. However, temperature is the large-scale 

driver of malaria’s spread as it influences biting, speeds the parasite’s development and 

above all provides a conducive atmosphere for the mosquito’s survival. Hence, the 

lesser influence of precipitation and humidity in the methods will be under-explored 

when examining the general pattern of malaria’s transmission dynamics. Chapter 5 

fills this gap by deploying a robust technique that uses data analytics to consolidate 

the aforementioned climate factors with malaria cases in order to develop a predictive 

model. To bring this to a successful conclusion, there is a need to examine which of 

the climate factors is dominant in the incidence of malaria. 

In section 5.2, a hybrid-approach will be use that is combining time-series mod- 
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elling and lagged-regression analysis by utilising climate factors data with reported 

cases of malaria. The results showed that malaria’s incidence in the area studied  

have a significant association with relative humidity, whereas temperature and pre- 

cipitation were found to have negligible effects. This finding might particularly reveal 

that malaria’s incidence can be strongly influenced by relative humidity alone. How- 

ever, this methodology is limited by its inability to capture the pre-determined existing 

causal relationship among the climate factors. Hence, this investigation will be ex- 

tended further to deploy a technique capable of providing an insight into the lack of 

confounding effects that exist among the climate factors on the incidence of malaria 

since all contribute. These are called the hidden ecological factors of malaria’s inci- 

dence. 

The fundamental concept behind the hidden factors emanated from the fact that a 

causal relationship exists among the climate factors [39]. Some recent studies [91, 120] 

combined meteorological variables with data on the incidence of malaria and estab- 

lished time series models to predict malaria’s incidence. The regression and correla- 

tion analysis modelling was applied and meteorological variables used to determine 

the trend of malaria’s incidence [118]. In section 5.3, the partial least squares path 

modelling (PLS-PM) [160] methodology was deployed to analyse the causal relation- 

ships among the meteorological variables, e.g., the minimum average temperature, 

maximum average temperature, relative humidity, wind speed, precipitation and so- 

lar radiation, and explored their impact on the incidence of malaria. By doing so, an 

integrated model will be develop to provides an insight within which the lacking pre- 

determined confounding effects can be identified as hidden ecological factors. Hence, 

understanding the dominant climate factors influencing malaria’s transmission will en- 

able the inclusion of variables that contribute significantly to the predictive model. 
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This requires the use of sufficient data. Unfortunately, most of these data were incom- 

plete, particularly for the climate factors. The data have to be completed for the climate 

variables by using a satellite-based meteorological database, CFSR (Climate Forecast 

System Reanalysis) before deploying a predictive model technique. 

In section 5.4, the machine learning methods was used to identify a pattern or 

model that will be used to make an accurate prediction of a malaria outbreak. The 

prediction precisions of the methods was evaluated, and obtained a very high accuracy 

rate. Machine learning has been used for the prediction and diagnosis of several dis- 

eases, e.g., Parkinson’s [155], cancer [69] and heart disease [108]. Among the machine 

learning methods, Support Vector Machines [170] have been used to predict malaria’s 

incidence [149], although this study has several shortcomings: 

i. The dataset used was extremely small (the size was only 60), which makes the 

accuracy of prediction questionable; 

ii. The dataset was used without analysing the ecological factors, which could re- 

sult in including statistically insignificant variables in the prediction model, and 

hence could cause overfitting; 

iii. There is no systematic methodology to transform this predictor into a smart 

healthcare system. 

The machine learning methods to predict malaria’s incidence was developed in 

section 5.4, hence this methods was extended to deploy an intelligent malaria out- 

break early warning system, which is a mobile application that predicts malaria out- 

breaks based on climatic factors using the algorithms. The system will help hospitals, 

healthcare providers, health organisations to take precautions in time and utilise their 
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resources in the case of emergencies. Section 5.5, presents the mobile application by 

embedding the best predictor generated in sections 5.2 and 5.3. The application reads 

climatic information, i.e., temperature, relative humidity, wind speed, solar radiation 

and precipitation, from free weather and geographical APIs. It then predicts the possi- 

bility of malaria’s outbreak several days in advance (based on the available forecasting 

data). As well as deploying a smart healthcare application, Chapter 5 offers a remark- 

able contribution by identifying the hidden ecological factors of malaria (e.g., temper- 

ature, humidity, wind, location, drought, floods, etc.). Since the confounding effects 

of climatic factors have a greater influence in the incidence of malaria, hence, further 

research was conducted on a new ecosystem model for the assessment of hidden eco- 

logical factors and identified three confounding factors that significantly contribute to 

the outbreak of malaria. 

 

5.2 Data Analytics of Climate Factors Influence 

 
Despite the apparent correlation between climate factors and malaria’s prevalence, the 

exact contribution of at least one particular factor that significantly influences its trans- 

mission is still not fully understood. However, efforts have been made by deploying 

time series modelling to investigate the trend of malaria’s occurrence driven by climate 

factors. 

For instance, the works by [25, 29] use a time series analysis to determine trends 

in the reported malaria cases and deaths by considering the incidence data for Ethiopia 

and Gabon. Furthermore, studies [91, 120, 185] used meteorological and malaria in- 

cidence data, and predicted future causes of these incidences. However, the works 

presented [25, 29] applied univariate trend analysis on malaria incidence data and pre- 
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dicted the future causes of malaria, while [185] used support vector regression and 

random forests and compared their prediction capability from malaria incidence and 

climate data. However, the work presented [91, 120] studied the physical influence  

of malaria’s incidence and its climatic predictors, and predicts the future incidence. 

All studies mentioned in this section presented good results for understanding the pat- 

tern of malaria and its prediction using time series and machine learning, respectively. 

However, malaria’s incidence has lagged effects with climate factors, and has not been 

considered in the modelling. In section 5.2, an improvement is propose to previous 

works [25, 29, 91, 120] by deploying regression analysis with a times series struc- 

ture in the stochastic term (white noise). This aims to incorporate climate factors with 

cases of malaria reported to develop a predictive model that accounts for the lag effect. 

Hence, the model will help to identify the particular climate factors that significantly 

contribute to a high malaria incidence in a given geographical area. To proceed with 

this modelling, monthly malaria incidence cases and climatic data obtained from the 

Aboh Mbaise region of Imo State–Nigeria, which has tropical and rain forest climate 

characteristics, will be use. 

 
5.2.1 Materials and methods 

 
This comprises of the data source, study area, data condensation techniques and overview 

of disease model cradle (DMC). 

 
5.2.1.1 Study area 

 

The study area lies within Latitudes 5◦ 10| N and 5◦ 51| N and with Longitudes 6◦ 15| 

E and 7◦ 28| E, occupying a land area of 184 km2  [52].   The Aboh Mbaise region is 
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one of 27 local government areas of Imo State Nigeria. Its community lives within a 

15 km radius from the local government headquarters, with rain forest climate Char- 

acteristics, an average annual temperature above 20◦C (68◦ F) and an annual relative 

humidity of 75% [64]. The rainy season begins in April and lasts until October with an 

annual rainfall varying from 1,500 mm to 2,200 mm (60 to 80 inches). The dry season 

experiences two months of Harmattan, from late December to late February, and the 

hottest months are between January and March [9]. 

 

5.2.1.2 Data collection 

The data used in this study were extracted from the data presented in existing liter- 

ature [56], and originally collected from Aboh Mbaise General Hospital. A total of 

2,148 confirmed diagnosed cases of malaria were collected from a period of 18 years, 

from January 1996 to December 2013. In order to have an insight into the possible 

climatic causes of a high malaria incidence in the study area, a meteorological data 

will be use. However, these data were not readily available at the time needed, within 

the reference weather station of Aboh Mbaise. As an alternative, a satellite meteoro- 

logical database was explored through: http://globalweather.tamu.edu/. 

The boundary metrics used in generating the data were Latitude 5.6556◦ N to 5.3494◦ 

S and Longitude 5.6291◦ W to 6.3776◦ E. Within the demarcation of the study area, 

one weather station was found. A daily minimum temperature, maximum temperature, 

precipitation and relative humidity for the period of study was generated. The daily cli- 

mate variable time series dimension was very large (6575) compared to the monthly 

malaria incidence data, which had fewer dimensions (216). To ease the analysis, the 

daily recorded climate data dimension was convered to a monthly time series using 

the code ts() function in R, in order to pair the dimension with the monthly malaria 

http://globalweather.tamu.edu/
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incidence data. 

 

5.2.1.3 Data preprocessing 

 
The methods of data analysis include: descriptive statistics, cross-correlation, pre- 

whitening and regression time series analysis, respectively. To determine the lagged ef- 

fect of the meteorological predictor variables on malaria’s incidence, we used a cross- 

correlation analysis (see Figure 5.2) together with a pre-whitening (see Figure 5.3) 

scheme to investigate the most significant predictor of malaria’s incidence. The auto- 

correlation function (ACF) and partial autocorrelation function (PACF) were used to 

identify the lag order of the time series models. 

In Figure 5.1, the cases of malaria reported in the study area was depicted, while 

the pattern of climate factor distribution, particularly of precipitation, humidity and 

temperature, are presented in Appendices D.1, D.2 and D.3 respectively. 

 

Figure 5.1: The plot shows the pattern of monthly malaria distribution for the study 

area (Aboh Mbaise, Imo State Nigeria). 
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The summary statistics of malaria incidence cases and the climate predictors used 

in this section are presented in Table 5.1. Hence, this summary will enable to de- 

velop an understanding of the distributional pattern in the data components, such as 

the variability, mean, minimum and maximum values. Moreover, the summary statis- 

tics provide quick information, like data seasonality, irregular or even deterministic 

patterns in the occurrences of the general time series. 

Table 5.1: The summary statistics for the monthly reported cases of malaria and its 

climate predictors. 
 

Variables Mean Standard deviation Minimum value Maximum value 

Malaria Data 9.94 4.80 4.00 28.00 

Temperature 31.29 3.73 23.66 39.98 

Relative humidity 7.92 9.53 0.00 73.31 

Precipitation 3.00 1.00 2.00 4.00 
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Figure 5.2: The plots show the cross-correlation function between temperature and 

malaria incidence, precipitation, respectively. 
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5.2.1.4 Overview of Disease model cradle (DMC) 

 
Forecasting malaria’s incidence requires not only the use of incidence data and recorded 

climate information, but also the investigation and understanding of the transmission 

at the micro-scale level. 

This can better achieved by using the Disease Model Cradle (DMC) [9, 101], which 

uses a daily times series of temperature and precipitation, and explicitly simulates the 

gonotrophic cycle, sporogonic cycle and interaction between mosquitoes and humans. 

This is epidemiological software designed to investigate and validate results with re- 

spect to field measurements, such as malaria incidence and the number of infected 

mosquitoes, using the Liverpool Malaria Model (LMM) together with meteorological 

datasets. The DMC interface only provides space for temperature and precipitation, 

and explicitly simulates the pattern of malaria’s incidence including micro-scale mod- 

elling [101]. 

In section 5.2, as a benchmark, the meteorological datasets, temperature and pre- 

cipitation for Aboh Mbaise as an input into the DMC software and simulated the out- 

puts of malaria’s incidence and prevalence, its sporogonic cycle, and its gonotrophic 

cycle. 

A key element of the DMC is the temperature-dependent mosquitoes’ survival op- 

tions. The potential candidate for malaria’s transmission, namely the adult female 

mosquito, has three survival options within which it survives under the influence of a 

temperature regime. The first survival option is called the Martens scheme [65, 106] 

in which the daily survival probability (P ) is linked to the temperature (T ) as captured 

by the following second-order polynomial equation: 

 
P (T ) = −0.0016T 2 + 0.054T + 0.45. (5.1) 
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The second survival option is called the Lindsay and Birlay scheme [96], which uses a 

fixed probability per gonotrophic cycle as: 

P = exp 
Plb 

(5.2) 
Tg 

 

where: Plb is the survival per cycle, and Tg is the length of gonotrophic cycle. The third 

survival option is called the Craig scheme [55], which links the survival probability (P ) 

with an exponential function of the temperature (T ) as [106] 

P = exp 
  −1  

. (5.3) 

−4.4 + 1.31T − 0.03T 2 

 

5.2.2 Regression Analysis 

 
As previous studies [65, 66, 101] have shown that the climate predictors of malaria, 

particularly temperature and precipitation, have lagged effects on the occurrence of 

malaria transmission, while the humidity does not have that effects. Another study 

[187] showed that humidity may have an impact on malaria transmission as it sup- 

ports the vector (mosquito) by providing a suitable atmosphere to survive longer and 

increases biting competence. These different observations suggest that the strength  

of each climate factor may vary from one geographical area to another. In the con- 

text of the study area, the significant (lagged and non-lagged) contributing factors was 

determined by invoking a cross-correlation function (CCF) as follows. 

 
5.2.2.1 Cross-Correlation Function (CCF) 

 
CCF can be considered a useful tool for determining the most influential climatic vari- 

able to predict the occurrence of malaria and is mathematically expressed in [64], and 
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t+k − y) (5.4) 

 
N −k         

cuy 

 1 
(k) = 

N 
(ut 

t=1−k 

− u)(y 
 
t+k − y) (5.5) 

 

for k = −1, −2, · · · , −(N −k) as the product-moment correlation of a time-offset or a 

function of lag between two time series ut and yt. Herein N is the series length, u and 

y are the sample means, and k is the CCF lag. Hence the cross-correlation function is 

also an auto-covariance function when scaled by the variances of the two series as: 

 

  cuy(k)  
 

 

(5.6) 
ruy(k) = 

uu (0)cyy (0) 

 

where cuu(0) and cyy(0) are the sample variances of ut and yt, respectively. 

Between the climatic variables and malaria incidence data, CCF is depicted in Fig- 

ure 5.2, which aims to help identify the lags of the climatic predictors that might be  

a useful predictor of malaria’s incidence. However, the three plots show a pattern in 

which it is difficult to identify any lagged effects of the climate predictor of malaria. 

This difficulty happens due to the fact that CCF values are sometimes affected by the 

time series structure of the independent variable against the dependent variable series 

over time. 

 
5.2.2.2 CCF with Pre-Whitened Climatic Data 

 
In order to alleviate the difficulty of identifying the significant lags of the climatic 

predictors in Figure 5.2, a pre-whitening technique was invoked in order to stationarize 
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the climatic input variables. 
 

 

 

Figure 5.3: The plots indicate pre-whitened lagged correlations between temperature 

with malaria incidence and precipitation with malaria incidence. 
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When the input series behaves like white noise, and the pattern of the CCF between 

climate variables and malaria incidence is a linear combination of lags of the input vari- 

ables. The incorporation of pre-whitening for the time series of interest involved the 

following steps. Firstly, the time series model for the malaria predictor variables was 

determined and stored the residuals from the model. Secondly, the malaria incidence 

variable was filtered using the model of predictors. Thirdly, the CCF between residu- 

als of the predictors was examined and the filtered values. Hence, the resultant CCF 

can be used to identify the possible pattern for lagged effects that would be used in a 

regression model. 

Using an autocorrelation function (ACF) and the partial ACF (PACF) of climatic- 

predictors after the differencing operation, the time series models for temperature and 

precipitation data was estimated and tabulated in Table 5.2. The resulting time-series 

model of temperature is estimated to be ARIMA (1,1,0), which is an autoregressive 

moving average model for order 1, with a differencing order of 1. The estimated 

coefficient parameter for this ARIMA (1,1,0) model is given by θˆ = −0.343, which 

leads to the estimated model: 

 
ΦT (B)yt = Et (5.7) 

 

 

where  
ΦT (B) = (1 − 0.657B − 0.343B2). (5.8) 

 

Similarly, aided by the plots of ACF and PACF after the differencing operation, the 

precipitation time series is approximated as the ARIMA (2,1,0) model, which can be 

represented by 

ΦP (B)zt = Et (5.9) 
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where  
ΦP (B) = (1 − 0.6709B − 0.0536B2 − 0.2755B3). (5.10) 

 

The time series defined by the polynomial ΦT (B) and ΦP (B) have been found 

stationary by inspection, which confirm that the temperature and precipitation time 

series become stationary after taking the first differences. 

Once the time series models for temperature and precipitation were determined, the 

next stage was the filtering process, which involved filtering the malaria incidence data 

using the aforementioned time series models. Hence, continued by examining the CCF 

between the residuals from the time series models for the climatic input variables and 

the filtered malaria incidence to identify the significant lagged terms of the regression 

model. From the pre-whitened CCF plots in Figure 5.3 of the temperature time series 

with malaria incidence and precipitation time series with malaria’s incidence. It is ob- 

serve that the most significant spike in both plots appeared on the positive lag segments 

of the cross-correlation function indicating overlapping effects. Therefore, this shows 

evidence that there is no significant lagged effect of temperature and precipitation to 

effectively predict the occurrence of malaria in the study area. 
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Table 5.2: Pre-whitened models for the temperature and precipitation time series. 
 

Pre-whitened model Estimates Standard Error 

ARIMA(1,1,0) -0.343 0.064 

Log-likelihood -473.65  

AIC 951.3  

ARIMA(2,1,0) 
-0.3291 

-0.2755 

0.0654 

0.0652 

Log-likelihood -784.08  

AIC 1574.14  

 
5.2.2.3 Regression Model 

 
By taking into account the three climate predictors (temperature, precipitation and 

relative humidity), a regression model that predicts the pattern of malaria incidence 

occurring in Aboh Mbaise is proposed as: 

 
MIt =βo + β1f (TMt−1TMt−2) + β2g(PR(t−1)) 

+ β3RH + Et (5.11) 

 

where MI denotes the incidence of malaria as the output of the model,  and TM ,   

PR and RH denote temperature, precipitation and relative humidity, respectively as 

the inputs of the model. Herein β1, β2 and β3 are the coefficients of the regressed 

variables, whilst βo is intercept, and Et is error the term. 

From the results of the pre-whitening analysis of the predictor variables presented 

in Table 5.2, it was found that temperature and precipitation have insignificant lagged 

effects on malaria’s incidence. Based on this, their effects on the model could be 

dropped to avoid redundancy. Hence, the regression model can be compactly expressed 

as: 

MIt = βo + β3RHt + Et (5.12) 
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Using the least squares method, the estimated model as follows: 

 
 

MIt = 31.212 + 25.467RHt (5.13) 

 

In regression modelling that involved time series variables, the residuals component 

was assumed to have a time series model, for example., AR or MA, meaning autore- 

gressive or moving average [44]. However, using the conventional approach (least 

squares method), such an assumption of independent error is violated. Hence, the con- 

sequence is the wrong coefficient estimate and standard errors if the time series struc- 

ture of the errors is ignored. Hence, the model regression coefficients and standard 

errors have to be adjusted in order to ensure a well-fit model, including the component 

of the AR error structure. 

Suppose the following equation to illustrate the adjustment of regression coeffi- 

cients and standard errors for a simple case and use it to advance our analysis 

 
yt = βo + β1xt + Et (5.14) 

 

where the autoregressive structure of error is captured by 

 

Et = ϑ1Et−1 + ϑ2Et−2 + . . . + ωt (5.15) 

 
where ωt ∼ i.i.d. N(0, σ2). Then, let 

 
ϕ(L) = 1 − ϑ1BL − ϑ2B2 − . . . , (5.16) 

 
denotes the AR model for the errors, which reduces to ϕ(L)Et = ωt. Assuming the in- 
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verse of ϕ(L) exists, hence Et = ϕ−1(L)ωt, where ωt ∼ i.i.d. N(0, σ2). Then, equation 

(5.14) is given by: 

 

yt = βo + β1xt + ϕ−1(L)ωt (5.17) 

such that ϕ(L) gives the AR polynomial for the errors. 

By multiply equation (5.17) by ϕ(L), then it becomes 

 
 

ϕ(L)yt = ϕ(L)βo + β1ϕ(L)xt + ωt. (5.18) 

 

Let 

 

yt
∗  = ϕ(L)yt = yt − ϑ1yt−1 − ... − ϑpyt−p (5.19) 

x∗
t  = ϕ(L)xt = xt − ϑ1xt−1 − ... − ϑpxt−p (5.20) 

βo
∗  = ϕ(L)βo = (1 − ϑ1 − ... − ϑp)βo. (5.21) 

 
 

The model can written as:  
yt

∗  = βo
∗ + β1x∗

t  + ωt (5.22) 

 

where ωt ∼ i.i.d. N(0, σ2). Note that the unknown constant βo in equation (5.17) does 

not depend on the time and is also independent of the shifting operation. Then βo can 

be approximated by 

β̂∗ 

β̂o  =   o  . (5.23) 
1 − ϑ̂1 − ... − ϑ̂p 

Similarly, the standard error for β̂o is given as 
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− 

 

 

 

s.e(β̂∗) 
s.e(β̂o) =   o  

1 − ϑ̂1 − ... − ϑ̂p 

 

(5.24) 

Reference [53] developed this procedure, and the process is repeated until the estimates 

converge. Following the methodology of [53], the adjustment of the regression model 

for predicting malaria’s incidence can be presented as: 

 
yt

∗ = −0.0896 − 0.8902yt
∗ 

1 (5.25) 

 
x∗

t  = −0.0896 − 0.8902x∗
t−1 (5.26) 

Thus, the estimated relationship between malaria’s incidence and the relative humidity 

in the study area is given by 

 
MIt = 30.095 + 25.387RHt + Et, (5.27) 

 

where the error term can be expressed as 

 

Et = 0.9236Et−1 + ωt, (5.28) 

 

where ωt ∼ i.i.d. N(0, 3.773). The model accuracies are presented in Table 5.3, for 

both the model without the AR structure errors and the adjusted model with the AR 

structure errors. 

Table 5.3: Model Accuracy 
 

Model RMSE MAE MAPE MASE 

Without AR errors 4.2100 2.9664 32.5958 0.8158 

With AR errors 3.7556 2.6482 32.2130 0.8176 
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The statistical significance of three climatic factors, namely temperature, precipita- 

tion and relative humidity is examined by pre-whitening the climatic explanatory data 

and performing a cross-correlation analysis with the malaria incidence data. Among 

these three factors, the relative humidity was found statistically significant and asso- 

ciated (at probability, pvalue = 0.0002 < 0.05) with the malaria incidence, whereas 

temperature and precipitation have a negligible lagged correlation with the incidence. 

A linear regression with an autoregressive error structure AR(1) is then developed 

to precisely specify the relationship between the incidence and relative humidity time 

series. This finding contrasts with some previous results [65, 66, 101] that highlight 

the lagged contributions of temperature and precipitation, and suggest variability in the 

strength of the climate factors affecting malaria’s incidence in different geographical 

areas. This finding together with references [74, 156] can further motivate improve- 

ments to the existing physical models of malaria-risk prediction, such as DMC [101], 

by incorporating comprehensive climate variables. Since the regression analysis with 

a time series structure in the error term results in identifying humidity as the domi- 

nants climate predictor of malaria (in subsection 5.2.1.1). However, this factor cannot 

occur independently without the contribution of other factors, like temperature and 

precipitation. Therefore, in Section 5.3, a new methodology will be deployed to fur- 

ther investigate the existence of a causal relationship among the climate predictors of 

malaria. 
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5.3 Assessment of hidden ecological factors 

 
Climate factors are the drivers of malaria transmission [134]; however a study analysing 

the causal ecological relationship among the climate factors that affect the incidence 

of malaria is still lacking, particularly in Sub-Saharan African countries. 

Figure 5.4: Conceptual framework of a malaria ecosystem describing the dynamic 

stages of malaria transmission from human and mosquito under the influence of envi- 

ronmental factors. 
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The malaria ecosystem comprises four main components, namely human host, 

mosquitoes vector, parasites and environmental condition (see Figure 5.4). These com- 

ponents are very dynamic in nature due to the inherent characteristics of ecology and 

the anticipatory change to biodiversity from global warming. Studies [34, 114, 115] 

reported that ecological changes would adversely affect human health in some ways 

that are both obvious and obscure. However, growing evidence also suggests that, due 

to the rise in temperature as a result of the anticipated global warming, some previously 

unexposed regions would have a 50% chance of malaria transmission; this is attributed 

to the link between malaria’s incidence and ecological factors [68]. The relationship 

between environmental changes and human health cannot be overemphasised because 

of the inherent variability and complexity of human nature. In many circumstances, 

grasslands and forest are converted for agriculture to reduce communicable disease, 

which includes wetland drainage for the prevention and control of malaria [34]. These 

activities can either succeed in their designed purpose or lead to unintended negative 

health effects. Also, transforming forests to augment food production, may in the long 

run lead to the creation of environments conducive to disease-causing agents, such as 

mosquitoes for malaria transmission [58]. 

 
5.3.1 Study site and population 

 
Ejisu-Juaben Municipal has a population of 143,762 [127]; it lies within latitudes 

1015|N and 1045|N also with longitudes 6015|W and 7000|W, and occupies a land area 

of 582.5 km2 [146]. The vegetation of the municipal is a typical semi-deciduous forest 

(see Figure 5.5), with an undulating topography and low altitude of about 240m–300m 

above the sea level [146]. Also, the rainfall pattern of the area is bi-modal (i.e., two dis- 
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tinct seasons in a year), characterized by major and minor rainfall. The major rainfall 

begins from March to July with an average annual rainfall between 1200mm–1500mm, 

while the minor rainfall begins in September and tapers off in November with annual 

average of 900mm–1120mm. Usually, December through to February is hot, dry and 

dusty with a mean annual temperature of 250C-320C, and the relative humidity is mod- 

erately high during the rainy season [146]. Figure 5.5 presents the map of Ejisu-Juaben 

Municipal, which lies within the red-squared portion labelled Kumasi, the capital city 

of the Ashanti Region in Southern Ghana. 

Figure 5.5: The picture on the left shows the map of Ghana and the portion of Kumasi 

city, where the study area - Ejisu-Juaben - lies. The picture on the right illustrates the 

climate vegetational belt characterized by a typical semi-deciduous forest. 

 

 

5.3.2 Data collection and source 

 
A total of 85,627 confirmed diagnosed cases of malaria for the period of five years 

from 2009 to 2013, were retrieved [158]. The distributional pattern of malaria cases 

reported in the study area indicates a high incidence. Although, climate factors data 

was sought in the designated weather station of the study area location [127], unfor- 
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tunately very few data were available and also a lot were missing. Since the data 

available is not sufficient for the analysis, hence, to overcome this challenge by using 

satellite-based meteorological data obtained via [2]. The boundary metric dimensions 

of [158] at latitude 6.79890N to 6.68230S and longitude -1.56560W to -1.41860E and 

demarcated the location of the study area on the satellite globe map was used. Within 

the demarcated area, a weather station was identified. The data of the climate variables 

of interest was generated. The Ghana malaria incidence data were sufficient for the 

application of PLS-PM due to their suitability for handling small sample data, non- 

normality, multi-dimension and multicollinearity [31, 125]. However, the sample set 

was not sufficient to obtain high precision accuracy when applying machine-learning 

algorithms. A small dataset might also cause the overfitting of the data. For that rea- 

son, the malaria incidence data used in [56] and [158] was combined to proceed the 

analysis. 

 
5.3.3 Factor analysis 

 
Exploratory factor analysis (EFA) is one of the techniques for factor analysis (FA). It 

is primarily used in statistics to describe the variance among observed correlated vari- 

ables in terms of a potential smaller number of unobserved variables, usually referred 

to as factors [142]. In this study, EFA was employed to search for latent confounding 

ecological factors [142, 160] from the set of observed meteorological variables. 

The FA technique is demonstrated using simple mathematical sketches; the ob- 

served variables can be expressed as a linear combinations of the potential factors plus 

the residual terms. Consider the following observed variables Y1, Y2, · · · , YM of size 

M , and assume they are linearly related to a small number of unobservable (latent 
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i 

i 

 

 

variables) factors F1, F2, · · · , FN , with N « M such that: 

 

Y1 = ψ10 + ψ11F1 + · · · + ψ1N FN + e1 

 Y2 = ψ20 + ψ21F1 + · · · + ψ1N FN + e2 
 

 

 
 
 
 
 

(5.29) 

. 
 

YM = ψM0 + ψM1F1 + · · · + ψMN FN + eM 

where e1, · · · , eM are the residual terms, assuming that E(ei) = 0, and V ar(ei) = 

δ2.  While the unobservable factors Fi are independent from each other and E(Fj) =  

0 and V ar(Fj) = 1.  These two assumptions stand as the robust pre-conditions for  

the application of structural equation modelling (SEM). The loadings scores can be 

obtained from covariance and the variance of any two observed variables using the 

following formula presented in equation (5.30) 

 
N N 

Cov(Yi, Yj) =
 

ψiN ψjN V ar(Yi) =
 

ψiK + δ2 (5.30) 

i  j i=1 

 

where the summation sign in equation 5.30 denotes the communality of the variables, 

and the variance is explained by the common factors FN . 

 
5.3.4 Structural equation modelling 

 
SEM is a popular technique that has multidisciplinary applications, which combine 

both measurement and structural models [86, 89, 111]. Figure 5.6a presents a complex 

hypothetical SEM showing the causal relationship between malaria’s incidence and 

latent ecological factors together with their observed variables. The ellipse shapes is 

used to represents the latent factors, while the observed variables were represented by 

. 
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Figure 5.6: Structural equation model showing the hypothetical relationship between 

malaria’s incidence and meteorological variables. 

 

The following system 5.31 describes the SEM technique in which the observed 

variables can be expressed as a linear combination of the potential factors plus the 

residual terms. The SEM mathematical representations shown in Figure 5.6(b) as fol- 
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lows: 

 

 

 
Factor I = λ1,1(minimum temperature)+ 

 

 
 

Factor II = λ2,1(maximum temperature)+ 

λ2,2(solar radiation) + β2,3(Factor III) + γ2(malaria incidence) + e2 
 

Factor III = λ3,1(precipitation)+ 

 
λ3,2(wind speed) + γ3(malaria incidence) + e3 

 
(5.31) 

 

5.3.5 Estimation of PLS-PM 

 
The technique called PLS-PM, or PLS-SEM, was developed by [179] and chosen due 

to its characteristics, namely its small sample size, non-normality, multi-dimension, 

and multicollinearity [125]. Three hidden factors was identified using EFA, and sub- 

sequently applied SEM for the construction of the model (see Figure 5.6(b)). The 

PLS-PM is basically divided into three components: The estimation of the LVs, the 

estimation of the inner and outer models, and the estimation of the structural relations. 

The PLS algorithm is essentially represented as a sequence of regression in terms of 

weight vectors [61] and estimates the LV values (factor scores) iteratively until a con- 

vergence is achieved. The fundamental PLS algorithm was suggested by [111] (see 

Appendix E for the detail procedural descriptions). 

 
5.3.6 Weighting scheme 

 
The weighting schemes are used to estimate the inner weight in (E.2) of the PLS al- 

gorithm. Generally, there are three weighting schemes, centroid [70], and later [97] 

λ1,2(relative humidity) + β1,2(Factor II) + γ1(malaria incidence) + e1  
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factorial and path weighting. The PLS-PM is a component-based estimation technique 

that uses an iteration algorithm, separately analyzes the blocks of the measurement 

model, and estimates the path coefficients in the structural model [45]. A package 

called semPLS in R was used for the estimation of the PLS-SEM parameters includ- 

ing the analysis presented in Table 5.5. To estimate the SEM parameters, the PLS 

technique was invoked, furthermore, 10,000 samples was used for the bootstrapping 

analysis instead of the default number of samples (set at 500) [45]. Also, the PLS- 

PM latent variable scores were expressed as a linear combination of their observed 

variables and treated as an error-free substitute for the observed variables [45]. 

 
5.3.6.1 Measurement model 

 
The model presented in Figure 5.6(b) shows how the observed variables (MVs) are 

related to their LVs. Hence without any loss of generality, for a good representation of 

the inner model, the following assumptions must hold: 

i. The matrix of MVs Y are scaled for zero mean and unit variance. 

 
ii. Each block of MVs Yg is already transformed for a positive correlation for all 

LVs xg, g = 1, · · · , G. 

The measurement model is broadly classified as either reflective (Mode A) or formative 

(Mode B) [56], which depends on the relationship between the LV and MV formation. 

 
5.3.6.2 Mode A 

 
In this form, each block of MVs reflects its LV and can be represented in a multivariate 

regression form as: 

Yg = xgwg
T + Fg (5.32) 
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where wg
T can be estimated using least squares method. 

 
5.3.6.3 Mode B 

 
Also, in this form, it is considered that the LV is formed by its MVs and represented 

by a multiple regression: 

xg = Ygwg + δg (5.33) 

 
using the same method of least squares, the estimate for wg can be obtained. 

 
 

5.3.7 Presentation of results 

 
In the application of PLS-SEM, three weighting schemes - centroid, factorial and path 

weighting - are conceptually used for the model specifications and estimations. The 

conceptual SEM, presented in Figure 5.6a, shows the hypothetical causal relationship 

between the latent (hidden) variables and observed meteorological (manifest) variables 

to the occurrence of malaria. For the identification of the confounding hidden vari- 

ables, a factor analysis was performed using an exploratory factor analysis (EFA) [95]. 

From the results, three hidden factors were identified, namely: Factor I (related to min- 

imum temperature and relative humidity), Factor II (related to maximum temperature 

and solar radiation) and Factor III (related to precipitation and wind speed). These 

factors accounted for 64% of the total variance, and at α = 5% level of significance, 

χ2 = 13.91, df = 8, pvalue = 0.0841. This result provides sufficient evidence to ex- 

plain malaria’s incidence in the study area. The Guttman-Kaiser Criterion [183] and 

Cattel scree plots [94] was explored to determine the number of factors to extract. The 

result reconfirmed the existence of three hidden ecological factors to the incidence of 

malaria. In the Guttman-Kaiser Criterion, the eigenvalues 2.71, 1.53, 1.02, 0.82, 0.57, 
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0.29, 0.05 were computed using the correlation matrix (see Table5.4); however, the rule 

for extraction is based on the factors whose eigenvalues are greater than unity. Those 

eigenvalues less than unity are discarded, which then left three eigenvalues indicat- 

ing the number of factors to be considered. Similarly, the Cattel scree plot presented 

in Figure 5.7 facilitates the decision regarding the number of factors to retain. By 

analysing Table 5.4, the scree plot shown in Figure 5.7 was obtained, which represents 

the relative proportion of variance accounted for by the components. In the scree plot, 

the eigenvalues of the first three components greater than unity can be seen from the 

parallel indicator, while the subsequent components below unity also line-up beneath 

the parallel indicator. However, it is important to evaluate the variance accounted for 

by a few of the eigenvalues regarded as sufficient so that attention will be paid on them 

and discard the remaining insufficient factors as noise. 
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Table 5.4: Correlation matrix of the climate drivers and malaria incidence. 
 

 1 2 3 4 5 6 7 

1 1.00 - - - - - - 

2 0.28 1.00 - - - - - 

3 0.68 0.04 1.00 - - - - 

4 -0.21 -0.36 0.22 1.00 - - - 

5 0.51 -0.24 0.90 0.38 1.00 - - 

6 0.19 0.54 -0.33 -0.10 -0.44 1.00 - 

7 -0.16 0.07 0.45 0.17 0.39 0.01 1.00 
Note: (1) Malaria incidence, (2) Maximum temperature, (3) Minimum temperature, (4) Precipitation, (5) Relative humidity, (6) 

Solar radiation and (7) Wind speed. 

 

 
 

Figure 5.7: The Cattel scree plot presents the eigenvalues of the components and the 

threshold for identifying the number of hidden ecological factors for consideration 

using the information in Table 5.4. 

 

Table 5.5 presents Pearson’s cross-correlation between the meteorological vari- 

ables and the occurrence of malaria at various lag effects from 0 to 3 months. Lag0, 

Lag1 and Lag2 (e.g., 0 month, 1 month and 2 month) presented in Table 5.5 indi- 

cates the lagged correlation effects between the climates variables and the incidence 

of malaria in the study area. It was observed that, with the exception of precipitation, 

the maximum temperature, minimum temperature and relative humidity have positive 
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Table 5.5: Cross-correlation between meteorological variables and malaria incidence. 
 

Variables Lag 0 Lag 1 Lag 2 VIF Kurtosis Standard error 

Maximum temperature 0.284 0.321b
 0.092 2.4096 5.48 0.38 

Minimum temperature -0.122 0.215b
 -0.237 8.7919 2.07 0.33 

Precipitation -0.214 -0.292a
 -0.155 1.4194 20.73 0.27 

Relative humidity -0.134 0.254b
 -0.198 9.0065 1.42 0.02 

Solar radiation - - - 1.9000 6.73 0.50 

Wind speed - - - 1.3452 -0.58 0.04 
a negative association at lag 1.       

b positive association at lag 1.       

 
lag effects in 1 month, which are given as 0.321, 0.215 and 0.254, respectively. This 

explained that the influence of climate drivers at lags of 1 month would result in suffi- 

cient mosquitoes for reproductive capability and to complete their incubation periods 

(EIP) to become fully active in transmitting the malaria infection. It was found that 

the preceding result was consistent with other relevant studies on the influence of me- 

teorological variables on the incidence of malaria [181]. The 1 month time lag in the 

study area is sufficient to capture the pattern of malarial transmission for various strains 

of plasmodium parasites with definite lengths of EIP. This period usually takes about 

10-15 days [154] and temporally varies over location, parasite species and climatic 

resolution. At Lag0 and Lag2, the minimum temperature, precipitation and relative 

humidity had negative lag effects at 0 month and 2 months, whilst the maximum tem- 

perature was 0.284 and 0.092. These results revealed some clear indications that the 

transmission of malaria in the study area at Lag0 and Lag2 suffered a negative effect, 

which might be attributed due to the bi-annual rainfall pattern, low relative humidity 

(say less than 50%) and the inability of mosquitoes to complete the EIP cycle. In  

general, the result showed that the maximum temperature, minimum temperature, and 

relative humidity were related to the incidence of malaria at lagged effects of 1 month 

(i.e. a month in advance) except for precipitation, which had a negative association in 
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the study area. 

Some important summary statistics are presented in Table 5.5, which describes the 

distributional pattern of the climate indicators of malaria’s incidence and the variance 

inflated factor (VIF). In the factor analysis, multicollinearity can be used as a diagnos- 

tics check prior to the application of a regression analysis, whereby variables with high 

factor loadings are typically multicollinear. The VIF of the climate’s variable was com- 

puted to measure the degrees of multicollinearity that exist and identify the factors that 

are independent by the magnitude of their VIF. In Table 5.5, the minimum temperature 

and relative humidity have a VIF of 8.7919 and 9.0065, which gives a high degree of 

multicollinearity. The results revealed the highly independent predictor of malaria’s 

incidence in the study area, and the degree of independence provides evidence to ac- 

curately be the major factors. However, the kurtosis values (see Table 5.5) indicate a 

high peak amongst the climate variables with positive values across most indicators, 

excepting wind speed, which indicates a flat distribution. Positive values are generally 

listed in Table 5.5, and indicate a peaked distribution amongst the climate variables, 

which particularly influences the incidence of malaria. Also, the standard error esti- 

mates provide information on the accuracy of the statistics of climate variables; thus, 

the larger the standard error, the wider the confidence interval about the statistic and 

vice-versa. 

The non-normality of the dataset is one necessity when adopting PLS-SEM; more- 

over,  it is very robust when used on extremely non-normal data [77].   The degree   

to which the data on malaria’s incidence were non-normal was examined by using  

the Shapiro-Wilk tests, this was implemented in R software. The result showed that 

the null hypothesis (Ho) was rejected indicating the malaria incidence dataset is non- 

normal, as suggested by the following indices W = 0.9486, pvalue = 0.0134. This 
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Figure 5.8: Graphical representation of Q-Q plot normality tests. 

 
method is particularly useful and therefore chosen for smaller samples size of less than 

2000 [84], and the null hypothesis is explained by the fact that the data are from a nor- 

mal distribution. Similarly, a graphical approach called quantile-quantile (Q-Q) plot 

[177] was further used for testing the normality of the dataset. This approach creates a 

plot from the ranked samples of the dataset against a similar number of ranked theoret- 

ical samples from a normal distribution. The plot shown in Figure 5.8, clearly indicates 

that the data points for malaria’s incidence deviate from the straight line. Hence, the 

malarial incidence dataset is therefore not normally distributed (using Shapiro-Wilk 

tests) as well as using the Q-Q plot. 
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Table 5.6: Factor scores for the path coefficients in the PLS-PM using three weighting 

schemes. 
 

Measurement / structural model Parameter Estimate Centroid (A) Factorial (B) Path weighting (C) 

Minimum temperature ←− FactorI λ1,1 

λ1,2 

λ2,1 

λ2,2 

λ3,1 

λ3,2 

β1,2 

β2,3 

γ1 

γ2 

γ3 

- 

0.9479 

0.9910 

0.8816 

0.8735 

0.9849 

0.0017 

-0.3248 

-0.2774 

0.9700 

0.7700 

0.4900 

- 

0.9479 

0.9910 

0.8816 

0.8735 

0.9849 

0.0017 

-0.3248 

-0.2774 

- 

- 

- 

12 

0.9495 

0.9903 

0.8675 

0.8873 

0.9852 

0.0031 

-0.3302 

-0.2690 

- 

- 

- 

15 

0.9495 

0.9903 

0.8675 

0.8873 

0.9852 

0.0031 

-0.3302 

-0.2690 

- 

- 

- 

15 

Relative humidity ←− FactorI 

Maximum temperature ←− FactorII 

Solar radiation ←− FactorII 

Precipitation ←− FactorIII 

Wind speed ←− FactorIII 

FactorI −→ FactorII 

FactorII −→ FactorIII 

FactorI −→ Malaria incidence 

FactorII −→ Malaria incidence 

FactorIII −→ Malaria incidence 
Maximum number of iterations 

 

In Table 5.6, the results of the factors score estimates for the path coefficients of 

SEM estimated using PLS path modelling alongside three different structural model 

weighting schemes are presented. It was observed that Centroid (A) converges faster 

after 12 iterations, while factorial (B) and path weighting (C) converge after 15 itera- 

tions. The best weighting scheme was determined by the maximum number of itera- 

tions that will be used to calculate the PLS results and this algorithm did not stop until 

the maximum number of iterations were reached due to the stop criterion. From Table 

5.6, it was observed that the B and C weighting schemes converged at the same maxi- 

mum number of iterations by estimating the SEM parameters. The weighting scheme 

provides the highest R2 value for endogenous latent variables in the PLS path model 

specifications and estimations. These results show that C weighting scheme is better 

than A and B as suggested by [97], in terms of its robustness and when the path model 

includes higher-order constructs. 
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Table 5.7: Bootstrapping test of outer loadings and path coefficients in the PLS-PM 

with 95% confidence interval 
 

Measurement / structural model Parameter Estimate Bias Standard error Lower Upper 

Minimum ←− FactorI λ1,1 

λ1,2 

λ2,1 

λ2,2 

λ3,1 

λ3,2 

β1,2 

β2,3 

0.9479 

0.9910 

0.8816 

0.8735 

0.9849 

0.0017 

-0.3248 

-0.2774 

-0.0057 

-0.0055 

-0.0329 

-0.0343 

-0.1748 

0.1356 

-0.0333 

-0.0264 

0.0467 

0.0347 

0.1289 

0.1748 

0.4044 

0.4059 

0.1692 

0.2191 

0.8240 

0.9823 

0.4769 

-0.0705 

0.7666 

-0.6593 

-0.4974 

-0.4963 

0.9890 

1.0000 

0.9810 

0.9550 

1.0000 

0.7300 

0.4260 

0.3810 

Relative humidity ←− FactorI 

Maximum temperature ←− FactorII 

Solar radiation ←− FactorII 

Precipitation ←− FactorIII 

Wind speed ←− FactorIII 

FactorI −→ FactorII 
FactorII −→ FactorIII 

 

Table 5.7 presents the results of the bootstrap sampling for the outer loadings of 

the observed variables and path coefficient of the latent variables; these were estimated 

using PLS-PM. The results also show that all outer loadings and path coefficients are 

significant at α = 5%, except for the solar radiation with Factor II and wind speed with 

Factor III, which contain zero-points in the bootstrap confidence interval. Furthermore, 

the interaction effects of the Factors (between I and II, II and III) were also investigated 

and the results revealed that none of the Factor combinations were significant to the 

incidence of malaria in the study area. These results provide sufficient evidence that 

high malaria incidence in the study area was attributed to the occurrence of minimum 

temperatures and relative humidity, which were identified as Factor I. 

The decision to select the most influential hidden ecological factor on the incidence 

of malaria was based on the communality and Dillon-Goldstein’s indices. Furthermore, 

Table 5.8 summarizes the results indicating some indices for selecting the hidden eco- 

logical factors to the high incidence of malaria in the study area. Among the three 

factors identified by EFA, we find that Factor I, indicated by a minimum temperature 

and relative humidity, influences malaria’s transmission with the communality index 

(0.94) and Dillon-Goldstein’s ρ (0.97). This result is also consistent with other find- 

ings [181], where a positive association exists between temperature and the occurrence 
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of dengue. Factor II and Factor III appear to have less influence on the influence of 

malaria. 

Table 5.8: Indices for selecting the ecological hidden factor of a high malaria incidence 

in the study area. 
 

Factor Reflective variables Communality Dillon-Goldstein’s ρ 

I 2 0.94c(94%) 0.97c(97%) 

II 2 0.77(77%) 0.87(87%) 

III 2 0.49(49%) 0.49(49%) 
c the most significant hidden factor.    

 

 

 

 

5.4 Intelligent Malaria Outbreak Warning System 

 
In sections 5.2 and 5.3, the most influential and hidden ecological factors of malaria 

incidence were identified by deploying regression and partial least squares path mod- 

elling, respectively. This section discusses in detail the implementation of the malaria 

outbreak system, based on the identified hidden ecological factors. The deployment 

comprises three stages: data preprocessing, generating the predictive model using ma- 

chine learning, and the development of a mobile application. 

 
5.4.1 Data preprocessing 

 
It has been a tradition prior to the application of machine-learning algorithms that 

datasets need to be preprocessed to enable a faster learning process and greater accu- 

racy. The heuristic approach most commonly used discretisation techniques in data 

mining. This involves transforming continuous-value datasets into discrete datasets 

by creating a set of contagious intervals [99]. To start the preprocessing, the dataset 

on climate variables was chosen as the input (independent variable), while the reported 
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cases of malaria’s incidence is the output (dependent variable). Hence, the concern is to 

develop a predictive model using supervised machine learning algorithms that will pre- 

dict the likelihood of malaria’s incidence. Since the output variable appeared to have 

a high-magnitude in-terms of the reported number of malaria cases, using it directly 

may cause over-fitting to the predictive model. Therefore, it is pertinent to transform 

the dataset using discretisation techniques in order to build an efficient model. 

The output variable is discretised to form a target variable using a k-means clus- 

tering algorithm [107]. This methodology is chosen over equal width (EW) and equal 

frequency (EF) because it is less sensitive to outliers, and the number of clusters (par- 

titions) can be optimised by analysis rather than pre-determination. In general, the 

choice of discretisation method and choice of k can be guided by the objectives of the 

discretisation task. The R software was invoked to determine the optimum number of 

clusters to enable us to partition the output variable. 

From the analysis, the optimum number of clusters obtained was k = 4 and the al- 

gorithm converged after 9 iterations with 89.9% percent variation. Also, it is observed 

that, for k = 5, the number of iterations exceeded the maximum number of tolerable 

iterations to achieve convergence; in this case, it diverged even though the variation 

percentage was still good at 93%. For k = 2 and 3, the algorithm converges after 3 and 

4 iterations with 66.4% and 82% percent variation, respectively. This gives sufficient 

evidence to choose the optimum number of clusters as k = 4. Similarly, the NbClust 

package in R software was also tried to determine the optimal number of clusters. Us- 

ing k values ranging from 2 to 5 allows the algorithm to select the optimum cluster for 

use in order to partition the output variable. The algorithm ran and selected k = 4 as the 

optimum number of clusters to partition the output variables. Hence, both methodolo- 

gies give the same number of optimum clusters and subsequently prove consistency. 
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The output variable was partitioned into four classes according to the results of the k- 

means algorithm, which was relabelled as: low, medium, high and very high incidence 

status of malaria. Table 5.9 presents a summary analysis of the k-means algorithm 

clustering. 

Table 5.9: Summary of the data descritisation using the k-means algorithm. 
 

Number of clusters (k) 2 3 4 5 

iteration 3 4 9 6 

convergence yes yes yes no 
SSB 66.4% 82% 89.9% 93% 

    SST  

 
 
 
 

5.4.2 Machine Learning 

 
The next stage is to identify a pattern or model from the data preprocessed in subsection 

5.4.1 that could be used to make an accurate prediction of malaria’s incidence. Evolv- 

ing from traditional pattern recognition approaches, machine-learning methods explore 

the algorithms that can learn from the data and overcome prediction tasks by building 

a mathematical model with a data sample input. A learning algorithm will mark each 

given malaria epidemic data sample as one category, then, after being trained using the 

training dataset, it will build a model to predict which category the forthcoming data 

sample falls into. 

Several machine learning algorithms was applied, including SMV, KNN, Naive 

Bayes and Decision Trees, to find the best prediction algorithm for the scikit frame- 

work [4] in Python. 

To evaluate the prediction of machine learning algorithms on the training set, a 10- 

fold cross-validation technique was used for selecting a training set and test sets that 
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were mutually independent. Table 5.10 shows the prediction results when comparing 

7 different machine learning methods. 

Table 5.10: Accuracy comparison of model checking algorithms. 
 

Algorithm   LiR LoR DT SVM SVM (o)   NB KNN1    KNN5    KNN10    K-M (3) 
 

  Accuracy 83.8%   75.0%   63.8%   80.6%   99.0% 63.9%   58.3%   80.6%   80.6% 47.2%  

 
 

 

Based on the performance accuracy of the algorithms presented in Table 5.10 and 

their interpretations are given as follows. 

 
5.4.2.1 Linear Regression (LiR) 

 
This method gives overall good prediction results, but failed to produce any medium 

predictions. 

 

5.4.2.2 Logistic Regression (LoR) 

 
This method predicts the probability of occurrence for an event by fitting the dataset, 

as a set of independent variables, into a logic function. In other words, for a correlated 

data set, LoR may not be able to find the intrinsic-relationships between events. 

 
5.4.2.3 Decision Tree (DT) 

 
This algorithm works very well for both categorical and continuous dependent vari- 

ables; however, this dataset cannot be separated as distinct groups since the edges of 

the samples are fuzzy. Therefore, DTs gave a bad prediction. 
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5.4.2.4 Support Vector Machine (SVM) 

 
SVM is one of the most efficient supervised machine learning algorithms, and is mainly 

used to solve classification and regression problems. The best part of this algorithm is 

that data training and testing can be plotted as a point on an n-dimensional plane, with 

a feature being the value of a particular coordinate. Without optimising the parame- 

ters, SVM gave a 80.56% prediction result. After a parameter optimisation, especially 

on the penalty parameter and gamma coefficient adjustment, SVM (o) gave a 99.0% 

prediction result. 

 
5.4.2.5 Naive Bayes (NB) 

 
NB is a well-known classification method, which is based on ’Bayes Theorem’ with 

an oversimplified assumption of independence between classifiers. Moreover, NB is 

a conditional probability model, which means that the method needs to be assigned a 

series of certain events. For this dataset, NB did not produce a good prediction overall. 

 
5.4.2.6 K-Nearest Neighbours (KNN) 

 
The KNN method is able to deal with both classification and regression problems. In 

comparison to KNN5 (where k=5) and KNN10 (where k=10), KNN1 (where k=1) 

failed to make a good prediction. This means that the data could need more pre- 

processing and/or noise removal within a theory; however, most data from the real 

world are incomplete, which is why KNN5 and KNN10 offer better predictions. 
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5.4.2.7 K-Means (K-M) 

 
K-M is a type of unsupervised clustering method. In this case, 3 clusters have been set 

at the beginning; however, a convergence did not perfectly land, and therefore it could 

not provide a good overall prediction. 

Thus, the results, presented in Table 5.10, show that the best performing algorithm 

is SVM. Therefore, the SVM model will be integrated into our system. 

 

5.5 Mobile Application 

 
This section presents the development of mobile application, the Malaria Outbreak 

Warning System, with a built-in SVM model, published at Google Play. The tool can 

be accessed via [3]. 

The application was based on the theoretical experiences and practical experiments 

of the SVM algorithm and model, which was tested for the development of systematic 

and effective strategies to predict the outbreak of a malaria epidemic. Meanwhile, the 

parameters of the model kernel were optimised and set into this application. 

The application consists of 3 processes: preprocessing the weather forecasting data, 

processing the data by applying them into the model and implementing the model’s 

interface, and post-processing the prediction data by presenting results onto the app’s 

UI front layer. It is a well-suited implementation for location detection. 

Figure 5.9 shows a screenshot of the tool. The application does not only support 

the automatic gathering of weather forecasting data, but also supports manual data 

input. The application reads climatic information, i.e., temperature, relative humidity, 

wind speed, solar radiation and precipitation, from the weather and geographical APIs. 

When the units of the weather and atmosphere were different from the dataset used to 
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Figure 5.9: A screen shot for the mobile application. 

 
construct the predictor, the required normalisation was carried out or feature scaling or 

similar preprocessing. The tool then predicted the malaria outbreak in a couple of days 

advance based on available forecast information acquired from the APIs. The user can 

slide the screen to see the available outbreak predictions for current and future days. 

The additional button on the bottom of screen lets users manually enter a set of weather 

measurements to gather prediction results for customised parameters. 

The trained SVM model has been implemented in Java by taking advantage of the 

LIBSVM [1]. LIBSVM is an integrated software for SVM, regression and distribution 

estimation. The mobile application was developed for Android using Android Studio. 
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The weather forecasting data is powered by OpenWeatherMap API [5], which is an 

online service provider for weather data. OpenWeatherMap provides an API to search 

forecasting data for up to 5 days by coordinates; the responses are served with JSON, 

XML and HTML endpoints. All of the data provided are under CC BY-SA 4.0 license. 

 
5.5.1 Discussion 

 
The current prototype of the intelligent malaria outbreak warning system relies on a 

batch machine learning process. Thus, the learning algorithm is trained and tested of- 

fline using the available data set, and the prediction model is embedded within the tool. 

Hence, the prediction process relies on the offline training of the prediction model. 

A more effective approach is to make the learning process online. That is, whenever 

new data are available, they are automatically updated, and the learning process is run 

again to incorporate the new data. This will not only allow an automatic and dynamic 

learning process, but also increase the accuracy of the prediction by adapting to new 

patterns in the data. 

The online learning approach requires a mechanistic data collection mechanism, 

which is very challenging to perform as hospitals and health service providers do not 

make the relevant data available online. Even acquiring permission for access to the 

available data is a long and bureaucratic process. On the other hand, as discussed in 

subsection 5.3.2, most available data cannot be directly used in this system as they are 

incomplete and/or not processed. 

To alleviate these issues and to support the online learning process, the malaria 

outbreak warning application can be extended to collect online data from its users. 

These users include hospitals, healthcare providers, individuals, etc., who would re- 
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port malaria cases to the system. Using the geographical location of the incident, the 

application will acquire all the necessary information for the ecological factors. In 

this way, new data will be collected at the run time, and the learning process will be 

instantiated each time new data are available. 

 

5.6 Summary 

 
Chapter 5 presented a data-driven model to investigate and understand the dynamics 

in the transmission of malaria. An intelligent malaria prediction model was developed 

by using embedded machine learning algorithms to read and process the likelihood  

of malaria’s incidence from climate data. This model will supply information like a 

warning signal to healthcare providers so as to prepare and strategise prevention and 

control mechanisms. Prior to developing the model, climate factors and malaria data 

were investigated and the hidden factors that bring about a high incidence within the 

area studied were identified. The next chapter presents the conclusion of this thesis. 
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6 

General Discussion 

 
This chapter provides a summary of the entire work presented in this thesis; further- 

more, recommendations for future study are also are given. 

 

6.1 Consequences for climate change to malaria 

 
Malaria creates serious health problems for people, and about two-third of the world 

population are at risk of infection. Globally, malaria is spreading, mostly in tropical 

and sub-tropical regions. This is because the region’s climate supports the survival of 

mosquitos and enabling its faster reproduction by causing high malaria transmission in 

a human population. 

Recent campaigns on the consequences of anticipating global warming, particu- 

larly on the likelihood of malaria’s prominence in previously unexposed areas, has 

attracted the attention of the World Health Organization (WHO) and allied healthcare 

providers to further strengthen efforts towards intervention, prevention and control. 

The Inter-governmental Panel of Climate Change (IPCC) says gradual rises in temper- 

ature over time can alter the natural habitats of the mosquito by changing its prevalence 

 
Chapter 
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and prolonging the season of malaria’s spread [145]. A marginal 0.5◦C increase in tem- 

perature could mean a 30–100% increase in the mosquito population [162]. Similarly, 

a small shift in temperature, from 2◦C to 3◦C, could increase the number of humans 

vulnerable to malaria by up to 5% [167]. 

 
 

6.2 Summary of the thesis findings 

 
As this study focuses on investigating the influence of climate factors in malaria trans- 

mission dynamics, the causal relationship between climate factors and malaria occur- 

rences [30] has been explored to develop an understanding of the epidemic pattern, 

and thus develop an efficient predictive model. This enabled the development of three 

modelling approaches, which fully addressed and exhausted the scope of the estab- 

lished research question (as stated in Subsection 1.2.1). The main contributions of this 

study are presented in Chapter 3, 4 and 5; each captures the specific modelling tech- 

niques used (to address the aim and objectives outlined under subsection 1.2.2) when 

investigating and understanding the dynamics of malaria transmission in the light of 

climate factors. In Chapter 1, a succinct introduction of malaria, how it is transmit- 

ted and the factors responsible for its global distribution were presented alongside the 

motivation, research question and the significance of this study. In Chapter 2, a theo- 

retical background of the malaria life cycle, mathematical models and their application 

to malaria studies were also presented. 

In Chapter 3, a mathematical model of malaria transmission dynamics was inves- 

tigated by incorporating temperature dependent delay through the extrinsic incuba- 

tion and maturation in adult and aquatic mosquito states, respectively. The theoretical 

results of the non-autonomous model show that a disease-free equilibrium is locally 
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asymptotically stable whenever the basic reproduction number is less than unity or 

otherwise. This means the malaria infection persists whenever the basic reproduc- 

tion number is greater than the unity. However, it has also emerged from the non- 

autonomous model that the spread of malaria is highly influenced by the dynamics of 

immature mosquitoes. The numerical results indicate that the maturation time delay 

reflects the effects of the temperature variation on the development of the aquatic stage 

of the mosquito. This result suggests that, within the limits of lower and upper devel- 

opment thresholds, immature mosquitoes develop faster as the temperature increases. 

In addition, the increase in temperature shortens the maturation time from an egg to an 

adult mosquito, and thus triggers a greater mosquito population. As part of the con- 

trol and prevention strategy, a sensitivity analysis was carried out using LHS-PRCC 

and this identified the most influential parameters of the model (see Figure 3.19). The 

suggested parameters for control are the mosquito’s biting rate (cm); its egg deposition 

rate (αE); its carrying capacity (Kc); the mortality rate of an immature mosquito (µa) 

and the adult mosquito mortality (µm). Subsequently, our study has shown that malaria 

transmission can be effectively controlled in a population if the incubation period of 

mosquitoes is considered part of the prevention strategies. This results have com- 

plemented outcomes from previous studies (see [161]) where the incubation period in 

humans was the main focus. Thus, the work presented in this Section 3 provides an im- 

portant contribution when developing a preventive mechanism that can assist in diag- 

nosing malaria infection and the detection of outbreaks. Moreover, using mathematical 

approaches to investigate malaria dynamics is good but has a limitation when studying 

a homogeneous population [79]. Since both human and mosquito populations are nat- 

urally heterogeneous (e.g., sex, age, spatial and changes, movement pattern amongst 

other), it is inadequate to capture the heterogeneity arising in a population’s dynamics. 
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In Chapter 4, agent-based modelling was utilised to address the limitations of math- 

ematical modelling, which arise from the heterogeneity of both human and mosquito 

populations. This contribution addresses the population dynamics of malaria transmis- 

sion using agent-based modelling. Using this method, the pattern of a malaria epidemic 

was predicted and validated the outcome against the reported cases (see Table 4.1) ob- 

tained from three cities:  Tripura district in India (see map 4.4),  Limpopo province  

in South-Africa (see map 4.5) and Benin city in Nigeria (see map 4.6). Both agent- 

based modelling and mathematical modelling are used in epidemiology to investigate 

and understand the dynamics in disease transmission. Agent-based modelling comple- 

ments the mathematical technique due to the limitations on heterogeneity, hence the 

results was compared by studying population dynamics of malaria epidemics in the 

cities. Agent-based modelling is identified as the most robust technique as it was able 

to predict a malaria season in all three cities with very good precision, as confirmed 

by the t-test and correlation coefficient (see Table 4.5). However, mathematical mod- 

elling was slightly better in predicting the occurrence and season of malaria in Tripura 

than in Limpopo and Benin. Moreover, the mathematical technique is suitable for sim- 

ulating continuous, rather than discrete, phenomena. When devising prevention and 

control mechanisms, both mathematical and agent-based techniques provide a good 

platform to alleviate malaria infections. The transmission of malaria has been linked 

with climatic factors; in particular temperature plays the most significant role among 

other factors. In Chapter 3 and 5, temperature was the only climate factor used in the 

dynamic modelling of malaria. Therefore, the inclusion of other malaria predictors, 

such as rainfall, humidity etc., in the model will significantly increase the robustness 

of the model by approximating the dynamics. 

In Chapter 5, an intelligent early warning system for malaria outbreaks was devel- 
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oped based on climate factors and using machine learning algorithms. Prior to that, cli- 

mate predictors of malaria together with reported cases were preprocessed to identify 

at least one of the most influential factors to influence its high incidence (see subsec- 

tion 5.2.1.1). From the results of the cross-correlation function (CCF) between malaria 

cases and pre-whiten climate variables, it was found that temperature and precipitation 

have negligible lagged effects on the occurrence of malaria. Temperature supports the 

development speed of the parasites and their morphological stage, while precipitation 

creates breeding sites for mosquitoes to lay their eggs and supports its survival in the 

water body. The study area experiences the rainy season, between April and October 

with annual rainfall varying from 1,500 mm–2,000 mm (60 to 80 inch). The annual 

temperature is above 20◦C (68◦F) and the annual relative humidity is about 75%.The 

temperature and precipitation data in the study area have exceeded the threshold to 

become predictors of the incidence of malaria, however they have negligible influence. 

Hence, it is believed that a huge amount of rain is likely to wash out the ground and kill 

the eggs and mosquito larvae [126, 143]. However, it was understood that sustained 

rainfall provides breeding sites for mosquitoes, and thereby increases its population. 

Furthermore, an analysis of variance was performed on the regression model, between 

malaria incidence and climate variables, and finds the probability (pvalue < 0.05). This 

indicates a statistically significant level that relative humidity seems to be a dominant 

climate predictor of malaria. The relative humidity may be determined by precipita- 

tion. From the available information, the relative humidity in the study area is 90% 

greater during the rainy season than the dry season. Relative humidity is a climatic 

variable that does not support the mosquitoes’ sporogonic cycle or gonotrophic cycle 

but strengthens the vector longevity and provides a good atmosphere for biting [187], 

especially in the night hours. The study area has a rain forest vegetation belt, which in- 
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dicates a high level of relative humidity and is the dominant climate factor. However, it 

is natural that an inherent relationship exists among the climate factors on the incidence 

of malaria. Hence, in section 5.3 further analysis was conducted from this, the hidden 

factors were identified representing the combination of at least two among the climate 

predictors of malaria. This provides an overview of the ecosystem for malaria mod- 

elling and proposes a new framework for the study of malaria transmission ecosystems 

including the prevention and control of its scourge (see Figure 5.4). 

Hidden factors have been identified that lead to high incidence of malaria. Hence, 

the analysis of the results shows that the minimum temperature and relative humidity, 

which are related to Factor I, have positive associations with the incidence of malaria 

in the study area. The other observed variables, like maximum temperature, solar ra- 

diation, precipitation and wind speed, which are related to hidden Factor II and Factor 

III, appear to have mildly influenced the incidence malaria as shown in Table 5.8. The 

primary results have demonstrated the power of the proposed predicative analytics- 

based malaria outbreak warning. This system will help hospitals, healthcare providers, 

and health organisations to take precautions in time and to best utilise their resources 

in the case of emergencies. To our best knowledge, the system developed shown in 

Figure 5.9 is the first publicly available application. 

 

6.3 Limitation and Future Work 

 
Although, this thesis addressed the research question stated in subsection 1.2.1, the 

results have raised new issues of importance indicating areas where more work needs 

to be done. Instead of considering the details of these possible extensions, hence this 

section provides a discussion on some general ideas for the extension of the presented 
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results. The possible directions for extending the main results presented in Chapter 3, 

4 and 5 are as follows. Chapter 3 has the following limitations: the implicit case of the 

aquatic mosquito was considered in the modelling, namely combining the egg, larva 

and pupa in a single compartment. However, it is important to investigate the dynam- 

ics by considering the explicit cases of the aquatic stage. The model uses embedded 

temperature-dependent models for the biting rate, mortality rate, maturation rate and 

survival rate of the mosquito in the modelling. Although temperature is a large-scale 

driver of malaria transmission, it is imperative to include other factors, including pre- 

cipitation and humidity. In Chapter 4, the modelling was achieved by considering the 

spatial and temporal movement of people in an arbitrary environment without recourse 

to reasons such as school, work, specific locations, or farms, among others. As human 

behaviour is complex and dynamic, it is imperative to investigate this limitation in or- 

der to better approximate the diffusion of malaria in a population. In Chapter 5, the 

further development of the system will incorporate the automatic data gathering from 

a variety of sources. This will not only allow for an automatic and dynamic learning 

process, but also increase the accuracy of predictions by adapting to new patterns in 

the data. 

 

6.4 Overall Conclusion 

 
Malaria remains endemic in Africa and some parts of the world. It seasonal resur- 

gences is imposing health burden on the populace and to the economy. Despite malaria 

being preventable and treatable, globally, it accounts for highest index of morbidity and 

mortality among other infectious diseases. Although, interventions have been con- 

tinuously provided by the World Health Organisations and other donor agencies, but 
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malaria still persists. The effective tools for management and planning of the interven- 

tions particularly in the developing countries is the key challenge. 

Towards developing tools for guiding the interventions, the link between malaria 

spread and climate factors was utilised. These are factors, temperature, precipita-  

tion and humidity. In particular, temperature is a large scale driver that supports 

mosquito parasite development, biting and survival. This thesis investigates the im- 

pact of temperature-dependent extrinsic incubation and juvenile maturation delays on 

malaria spread. The results showed that malaria transmission is greatly influenced by 

the juvenile mosquito maturation and extrinsic incubation. In other words, the matura- 

tion delay from an egg to adult mosquito is sensitive to ambient temperature as well as 

the malaria parasites development. This results complemented the study [39], where 

the intrinsic incubation was investigated. On that account, this study has proven to have 

the potential towards developing a preventive mechanism by guiding policy makers to 

better planning of intervention as well as prior detection of outbreaks. 
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[157] W. Stone, B. P. Gonçalves, T. Bousema, and C. Drakeley, “Assessing the infec- 

tious reservoir of falciparum malaria: past and future,” Trends in parasitology, 

vol. 31, no. 7, pp. 287–296, 2015. 

[158] S. Takyi Appiah, H. Otoo, and I. Nabubie, “Times series analysis of malaria 

cases in ejisu-juaben municipality,” Int. J. Sci. Technol. Res, vol. 4, pp. 220– 

226, 2015. 

[159] N. Tejedor-Garavito, N. Dlamini, D. Pindolia, A. Soble, N. W. Ruktanonchai, 

V. Alegana, A. Le Menach, N. Ntshalintshali, B. Dlamini, D. L. Smith et al., 

“Travel patterns and demographic characteristics of malaria cases in swaziland, 

2010–2014,” Malaria journal, vol. 16, no. 1, p. 359, 2017. 

[160] M. Tenenhaus, V. E. Vinzi, Y.-M. Chatelin, and C. Lauro, “Pls path modeling,” 

Computational statistics & data analysis, vol. 48, no. 1, pp. 159–205, 2005. 

 
[161] B. Tesla, L. R. Demakovsky, E. A. Mordecai, M. H. Bonds, C. N. Ngonghala, 

M. A. Brindley, and C. C. Murdock, “Impacts of temperature on zika virus trans- 

mission potential: combining empirical and mechanistic modeling approaches,” 

bioRxiv, p. 259531, 2018. 

[162] M. X. Tong, A. Hansen, S. Hanson-Easey, S. Cameron, J. Xiang, Q. Liu, X. Liu, 

Y. Sun, P. Weinstein, G.-S. Han et al., “Perceptions of malaria control and pre- 



191 

  REFERENCES 
 

 

 

 

vention in an era of climate change: a cross-sectional survey among cdc staff in 

china,” Malaria journal, vol. 16, no. 1, p. 136, 2017. 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

Figure A.1: Malaria Transmission Model Simulation 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

Figure A.2: Malaria Transmission Model Simulation Continued 
 

 

 

Figure A.3: Temperature-Dependent Parameters Plots 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

 

 
 

Figure A.4: Sensitivity Analysis Simulation 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

Figure A.5: Sensitivity Analysis Simulation Continued 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

 

Figure A.6: Sensitivity Analysis Simulation Continued 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 
 

Figure A.7: Sensitivity Analysis Simulation Continued 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

 

Figure A.8: Sensitivity Analysis Simulation Continued 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

Figure A.9: Sensitivity Analysis Simulation Continued 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

Figure A.10: Sensitivity Analysis Simulation Continued 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

Figure A.11: Sensitivity Analysis Simulation Continued 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

 

Figure A.12: Sensitivity Analysis Simulation Continued 
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  A.1 source code for mathematical modelling simulation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.13: PRCC plot 
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Figure B.1: Data used for SEM-PLS Modelling 
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Figure B.2: Data used for SEM-PLS Modelling Continued 
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Figure B.3: SEM-PLS Modelling 
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Figure B.4: SEM-PLS Modelling Continued 
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Figure B.5: SEM-PLS Modelling Continued 
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Figure B.6: SEM-PLS Modelling Continued 
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Figure B.7: SEM-PLS Modelling Continued 
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Figure B.8: SEM-PLS Modelling Continued 
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Figure B.9: SEM-PLS Modelling Continued 
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Figure B.10: SEM-PLS Modelling Continued 
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Figure B.11: SEM-PLS Modelling Continued 
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Figure B.12: SEM-PLS Modelling Continued 
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Figure B.13: SEM-PLS Modelling Continued 
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Figure B.14: SEM-PLS Modelling Continued 
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Figure B.15: SEM-PLS Modelling Continued 
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Figure B.16: SEM-PLS Modelling Continued 
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Figure B.17: SEM-PLS Modelling Continued 
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Figure B.18: SEM-PLS Modelling Continued 
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Figure B.19: Data Discretization using K-Means Algorithms 
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Figure B.20: Data Discretization using K-Means Algorithms Continued 
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Figure B.21: Data Discretization using K-Means Algorithms Continued 
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Figure B.22: Data Discretization using K-Means Algorithms Continued 
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Figure C.1: Agent-based modelling source code 
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Figure C.2: Agent-based modelling source code continued 
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Figure C.3: Agent-based modelling source code continued 
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Figure C.4: Agent-based modelling source code continued 
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Figure C.5: Agent-based modelling source code continued 
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Figure C.6: Agent-based modelling source code continued 
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Figure C.7: Agent-based modelling source code continued 
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Figure C.8: Agent-based modelling source code continued 

 

 

Figure C.9: Agent-based modelling source code continued 
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Plot of Climate Data from 1996-2013 
 

 

 

 

 

 

 

 

 

Figure D.1: Precipitation (mm) distribution plot 
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Figure D.2: Relative humidity (%) distribution plot 
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Figure D.3: Temperature (◦C) plot 
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E 

Algorithms for PLS modelling 

 
Step1 Initialization Suppose Y1, · · · , YK be the respective MVs, and are scaled such 

that E(Yi) = 0 and V(Yi) = 1. We are interested to express each LV as a linear 

combination of MVs, and represented in compact form: 

 

X̂  = YM 

  x̂g  

 

(E.1) 

x̂g =  
V AR(x̂ ) 

, g = 1, · · · , G 

 

Hence, the LVs are initialized as: X̂  = x̂1, · · · , x̂G. 

Step2 Inner approximation 

Within the inner model domain, the estimation of path parameter of each LV can 

be mathematically represented as the weighted sum of its neighbouring LVs. 

 

X̃  = X̂E 

  x̃g  

 
(E.2) 

x̃g  =  
(V AR(x̃ )) 

, g = 1, · · · , G 

 
Appendix 
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g 

  
. . . 

 

 

The approximate estimation of inner model path parameter takes: X̃ 

 
Step3 Outer approximation 

= (x̃1, · · · , x̃G). 

 

The outer approximation are computed based on the weight of the LV loads from 

the inner approximation. This comes in two forms, Mode A and Mode B. For 

Mode A, a multivariate regression coefficient with the block of MVs as response 

and the LV as regressor: 

 

ŵg
T  = (x̃T

g x̃g)−1x̃T
g Yg (E.3) 

 
While, Mode B is a multiple regression coefficient with the block of MVs as 

response and its block of MVs as regressor: 

 

ŵg = (Yg
TYg)−1Yt x̃g (E.4) 

 
Step4 Outer weight vector 

 

Let kg = {k ∈ {1, · · · , K}|yk xg} be a set of indices for MVs related to LV xg 

then wg, g = 1, · · · , g, is a column vector of length |kg|. We can write down the 

matrix of outer weights, W as: 

w1 0 · · · 0  

. . . . . 
.   

 

0 0 · · · wG  

The outer weights vectors, w1, · · · , wG, in an outer weights matrix W , which we 

W = 
0 w2 · · · 0 
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kg kg 
 < E, ∀, k = 1, · · · , K ∧ g = 1, · · · , G, (E.6) 

 

 

are using now to estimate the factor scores by means of the MVs: 
 
 

X̂  = YW 
 

ˆ 

 
X̂ 

g
 

 

(E.5) 
Xg = 

ˆ 
, g = 1, · · · , G, 

V AR(Xg) 

 
resulting in the outer estimation: X = (x̂1, · · · , x̂G). 

Step5 Iteration 

 
If the relative change of all the outer weights from one iteration to the next are 

smaller than a predefined tolerance, 

 ŵold − ŵnew 
 
 

 

  

 

the estimation of factor scores done in (E.5) is taken to be final. Otherwise go 

back to (E.2). 

 
E.0.1 Weighting scheme 

 
The weighting schemes are used for estimation of the inner weight in (E.2) of the PLS 

algorithm. Generally, there are three weighting schemes, centroid [70], and later [97] 

introduced factorial and path weighting scheme. 

new 
kg ŵ 
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i 

 

 

E.0.1.1 Centroid (A) 

 
The centroid weighting scheme, takes the form: 

 

 

 
eij = 

sign(rij), for cij = 1, i, j = 1, · · · , G 

0, else 

 

 
(E.7) 

 

where E denotes the matrix of inner weights . 

 

E.0.1.2 Factorial (B) 

 
The factorial weighting scheme also takes the form: 

 

 

 
eij = 

rij , for cij = 1, i, j = 1, · · · , G 

0, else 

 

 
(E.8) 

 

E.0.1.3 Path weighting (C) 

In this weighting scheme, the predecessor and successor of a LV play a different role 

in the relation. When considering the relation for one specific LV xi with its successor 

is determined by their correlation, for the predecessors it is determined by a multiple 

regression 

xi = xpred
γ + zi 

E[zi] = 0, i = 1, · · · , G 

 
(E.9) 

 

with xpred the predecessor set of the LV xi. Denoting xsucc the successor set of the LV 
i i 

xi the elements of the inner weight matrix E as: 
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i 

g 

i 

γj , for j ∈ xpred, 

 

 

 
 

eij = 

 

 

COR(yi, xj), for j ∈ xsucc, 

 

 
(E.10) 

0, else 

E.0.2 Discriminant validity check 

In the structural equation model, the factor scores are estimated by PLS algorithm, 

while the path coefficients are also estimated using ordinary least squares (OLS). Now, 

for each LV x̂g, g  = 1, · · · , G, the path coefficient is the regression coefficient on its 

predecessor set x̂pred defined as: 

 

 

β̂g  = (x̂predTx̂pred)−1x̂predTx̂g (E.11) 
g g g 

 

Using (E.11), we can compute the element b̂ij , i, j = 1, · · · , G, of the estimated matrix 

of path coefficients β̂  

 

E.0.2.1 Path coefficients 
 

 

 
β̂ij 

β̂gj , for j ∈ xpred, 

0, else 

 

 

 

(E.12) 

 
 

Therefore, the matrix B̂ denotes a transition matrix for the structural equation model. 

i 

= 
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     ... 

λ = 

λ̂cross, if mkg = 1 

 

 

E.0.2.2 Total effects 

We can calculate the matrix of the total effects T̂ as the sum of the 1 to G step transition 

matrices: 
G 

T̂  = B̂g (E.13) 
g=1 

 

  g−times 

Note, that B̂g  expands to B̂ · B̂ · · · · · B̂, e.g., B̂2  contains all the indirect effects me- 

diated by only one LV. 

 

E.0.2.3 Outer loadings 

 
The cross and outer loadings are estimated as: 

 

 

∧̂
cross  

= COR(Y, X̂ ) (E.14) 

 

 

 

ˆouter 
kg 

 
kg 

0, else 

 
(E.15) 
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