

AUTOSCALING THROUGH SELF-ADAPTATION

APPROACH IN CLOUD INFRASTRUCTURE

S.S.BUTT

MPhiL

UNIVERSITY OF BRADFORD

2019

Autoscaling through Self-Adaptation Approach in Cloud Infrastructure

A Hybrid Elasticity Management Framework Based Upon MAPE

(Monitoring-Analysis-Planning-Execution) Loop, to Ensure Desired Service

Level Objectives (SLOs)

Sarfraz Sarwar BUTT

Submitted for the Degree of

 Master of Philosophy

Faculty of Engineering and Informatics

University of Bradford

2019

i

Abstract

Sarfraz Sarwar Butt

Autoscaling through Self-adaptation Approach in Cloud Infrastructure

A Hybrid Elasticity Management Framework Based Upon MAPE

(Monitoring-Analysis-Planning-Execution) Loop, to Ensure Desired Service

Level Objectives (SLOs)

Keywords: Cloud Computing, Autoscaling, MAPE process, Self-adaptation,

Taxonomy, Autoscaling Approaches, Elasticity Management Framework,

OpenStack, CloudSim Plus

The project aims to propose MAPE based hybrid elasticity management

framework on the basis of valuable insights accrued during systematic analysis

of relevant literature. Each stage of MAPE process acts independently as a

black box in proposed framework, while dealing with neighbouring stages. Thus,

being modular in nature; underlying algorithms in any of the stage can be

replaced with more suitable ones, without affecting any other stage.

The hybrid framework enables proactive and reactive autoscaling approaches

to be implemented simultaneously within same system. Proactive approach is

incorporated as a core decision making logic on the basis of forecast data, while

reactive approach being based upon actual data would act as a damage control

measure; activated only in case of any problem with proactive approach. Thus,

benefits of both the worlds; pre-emption as well as reliability can be achieved

through proposed framework. It uses time series analysis (moving average

method / exponential smoothing) and threshold based static rules (with multiple

monitoring intervals and dual threshold settings) during analysis and planning

phases of MAPE loop, respectively. Mathematical illustration of the framework

incorporates multiple parameters namely VM initiation delay / release criterion,

network latency, system oscillations, threshold values, smart kill etc. The

research concludes that recommended parameter settings primarily depend

upon certain autoscaling objective and are often conflicting in nature. Thus, no

single autoscaling system with similar values can possibly meet all objectives

ii

simultaneously, irrespective of reliability of an underlying framework. The

project successfully implements complete cloud infrastructure and autoscaling

environment over experimental platforms i-e OpenStack and CloudSim Plus.

In nutshell, the research provides solid understanding of autoscaling

phenomenon, devises MAPE based hybrid elasticity management framework

and explores its implementation potential over OpenStack and CloudSim Plus.

iii

Acknowledgements

I would like to thank my principal project supervisor Dr Mumtaz Kamala for his

continuous guidance and encouragement throughout the project. His valuable

feedback on my work kept the project going in right direction and at a right

pace. Besides, I am also grateful to my associate supervisor

Professor Rami Qahwaji for his active input during the process.

In addition, I would like to thank my family for their constant support and

patience

iv

Table of Contents

Abstract ... i

Acknowledgements ... iii

Table of Contents .. iv

List of Figures .. ix

List of Tables .. xiii

Abbreviations ... xiv

Chapter 1 Introduction ... 1

1.1 Autoscaling vis-a-vis Cloud Computing Paradigm 1

1.2 Problem Statement.. 3

1.3 Project Scope .. 4

1.3.1 Aims.. 4

1.3.2 Objectives .. 4

1.3.3 Thesis Contributions .. 5

1.4 Thesis Outline.. 6

1.5 Summary ... 7

Chapter 2 Autoscaling ... 8

2.1 What is Autoscaling ... 8

2.1.1 National Institute of Standards and Technology (NIST) 9

2.1.2 Standard Performance Evaluation Corporation (SPEC) 10

2.1.3 IEEE International Requirements Engineering

Conference, 2008 .. 10

2.1.4 Association for Computing Machinery (ACM) 10

2.1.5 RightScale, Inc. .. 11

2.2 Why it is required - Objectives ... 11

v

2.3 MAPE Process vis-á-vis Self-Adaptation 15

2.3.1 Theory of Self Adaptation .. 16

2.3.2 Architectural Blueprint for Autonomic Computing 20

2.3.3 Self - * Properties ... 23

2.3.4 óMAPEô Loop .. 24

2.4 Taxonomy / Classification of Autoscaling Phenomenon 28

2.4.1 Purpose .. 30

2.4.2 Scope ... 31

2.4.3 Methods.. 37

2.4.4 Approach .. 43

2.4.5 Affiliated Management ... 46

2.4.6 Stakeholders .. 57

2.4.7 Modelling and Evaluation .. 58

2.5 Limitations / Challenges .. 60

2.5.1 Resource Availability ... 61

2.5.2 Interoperability.. 61

2.5.3 Resource Granularity ... 62

2.5.4 VM Instantiation Time .. 63

2.5.5 Pricing Mechanism... 63

2.5.6 Hybrid Solutions ... 64

2.5.7 Evaluation Methodology .. 64

2.5.8 Security ... 65

2.5.9 Autoscaling Failures .. 65

2.6 Summary ... 66

Chapter 3 Autoscaling Approaches ... 67

3.1 Academics / Research Domain .. 67

vi

3.1.1 Threshold based Rules .. 67

3.1.2 Reinforcement Learning .. 69

3.1.3 Time Series Analysis ... 70

3.1.4 Control Theory ... 71

3.1.5 Queuing Theory ... 73

3.2 Cloud Service Providers.. 74

3.2.1 Amazon Inc. ... 75

3.2.2 Microsoft Inc. .. 81

3.3 Summary ... 90

Chapter 4 Elasticity Management Framework .. 91

4.1 Framework Dimensions .. 91

4.1.1 Autoscaling Objective .. 92

4.1.2 Target Application Domain .. 92

4.1.3 Comparison Baseline ... 93

4.1.4 Experimental Platforms ... 93

4.1.5 Experimental Hypotheses .. 94

4.1.6 Scalability Assessment .. 94

4.1.7 Validity Threats .. 95

4.2 Salient Aspects / Features .. 96

4.2.1 VM Initiation Delay ... 96

4.2.2 VM Release Time .. 99

4.2.3 Matching Function / Performance Model 99

4.2.4 Network Latency .. 101

4.2.5 VM Release Criterion ... 103

4.2.6 VM Scheduling Policy .. 104

4.2.7 Core Elasticity Metrics ... 105

vii

4.3 MAPE Loop ... 112

4.3.1 Monitoring .. 115

4.3.2 Analysis .. 116

4.3.3 Planning ... 119

4.3.4 Execution.. 133

4.4 Summary ... 133

Chapter 5 Project Implementation .. 134

5.1 Custom Testbed - OpenStack .. 134

5.1.1 Introduction .. 134

5.1.2 Architecture .. 138

5.1.3 Implementation .. 140

5.2 Cloud Simulator - CloudSim / CloudSim Plus 174

5.2.1 Introduction ... 174

5.2.2 Design & Architecture .. 175

5.2.3 Implementation .. 180

5.3 Summary ... 181

Chapter 6 Conclusion .. 182

6.1 Research Discussion .. 182

6.2 Research Contributions... 185

6.3 Research Limitations ... 187

6.4 Future Research Directions .. 188

6.4.1 Proposed Framework Implementation 188

6.4.2 Machine Learning Based Elasticity 190

6.4.3 Vertical Scaling .. 190

6.4.4 Resource Granularity ... 190

6.4.5 VM Initiation Time .. 191

viii

6.4.6 Multi-Tenant Container Environment 191

6.4.7 Lack of Standard Framework .. 192

6.4.8 Cloud Based Scientific Computations 192

6.4.9 Cloud Federation ... 193

6.5 Summary ... 193

List of References ... 194

ix

List of Figures

Figure 1.1 Evolution of cloud computing ... 2

Figure 2.1 Yearly energy consumption trends (real / hypothetical) 13

Figure 2.2 Optimum resource utilization based upon current demand 14

Figure 2.3 Self-adaptation process ... 16

Figure 2.4 Self-adaptation process in the light of 5W+1H questions 16

Figure 2.5 (a),(b) Centralized / decentralized approach for self-adaptation

logic implementation... 20

Figure 2.5 (c) Hybrid approach for self-adaptation logic implementation 20

Figure 2.6 IBM proposed architectural blueprint for autonomic computing . 21

Figure 2.7 Self-* properties possessed by autonomic systems 23

Figure 2.8 IBM proposed MAPE loop .. 24

Figure 2.9 Taxonomy of autoscaling system .. 29

Figure 2.10 Service based cloud layered architecture 31

Figure 2.11 Cloud Service model and responsibilities of stakeholders........ 32

Figure 2.12 Autoscaling implementation at PaaS layer 35

Figure 2.13 Multi-tenancy at SaaS layer to implement autoscaling 37

Figure 2.14 Horizontal scaling, vertical scaling ... 40

Figure 2.15 Cloud bursting concept .. 42

Figure 2.16 Traditional computer vs virtualization .. 47

Figure 2.17 Role of hypervisor and VIM in typical Cloud architecture 49

Figure 2.18 Functional relationship between hypervisor and VIM 49

Figure 2.19 Hypervisor based virtualization vs container virtualization 51

Figure 2.20 Sections in service level agreement .. 56

Figure 3.1 Proportional, integral, derivative (PID) controller 72

x

Figure 3.2 Primary modules of an autoscaling approach 75

Figure 3.3 Autoscaling approach adopted by Amazon Inc. 76

Figure 3.4 Amazon autoscaling group .. 76

Figure 3.5 Amazon VMsô life cycle .. 78

Figure 3.6 Amazon CloudWatch service ... 79

Figure 3.7 Microsoft Azure autoscaling agent... 83

Picture 3.8 Microsoft Azure autoscaling profiles ... 84

Figure 3.9 Throttling pattern adopted by Microsoft Azure 86

Figure 3.10 Microsoft Azure domains in a typical region 87

Figure 3.11 Application Insights implementation by Microsoft Azure 89

Figure 4.1 2D matrix representing effect of VM size and Time of the Day

(in hours) over VM deployment time .. 99

Figure 4.2 Network latency matrix ... 102

Figure 4.3 Sequence diagram depicting network communication flow in

CloudSim .. 103

Figure 4.4 Elasticity matrix for System Under Test (SUT) 109

Figure 4.5 Elasticity management framework based upon MAPE process114

Figure 4.6 Activity Diagram of Hybrid Scale-up policy (rule 1 & 3) 131

Figure 4.7 Activity Diagram of Hybrid Scale-down policy (rule 2 & 4) 132

Figure 5.1 OpenStack logical architecture .. 138

Figure 5.2 Typical OpenStack multi-node configuration 139

Figure 5.3 Advance Messaging Queuing Protocol within OpenStack 140

Figure 5.4 Virtual Machine Manager GUI along with deployed virtual

machines .. 142

Figure 5.5 Typical Horizon GUI ... 149

Figure 5.6 Output of successful Heat stack creation command 156

Figure 5.7 VM instance list created through Heat stack template 156

file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962642
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962643
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962644
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962649

xi

Figure 5.8 Aodh alarm list created through Heat stack template 157

Figure 5.9 Heat stack template execution: Sequence of events 157

Figure 5.10 Aodh alarm trigger for ólow CPU consumptionô threshold 158

Figure 5.11 VM CPU consumption details after being stressed 158

Figure 5.12 Aodh alarm trigger for óhigh CPU consumptionô threshold 158

Figure 5.13 Aodh alarm transitions due to workload variations 159

Figure 5.14 Aodh alarm description for óhigh CPU consumptionô threshold160

Figure 5.15 Aodh alarm history for ólow CPU consumptionô threshold 161

Figure 5.16 Aodh alarm state query .. 161

Figure 5.17 OpenStack Gnocchi resource list .. 162

Figure 5.18 List of QoS metrics available for VM instances in Gnocchi 163

Figure 5.19 Gnocchi archive policy for cpu-util metric 164

Figure 5.20 Data collection and granularity levels within Gnocchi 164

Figure 5.21 Gnocchi archive policies details - I .. 165

Figure 5.22 Gnocchi archive policies details - II ... 165

Figure 5.23 OpenStack Horizon: VM instances created through Heat

stack template .. 167

Figure 5.24 OpenStack Horizon: VM instances management interface 168

Figure 5.25 OpenStack Horizon: Network topology.................................... 169

Figure 5.26 OpenStack Horizon: Neutron based network configuration 169

Figure 5.27 OpenStack Horizon: Heat stack template creation process ... 171

Figure 5.28 OpenStack Horizon: Resource list created through Heat stack

template .. 172

Figure 5.29 OpenStack Horizon: Heat stacks list created for autoscaling . 173

Figure 5.30 CloudSim platform layered architecture 175

Figure 5.31 Time shared / space shared provisioning policies 176

Figure 5.32 CloudSim Plus class design diagram 178

file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962661
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962667
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962667
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962668
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962671
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962672
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962672
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962673
file:///E:/MPhil%20Project%20Thesis/MPhil%20Project%20Thesis_Minor%20Corrections%20Removed.docx%23_Toc22962676

xii

Figure 5.33 CloudSim based datacentre entities simulation 179

xiii

List of Tables

Table 2.1 Yearly energy consumption in world wide data centres 12

Table 2.2 Relation between 5W+1H questions and MAPE loop 25

Table 2.3 Major Hypervisor brands along with salient features 48

Table 2.4 Resource quota limitations by CSPs ... 61

Table 4.1 Scaling up: -7 Ø 2Ø .. 100

Table 4.2 Scaling down: Í×Ø ÒØ ... 101

Table 4.3 Source modules of performance metrics data 115

Table 4.4 Terminologies used during planning phase of proposed

framework ... 125

xiv

Abbreviations

ACID Atomicity, Consistency, Isolation and Durability

AMI Amazon Machine Image

AMQP Advance Messaging Queuing Protocol

API Application Programming Interface

APM Application Performance Management

AWS Amazon Web Services

CaaS Communication as a Service

CAP Consistency, Availability, Partition Tolerance

CLI Command Line Interface

CLOUDS Clouds Computing and Distributed Systems

CSMIC Cloud Services Measurement Initiative Consortium

CSP Cloud Service Provider

CSV Comma Separated Values

DaaS Desktop as a Service

dEIS Distributed Enterprise Information System

DNS Domain Name System

DoS Denial of Service

EC Elastic Compute

ECS Elastic Container Service

EMR Elastic MapReduce

EPEL Extra Packages for Enterprise Linux

FIFO First In, First Out

GCE Google Compute Engine

HPC High Performance Computing

xv

IaaS Infrastructure as a Service

IBM International Business Machines

IDE Integrated Development Environment

IoT Internet of Things

KPI Key Performance Indicator

KVM kernel Based Virtual Machine

LIFO Last In, First Out

LXC Linux Container

MAPE Monitor-Analyse-Plan-Execute

NaaS Network as a Service

NASA National Aeronautics and Space Administration

NAT Network Address Translation

NIST National Institute of Standards and Technology

NOB Nearly Orthogonal Balance

NOLH Nearly Orthogonal Latin Hypercube

OVF Open Virtualization Format

PaaS Platform as a Service

PE Processing Elements

PID Proportional Integral Derivative

PRESS Predictive Elastic Resource System

QEMU Quick Emulator

QoS Quality of Service

QoE Quality of Experience

REST Representational State Transfer

RDO Red Hat Distribution of OpenStack

SaaS Software as a service

xvi

SDN Software Defined Network

SLA Service Level Agreement

SLO Service Level Objective

SMI Service Measurement Index

SPEC Standard Performance Evaluation Corporation

S3 Simple Storage Service

SUT System Under Test

Tx Transmission

VIM Virtual Infrastructure manager

VDI Virtual Desktop Infrastructure

VHD Virtual Hard Disk

VM Virtual Machine

VMDK Virtual Machine Disk

VPN Virtual Private Network

XaaS Everything can be offered as a Service

1

Chapter 1

Introduction

First chapter of the thesis highlights the systematic transition of computing

paradigm from large sized mainframe computers to cloud computing and critical

role being played by autoscaling phenomenon to make it possible. Brief

introduction to cloud layered architecture and service / deployment models are

also discussed here (Section 1.1). It is followed by motivation and nature of the

problem that is required to be addressed through this piece of

research (Section 1.2). In light of this; scope, aims, objectives and thesis

contributions are explained in Section 1.3. Lastly, the chapter discusses the

broad outline followed in remaining parts of the thesis (Section 1.4).

1.1 Autoscaling vis-a-vis Cloud Computing Paradigm

Computing paradigm has changed remarkably over period of last few decades.

Business drivers like exponential growth in IT infrastructure, computing

efficiency importance, required customer experience, reliability, cost

effectiveness and energy conservation are major factors that are driving this

change. At the same time, technological issues like; integrating multiple

heterogeneous environments into corporate-wide computing systems,

programming language innovations, ever-increasing system complexity and

many-fold increase in pervasive computing has severely affected human

capability to install, configure and manage these systems effectively.

Autonomic computing is an answer to these problems. Technological transition

from large mainframe servers to grid computing and then onward to utility

computing, distributed computing and finally to cloud computing, is a journey

towards same direction (Figure 1.1). The idea is to establish computing

infrastructure that can self-configure, self-optimise, self-heal and self-protect

itself with minimum to none human intervention [1] [2].

2

Figure 1.1 Evolution of cloud computing

Cloud computing paradigm is a layered architecture having characteristics such

as on-demand self-service, broad network access, resource pooling, rapid

elasticity, and measured service etc. It can primarily be deployed as private

cloud, community cloud, public cloud or hybrid cloud with underlying service

model as Software as a Service (SaaS), Platform as a Service (PaaS) or

Infrastructure as a Service (IaaS) [3]. Cloud layered architecture (user-level

middleware, core middleware, system level) provides modular approach to

different stakeholders, who can have benefit of whole cloud package while

managing and interacting with their respective layer of interest only. Moreover,

wide spread adoption of hardware virtualization, service oriented architecture

and technological advancements (IoT, data mining, artificial intelligence etc.)

has led to massive growth in this domain; with Amazon, Microsoft Azure and

Google leading the race[4]. Worldwide public cloud service market is projected

to grow by 17.33 % in 2019 to total of $ 206.2 billion as compared $ 175.8

billion in 2018. Likewise, $ 1.3 trillion spending can be safely attributed to

enterprises shifting to cloud infrastructure till 2022 [5].

Elasticity / autoscaling is the most significant factor making cloud computing

concept, a success story. Major characteristics of cloud computing namely fault

tolerance, resource optimization, energy saving and cost optimization are made

possible due to this feature. The concept is valid in all the three service models

3

i-e IaaS, PaaS, SaaS. It was introduced in 2009 by Amazon Inc. followed by

Microsoft in 2013. As of now, the feature is being implemented by all major

market players with almost same underlying concepts, logics and algorithms

albeit; with different names, interfaces, implementation details and business

cases.

Autoscaling phenomenon enables cloud infrastructure to acquire or release

virtualized hardware resources based upon application requirements, incoming

workload, QoS parameters or service level agreements (SLAs), without any

interruption to seamless operations and with no active input from cloud

stakeholders (CSPs, end user etc.). It is made possible by constantly monitoring

the requisite performance indicators at predefined intervals, triggering the

associated alarms once any parameter crosses the threshold and provisioning /

de-provisioning of resources according to underlying autoscaling approach [6].

Thus, as a result; an online retailer need not to worry about new infrastructure

setup and associated costs in order to handle potential increased workload for

Christmas days, as it can now be rented for specific duration at short notice with

minimal rates. Similarly, it also enables data centre managers to optimise their

running costs by reducing hardware and energy usage.

1.2 Problem Statement

Autoscaling is one of the most well researched topic in cloud computing industry

for last one decade, but is still evolving because of extremely large scope of the

problem at hand and potential benefits it can offer to cloud stakeholders.

Autoscaling feature depends upon multiple underlying factors for its smooth

implementation. Some of them are system performance models, VM initiation /

release times, QoS metrics, granularity levels, cooldown periods, alarm

threshold levels, latency delays, agreed SLAs, pricing mechanism, degree of

scaling required at one time, virtualization technologies used, nature of

incoming workload and underlying physical hardware etc. At top of it, assumed

autoscaling objectives are also somewhat conflicting in nature. For example;

performance conscious autoscaling approach would tend to cost more in terms

of hardware and energy, whereas resource optimization effort by cloud provider

4

may likely to compromise towards performance levels. The ideal approach

would be to tune relevant parameters in such a way, so as to fulfil QoS metrics

with minimum incurred costs, maximum resource optimization and with no

compromise on fault tolerance mechanisms.

Moreover, there is no standard framework as well as formal testing mechanism

to decide, which autoscaling mechanism or algorithm is actually better. Most

research reports in relevant field are based upon peculiar scenarios in a

controlled environment, having specific test infrastructure (customized test bed,

cloud simulator or real cloud provider), certain workload and application types

and are conducted on selected set of performance metrics suiting oneôs own

circumstances. Validating results of a research in different set of circumstances

to verify their consistency, authenticity or integrity is rarely found in research

literature.

Under these circumstances, it would be interesting to systematically analyse

relevant research literature, consolidate it in comprehensive manner and try to

propose a robust autoscaling framework that can maintain happy compromise

between multiple desired objectives by tuning relevant factors appropriately.

1.3 Project Scope

1.3.1 Aims

The aim of this research is to have systematic analysis of contemporary

literature related to autoscaling phenomenon in cloud infrastructure and to

propose cost effective yet reliable hybrid elasticity management framework in

the light of it.

1.3.2 Objectives

The following objectives were specified in order to meet the project aim:

¶ Thoroughly understanding a complete concept of autoscaling along with

its underlying factors affecting its performance in terms of reliability and

economics.

¶ Deep understanding of autoscaling approaches and associated

mathematical algorithms adopted by academia and cloud industry

5

¶ Designing and developing a comprehensive autoscaling framework

meeting conflicting objectives of cloud stakeholders (CSPs, end user,

etc.)

¶ Exploring a potential of proposed framework implementation over

available cloud platforms.

¶ Looking into future trends, research direction and possible issues in

implementing hypothetical optimal elasticity (ideal case scenario)

 1.3.3 Thesis Contributions

The major contributions of this work are enumerated below:

¶ The research provides detailed, comprehensive and latest insights into

autoscaling phenomenon being employed in cloud computing paradigm,

with special emphasis on self-adaptation processes, MAPE loops,

domain taxonomy, design considerations, architectural concepts, salient

characteristics, latest trends, open issues and different methodologies /

algorithms implemented by relevant stakeholders.

¶ The research proposes MAPE (Monitor-Analyse-Plan-Execute) based

hybrid (proactive + reactive approach) elasticity management framework

with necessary mathematical illustrations and discussion on possible

parameter settings. Underlying algorithm used for the purpose is time

series analysis (moving average / exponential smoothing) during analysis

phase and threshold base static rules during planning phase. The

framework formulation takes in to account all potential factors i-e system

performance model, elasticity metrics, network latency, VM initiation

delay, VM release criterion, VM release time, VM scheduling policy etc.

that may affect its performance.

¶ Exploring and managing OpenStack and CloudSim / CloudSim Plus

platforms to establish cloud infrastructure and requisite autoscaling

environment from the perspective of using them for proposed elasticity

management framework implementation.

¶ Recommendation on future research directions that can help in getting

close to hypothetical optimal elasticity (ideal case scenario).

6

1.4 Thesis Outline

Rest of the thesis is divided into chapters dealing with different aspects of the

project and are arranged as follows:

Chapter 2 forms first part of the literature survey and deals with background

research conducted in the field of autoscaling phenomenon. It includes

discussion on; understanding of the term in relevant domains and by different

stakeholders, self-adaptation process and MAPE loops, comprehensive

taxonomy highlighting wide scope of the topic and limitations faced by it.

Chapter 3 forms second part of the literature survey and presents research

conducted in the field of autoscaling approaches adopted by different

stakeholders in an industry and academia. It includes major elasticity

mechanisms and underlying mathematical algorithms being researched in

academic circles followed by their respective pros and cons. Later part of the

chapter discusses autoscaling services (cloud infrastructure, scaling plans, data

collection measures, load balancing methodologies, virtualization life cycles,

pricing mechanisms etc.) offered by major industry players.

Chapter 4 proposes hybrid elasticity management framework, designed and

developed on the basis of IBM initiated MAPE process. It includes deliberation

upon different dimensions and factors involved in autoscaling process, followed

by detailed discussion on their suitable representation, recommended settings

in different scenarios and their respective impact on associated framework

formulation. In the light of these deliberations and systematic analysis of

contemporary literature (Chapter 2 & 3), an autoscaling framework is proposed

with suitable mathematical representations.

Chapter 5 covers implementation phase of the project, whereby two

experimental platforms; one each from custom testbed and simulation domain

were discussed from point of view of employing proposed autoscaling

framework. OpenStack and CloudSim Plus were practically explored and

thoroughly understood. Cloud infrastructure was established (OpenStack) or

simulated (CloudSim Plus) as the case may be, and autoscaling environments

were created, managed and experimented upon in reasonable depth. In

nutshell, the chapter provides a authenticated and well-tested document in

7

order to establish necessary cloud environments in custom testbed and

simulation domains, for autoscaling experiments.

Chapter 6 concludes project thesis by summarising the research work done

during the course of this project and lessons learnt during the process. It also

highlights thesis contributions / limitations and future research directions with

reference to the project in particular and autoscaling domain in general.

1.5 Summary

Being first chapter of project thesis, it starts with introduction to cloud computing

paradigm, reasons for its wide spread acceptance in computing industry and

role of autoscaling feature to make this technological advancement possible.

The chapter also discusses motivation behind the research as well as aims,

objectives and primary contributions of the research work. The chapter

concludes itself by presenting broad outlines of the research report. Next

chapter would present in detail, systematic analysis of contemporary literature

about autoscaling feature.

8

Chapter 2

Autoscaling

The chapter discusses salient concepts explored during the course of literature

survey. The idea was to grasp requisite knowledge required for thorough

understanding of the topic and to design and develop an autoscaling

phenomenon in light of it. The chapter starts with multiple definitions of the term

óautoscalingô as understood by different stakeholders in an industry and

academia (Section 2.1), followed by objectives that can be achieved through it

(Section 2.2). Self-adaptation and MAPE processes act as foundational building

blocks, over which any autoscaling phenomenon is designed, so Section 2.3

explores these processes in much detail with special emphasis upon their

design considerations, architectural concepts and important characteristics.

Section 2.4 presents comprehensive taxonomy of autoscaling domain, that

appropriately classifies associated factors / features and relevant concepts

(over 30 topics) into 7 main categories namely; purpose, scope, methods,

approach, affiliated management, modelling and evaluation and stakeholders.

The chapter concludes by highlighting limitations, challenges and open issues

faced by autoscaling process in Section 2.5.

2.1 What is Autoscaling

Cloud computing is an emerging technology model for enabling convenient,

on-demand access to shared pool of resources, that can be rapidly provisioned

and released with minimal management effort on part of end user or provider

[154]. This provisioning / de-provisioning of hardware resources, with nominal

interaction is only made possible due to the concept of autoscaling. It makes the

cloud infrastructure elastic in nature; thus enabling users to acquire and release

resources on-demand, and pay only for the resources they actually need.

The term óautoscalingô in cloud computing domain has been innovated from

multiple inter-related concepts like elasticity, scalability and autonomic

computing taken from relevant contemporary domains [158]. In the field of

physics; Hookeôs law by Robert Hook (1676) defines elasticity as the

9

characteristic of materials to resume their original shape and form, once the

factors causing the distortion have been removed [159]. Likewise, economics

discusses elasticity concept as a proportional, quantifiable change in a

dependent variable, in response to changes in independent variables of the

same system [7]. The term scalability is most commonly used in case of

software systems from design and development point of view, and represents

systemôs adaptability to changes in user requirements, underlying architecture

and target workload [8].

Similarly, the term autonomic computing refers to self-managing, self-healing,

self-configured and self-adaptive computing model dealing with large scale

modern enterprises without any user input [155] [156] and is assumed as an

initial milestone to achieve ultimate goal of pervasive computing [157].Thus, the

concept in context of cloud computing has all the elements of its ómother termsô,

albeit in varying degrees.

Apart from fields discussed above, other major scientific domains making use of

similar concepts include, but are not limited to parallel systems, hypermedia,

video imaging, gaming, simulation, model checking, computational complexity,

ubiquitous systems, data mining, information retrieval and quantum computing

etc [12].

Being primary characteristic of cloud paradigm and one of the most extensively

researched topic in computing, autoscaling is referred using variety of terms by

academics, professionals and industry etc. with not much difference in

underlying meaning, intent and context. Some of the most common terms found

in literature are automatic elasticity, automatic scaling, dynamic scaling, elastic

computing, elasticity, smart scaling, resource provisioning, adaptation etc.

In order to have an all-encompassing view and in-depth understanding of the

concept, following paragraphs would cite some of the authentic relevant

sources, defining autoscaling phenomenon in context of cloud computing.

2.1.1 National Institute of Standards and Technology (NIST)

Information technology laboratory of NIST at U.S Department of Commerce

declared autoscaling as one of the five essential characteristics of Cloud

10

computing and defined it by using the term Rapid Elasticity in September, 2011

as [3]:

ñCapabilities can be elastically provisioned and released, in some cases

automatically, to scale rapidly outward and inward commensurate with demand.

To the consumer, the capabilities available for provisioning often appear to be

unlimited and can be appropriated in any quantity at any time.ò

2.1.2 Standard Performance Evaluation Corporation (SPEC)

An organisation comprising more than 60 technological companies tasked to

establish, endorse and evaluate benchmarks / metrics related to computing

systems since 1988, defined the elasticity concept as [15]:

ñElasticity is the degree to which a system is able to adapt to workload changes

by provisioning and de-provisioning resources in an autonomic manner, such

that at each point in time the available resources match the current demand as

closely as possible.ò

2.1.3 IEEE International Requirements Engineering Conference, 2008

Duboc et al. [10] defined autoscaling concept during proceedings of 16th IEEE

conference in Barcelona, Spain as:

ñScalability is the ability of a system to satisfy its quality goals to levels that are

acceptable to its stakeholders, when characteristics of the application domain

(ñthe worldò) and system design (ñthe machineò) vary over expected ranges.ò

2.1.4 Association for Computing Machinery (ACM)

Worldôs largest scientific and educational computing society ACM defined the

concept with reference to system architecture [13], but fully satisfies the

requirements of elasticity in the field of Cloud computing, as well.

ñ[é] represents the ability to fulfil capacity requirements over some desired

range, while continuing to satisfy all other requirements: functional, statistical

work mix, quality of service, unit cost of ownership etc. [é] by increase in

physical resource usage as capacity increases over the range [é] ò

11

2.1.5 RightScale, Inc.

A U.S based cloud management company RightScale, renowned for its

software as a service products defined the concept as [11]:

ñIt is a way to automatically scale up or scale down the number of compute

resources that are being allocated to your application based on its needs at any

given time. [é] by configuring the necessary trigger points / alerts [é] which

can create an automated setup that automatically reacts to various monitored

conditions, when thresholds are exceeded ò

2.1.6 Microsoft, Inc.

Microsoft, being one of the largest public cloud service provider (CSP) uses the

term óautoscalingô and óelastic computingô interchangeably and defines the

concept as [14]:

ñIt is the ability to quickly expand or decrease computer processing, memory

and storage resources to meet changing demands without worrying about

capacity planning and engineering for peak usage. [é] The phenomenon

matches the amount of resources allocated to amount of resources actually

needed without disrupting operations, [é] and unnecessary slowdowns.ò

2.2 Why it is required - Objectives

Datacentre requirements (Big data, IOT, etc.) and its associated infrastructure

(processing power, memory usage, storage, network etc.) are increasing at an

exponential rate. The infrastructure is becoming a major source of energy

consumption and is resulting in exorbitant energy bills. The statistics show that

total energy bill for data centres in 2010 was over $ 11 billion. By 2016, data

centres were already consuming 3 % of global electric supply and contributing

2 % of worldôs total CO2 emissions (at par with aviation sector). Moreover, it is

also estimated that energy costs in typical data centre doubles every

5 years [16].

So much so that Microsoft is already at 2nd stage of its flagship Project Natick,

aiming to submerge whole of data centres undersea, close to Orkney Islands,

Scotland, UK in order to conserve energy [18]. Table 4.1 illustrates energy

consumption statistics for data centre infrastructures as collected by European

12

Commission, Joint Research Centre (JRC) [17], that indicates the magnanimity

of the problem.

Table 2.1 Yearly energy consumption in world wide data centres

Consumption (TWh) Reporting Year

EU Consumption

18.3 2000

41.3 2005

56 2007

72.5 2010

104 2020

US Consumption

91 2013

140 2020

Global Consumption

216 2007

269 2012

Above referred dilemma was one of the primary factors that forced industry

experts to slowly transition from grid computing to cloud computing. Apart from

other distinguishing characteristics, the new paradigm (cloud computing) also

had ingredients of virtualization, rapid elasticity, on-demand service, shared

resources, server consolidation and scalability; which proved to be building

blocks of autoscaling phenomenon [19].

According to US Department of Energy and Academia (University of Stanford,

NorthWestern University, Carnegie Mellon University); data centre energy

consumption from 2010 to 2014 had surged by 4% only, which is marked

improvement as compared to period from 2005 - 2010 (24%) and even better

than 2001 ï 2005 period (90%). The research declares autoscaling

phenomenon and its associated features to be one of the two primary reasons

for this visible improvement [20]. (Other being the use of powerful, energy

13

efficient machines). Figure 2.1 represents real as well as projected energy

consumption trends (hypothetically, if the improvements were not introduced to

cloud paradigm) from 2000 to 2020 [21].

It is also pertinent to note that it is the same timeframe (2010 onward), by which

most of public CSPs had fully introduced the concept of autoscaling for their

data centres. Thus, Necessity being the mother of invention; energy

conservation proved to be one of the initial and paramount reasons, that

necessitated use of autoscaling feature; as robust autoscaling decisions can

play key role in reducing energy bills and carbon footprints.

Figure 2.1 Yearly energy consumption trends (real / hypothetical)

Optimum resource utilization and cost optimization are interrelated reasons

for employing autoscaling, as the feature automatically adjusts (increases or

decreases) the resources / capacity depending upon the requirement / demand;

thus benefitting client by paying only, what one actually uses (Figure 2.2). It also

precludes upfront capital expenditures to acquire, install, configure and maintain

hardware (servers, routers, storage etc.) and software (OSs, databases,

licenses etc.) resources for whole of your business needs; as resources can be

provisioned automatically with peak in demand or as the business flourishes

and can de-provisioned during lull periods. Likewise, resource utilization can

also be optimized during development, testing and production stages of any

14

product lifecycle by acquiring / releasing variety of resources specific to each

stage, instead of procuring every category of hardware separately [22].

Moreover, spot VM instances offered by CSPs at reasonably low prices can be

used only through effective autoscaling phenomenon, as their constant

availability is highly unpredictable because of being based upon bidding pricing

model that tends to change erratically with respect to supply and demand in

cloud market [26].

Figure 2.2 Optimum resource utilization based upon current demand

Quality of Service (QoS) Levels or Service Level Agreements (SLAs) can

be maintained by observing relevant performance metrics and assigning right

number of cloud resources at right time, irrespective of nature and intensity of

incoming workload (periodic, unpredictable etc.) Alternatively, desired balance

between cost and performance (QoS) levels can be optimized, depending upon

userôs preference [23].

Fault tolerance is another one of the many reasons for employing autoscaling

feature in cloud infrastructure. Reliability of allocated resources can be ensured

by performing periodic health checks based upon specific criterion, while

terminating and replacing unhealthy / unreachable instances at regular

intervals. Additionally, autoscaling makes use of different regions and

15

availability zones (geographically dispersed at different physical locations) for

resource selection to improve upon disaster recovery options [24].

Manually deciding the right amount and type of resources to acquire or release

and that too at right point in time is not an easy task, even for small scale

infrastructure. The job rather becomes next to impossible, in context of modern

data centres spanning sometimes up to 15000 sq ft, with thousands of physical

machines to handle. For example, Amazon EC2 cloud supports 5 different types

of processors, 6 different memory configurations, over 9 OS types and multiple

versions of each OS. Energy consumption of these options varies from 150 to

610 watts per hour [25]. Mapping these configurations to appropriate physical

resources according to specific user requirements and within limited timeframe

cannot be an arbitrary decision through human intervention, but requires

automated feature based upon certain algorithms taking ultimate decision. This

much desired automated infrastructure management is achieved through

autoscaling phenomenon.

In a nutshell, seamless and transparent provisioning / de-provisioning of

resources due to autoscaling has enabled cloud systems to deliver an illusion of

infinite capacity serving optimally to end user. The phenomenon often performs

under wildly varying workload conditions in a cost effective way, while reducing

operational risks (SLA violations etc.) for cloud service providers (CSPs) at the

same time.

2.3 MAPE Process vis-á-vis Self-Adaptation

MAPE (Monitor - Analyse - Plan - Execute) process is based upon óself-

adaptationô paradigm adopted under óautonomic computing initiativeô, in order to

overcome growing complexity in IT infrastructure management. The initiative

follows the natural principle of autonomic management as found in human body;

where average body temperature of 98.6 F is maintained on the basis of

biological data (heartbeat, blood sugar level etc.) without any conscious human

intervention [27]. Another natural manifestation of the concept can be ascribed

to Darwinôs theory according to which; life has constantly evolved due to

changes in heritable physical or behavioural traits, so as to adapt to changing

16

surrounding environment [28]. Figure 2.3 illustrates self-adaptation process in

its most simplest form.

Analysis

Adaptation

Observation

Figure 2.3 Self-adaptation process

2.3.1 Theory of Self Adaptation

In order to fully understand MAPE process, it is important to comprehend

relevant aspects and dimension of óself-adaptationô theory, being its parent

concept. Although the idea is deliberated at length by academics [29] [30] [31],

but Salehie et al. [32] elaborates it most comprehensively in the form of 5W +

1H questions (Figure 2.4). Same is discussed in context of self-adaptation

systems (SAS) below [33]:

Figure 2.4 Self-adaptation process in the light of 5W+1H questions

17

2.3.1.1 Why Do We have to Adapt ?

The question deals with the reason and motivation behind any self-adaptation

process. Although adaptation is always reaction to a change, but ascertaining

the nature, type and impact of that change is important; as selection of suitable

adaptation activity along with its associated parameters largely depends upon

these factors.

Self-adaptation process can be initiated in response to variety of reasons like;

change in technical parameters of underlying infrastructure (hardware, software

etc.), change in system environment / context or change in user preferences

etc. It is pertinent to mention, that these reasons can easily be related to the

objectives of autoscaling discussed in Section 2.2.

Moreover, answer to this question also helps in determining the relevant system

parameters that need to be monitored and the frequency of doing so.

2.3.1.2 When to Adapt ?

The question deals with temporal aspects of the phenomenon such as; when

and how often the change need to be applied, cost-benefit analysis of

recommended change at specific time, reactive vs proactive approaches to

implement adaptation and frequency of monitoring process etc.

2.3.1.3 Where Do We have to Implement Change ?

The question deals with the location of the problem (change), the adaptation

process is trying to resolve. The process can be implemented at any level;

managed element, environment, user or within adaptation logic itself.

Managed elements can be bifurcated further into sub levels of hardware,

operating system, application, middleware (in case of distributed systems) etc.,

that can self-adapt to any change, individually according to pre-defined criterion.

Similarly, adaptation at environment level is possible by being aware of the

context (where you are, who you are with, what resources are nearby) and

execution environment (accessible devices for input / display, processing

power, connectivity etc.), where applications are being run. While also referred

as context-aware computing, this can be implemented through proximate

18

selection, automatic contextual reconfiguration, contextual information and

context-triggered actions [34].

Furthermore, adaptation within adaptation logic itself, by allowing the software

agent to identify the ideal behaviour, based upon the feedback from the

environment is latest but complex approach (reinforcement learning) to achieve

desired results over time. Last but not the least; self-adaptation at user level is

possible in theory, but not desirable in real sense; as process of self-adaptation

has been envisaged in first place to achieve desired user objectives from the

application and not the other way round.

Answer to this question is tricky, as subsequent implementation may transcends

level boundaries, and is required to be incorporated at different levels

simultaneously in order to achieve desired system goals.

2.3.1.4 What Kind of Change is Needed ?

The question identifies set of system attributes at specific level (ascertained

through where question) that need to be adapted in response to any change.

Finding a relation between ówhat need to be achievedô and óunderlying factors

with appropriate values affecting required changeô is not a simple process and

may be dependent upon other unseemingly unrelated factors. Some of which

may be beyond the control of user, especially in case of large distributed

systems with public domain control.

The kind of change varies from changing system parameters within specified

ranges (parameter adaptation) on the basis of pre-defined rules statically or

addition / deletion of new resources as well as incorporation of alternate

algorithms (compositional adaptation) at runtime. The former is easy to handle

and implement, but canôt be affected during runtime. Recommended approach

would be to use the combination of both to get the desired results [35].

2.3.1.5 Who has to Perform the Adaptation ?

The question identifies ówhoô the agent of change is, by defining level of

automation and human interaction during the adaptation process. As a matter of

fact; lesser the involvement, better the adaptation system.

19

According to autonomic computing framework proposed by IBM, adaptation

level within any IT infrastructure can be represented as Basic, Managed,

Predictive, Adaptive and Autonomic. Basic being the starting point indicates

systems where system administrators monitors, manages, maintains and

enhances infrastructure manually on óas and when basisô. On the other extreme

side, autonomic level indicates the ultimate goal of computing where human

intervention is limited in day to day operational management, maintenance, and

enhancements tasks, while only limiting it to defining business policies and

larger system objectives / goals [36].

This IBM maturity model helps in mapping true autonomic functionality of any

large scale computing infrastructure. Enterprises with higher level would be

more adept to enact and react to any change, while improving system efficiency

and reducing ownership costs.

2.3.1.6 How is the Adaptation Performed ?

The question deals with actual logic implementation that is used to manage

complete adaptation process and coordination among various stakeholders

(managed resources, environment, users etc.) of adaptation system. Monitoring

and storing relevant data with appropriate granularity (while ensuring

consistency and data integrity), analysis of collected data through suitable

algorithms, planning suitable actions as well as their frequency in light of this

analysis and the execution of the logic itself, falls in to the realm of this

question. In short, the How aspect represents brain of any adaptation system.

Different approaches can be used in this regard ranging from centralized

approach (single sub system responsible for logic implementation - possible to

achieve global maxima - not good for large scale systems because of its sheer

size and real time constraints) to decentralized approach (each sub system

within large enterprise responsible of its own adaptation mechanism, in isolation

from other sub systems) and hybrid ones (combination of centralized as well as

decentralized approach - monitoring and execution may be done at individual

sub system levels whereas analysis and planning may be conducted at higher

levels to achieve global goals) [37]. Figure 2.5 compares the three approaches

through simple illustrations.

20

Suitability of these approaches with respect to specific systems and their

respective pros and cons is beyond the scope of this project, however relevant

academic literature [38] [39] [40] can be perused to explore further in this

regard.

Figure 2.5 (a),(b) Centralized / decentralized approach for self-adaptation logic

implementation

Figure 2.5 (c) Hybrid approach for self-adaptation logic implementation

Aforementioned discussion explores different aspects of self-adaptation process

through 5W1H approach, that can help designers, developers, managers and

end users of self-adaptation systems to do their respective jobs, efficiently.

2.3.2 Architectural Blueprint for Autonomic Computing

Self-adaptation highlights the concept of óusing technology to manage

technologyô, while following standards-based approach to deliver system wide

21

performance. These standards not only provide an in-depth understanding of

fundamental concepts, constructs and behaviours involved in delivering

autonomic computing capability, but also define a unified, universally accepted

mechanism to evaluate as well as validate related solutions available in the

market. One of the most trusted industry standards in this regard is presented

by IBM [41] and is illustrated through Figure 2.6.

The proposed 5-tiered architecture explains design building blocks and

functional working of any autonomic system, with one major component placed

at each layer; Managed resources, Touchpoints, Touchpoint autonomic

managers, Orchestrating autonomic managers and Manual mangers.

Figure 2.6 IBM proposed architectural blueprint for autonomic computing

2.3.2.1 Managed Resources

It is lowest layer of the architecture and includes variety of hardware / software

components of a typical data centre that are required to be managed. The list

includes; but is not limited to, servers, memory modules, storage resources,

22

network infrastructure, specialized processing, middleware and application

services etc.

2.3.2.2 Touchpoint

It represents 2nd layer of the architecture and includes sensor (measures / tools

to collect appropriate data with suitable granularity, consistency and integrity)

and effector (measures / tools to change managed resourcesô behaviour on the

basis of observed data) mechanisms for managed resources. While acting as

an interface to managed resources, touchpoint uses log files, events,

commands and application programming interfaces (APIs) etc. to do the

needful.

2.3.2.3 Touchpoint Autonomic Managers

They are intelligent control loops that work directly with underlying managed

resources on the basis of pre-defined goals through touchpoints. Management

activities include software installation / configuration, workload balancing,

resource protection during intrusion attempts etc. These managers operate

independently at localized level with relatively limited scope in terms of type and

number of managed resources. Typically, underlying resources may vary from

single item to homogenous / heterogeneous group of resources providing some

specific service.

2.3.2.4 Orchestrating Autonomic Managers

They act as super managers that are used to coordinate among touchpoint

autonomic managers, and provide system-wide autonomic capability through

touchpoint autonomic managers, by incorporating intelligent control loops that

have broader view of overall IT infrastructure. Individual autonomic managers

may be performing well at individual scale for their own set of underlying

hardware / software, but may not be efficient enough for end to end processing

at application level. These managers operate across pool of resources of varied

type and category at global level to create synergy.

2.3.2.5 Manual Managers

It is the top most layer that provides single management platform, so as to

achieve goal-oriented tasks without much of human intervention. With the help

23

of this mechanism, IT professionals manage wide range of resources (system of

systems) with ease, instead of handling multiple components and products,

individually. Administrative functions range from defining high level policies for

system behaviour / adaptation in variety of situations as well as monitoring and

controlling the systems at run time. Normally the platform is based upon

standard Java APIs (JSR168, JSR127 etc.), in order to make it interoperable

with newly introduced components and products.

The IBM proposed architecture discussed above is a blueprint for design,

development and commissioning of any autonomic computing architecture and

can be referred further in detail through [41].

2.3.3 Self - * Properties

Systems designed in line with IBM proposed architecture, while catering to

5W1H questions are believed to possess adaptive self-* properties which are

directly related to the quality factors (maintainability, portability, availability,

reliability, efficiency etc.) used to evaluate these systems [32]. Figure 2.7

represents hierarchical view of some of these major characteristics.

Figure 2.7 Self-* properties possessed by autonomic systems

24

Figure 2.8 IBM proposed MAPE loop

2.3.4 óMAPEô Loop

Somewhat abstract concepts discussed so far in the above sections can be

associated with IBM proposed MAPE or MAPE-K loop, that structures

autoscaling process (like any other self-adaptation / autonomic mechanism) into

four phases namely; monitoring (M), analysis (A), planning (P) and execution

(E). All the phases interact with each other through shared knowledge-base (K),

that possess data such as topology information, configuration property settings,

historical logs, performance metrics, alarms / symptoms, decision-making

policies and decision trees. (Figure 2.8). Presumably, hundreds of these MAPE

loops - partial as well as full - are expected to be operating in collaboration with

each other, in order to achieve desired scaling results at large scale.

In light of earlier discussion on self-adapted systems through 5W1H questions

and IBM proposed blueprint, closed control MAPE loop is explained below with

reference to autoscaling phenomenon. Table 2.2 represents summary of most

important questions that need to be considered and sufficiently answered during

each phase of MAPE loop, while implementing any autoscaling approach.

25

Table 2.2 Relation between 5W+1H questions and MAPE loop

 Monitoring Analysis Planning Execution

Why - - - -

When
When to be

monitored
When to analyse - When to execute

Where
Where to be

monitored
Where to analyse - -

What
What to be

monitored

- What to be

changed
What to execute

Who - - - -

How - - How to change it How to execute it

2.3.4.1 Monitor

The phase deals with what, where and when part of 5W1H approach during

autoscaling process. It collects relevant metrics about managed elements;

hardware as well as software via touchpoint sensor interface. Subsequently, the

collected data is aggregated or correlated with reference to appropriate filters

and symptoms for onward dispatch to analysis phase of the MAPE loop [32].

The performance / quality metrics include but are not limited to hardware

utilization with respect to physical as well as virtual machines (CPU

consumption, disk access, NIC access, memory usage etc.), general OS

process (CPU time, page faults etc.), web server info (Tx bytes and requests,

No of connections closing, sending, waiting, starting etc.), application server

info (total threads count, active thread count, used memory, session count,

processed requests, pending requests, dropped requests, response time etc.),

database server info (No of transactions in particular state like write, commit,

roll back etc) and market prices for different pricing models etc. (on-demand,

reservation, spot instances). Depending upon peculiar requirements, the

collected metrics may also be related to cloud service providers (amount of

acquired resources, hypervisors etc.), SLA compliance (No of violations etc.)

and infrastructure health checks (heartbeat and pulse monitoring etc.) [26] [43].

26

Autoscaling process highly depends upon the monitoring solution that is

reliable, consistent and accurate in its output. Trade-off between data quality

(granularity, and timeliness) and associated performance / cost overhead needs

to be ascertained for balanced approach. Important considerations in this

regard are; choosing between continuous (constant monitoring effort at regular

intervals) vs adaptive monitoring (observing selected features infrequently,

leading to intense monitoring in case of meeting certain checkpoints /

anomalies), storage and retrieval mechanisms for computationally intensive

information like control flow data and subsequent disposal of redundant

records etc [42].

2.3.4.2 Analysis

The phase deals with when and where part of 5W1H approach during

autoscaling process. It is responsible for processing metrics data received from

monitoring phase, through statistical and data mining techniques. Change

request, if any as a result of analysis is passed over to planning phase of MAPE

loop [42].

Choosing suitable approach to analyse input data vary depending upon the

ótime factorô, when user actually wants to implement adaptation; reactive or

proactive. In case of reactive approach, monitoring data is simply used to

identify any abnormality or rule violation and deals with current state of system,

whereas for proactive approach; the data is meant to forecast future data trends

and predict system / environment state, accordingly.

Proactive approach is preferred from user perspective, as it pre-empts itself to

meet future needs without interrupting application workflow or affecting system

performance. However, proactive algorithms are complex in nature, difficult to

implement, computationally intensive and sometimes prone to wrong

predictions. Conversely, reactive techniques are relatively simple to implement,

easy to handle and deterministic in their output. However, they would not be

able to handle Slashdot effect or cater any delay between autoscaling action

initiation and when it is actually effective [33].

Common algorithms implemented during analysis phase include threshold

based rules (static as well as dynamic), queuing theory, control theory,

27

reinforcement learning and time series analysis etc. No one algorithm fits all

situations and each of them has its own set of variants with associated pros and

cons (Section 3.1). Academic as well as industry experts employ one of these

or hybridization of several ones to meet their peculiar requirements [43].

2.3.4.3 Planning

The phase deals with ówhat needs to be changedô and óhow to change it, so as

to achieve best outcomeô during autoscaling process. Appropriate course of

action is formulated, either on the basis of processed / predicted data received

from analysis phase (proactive approach) or raw data from monitoring phase

(reactive approach), so as to implement desired change (total number of

resources to be provisioned / de-provisioned) within managed resources. The

course of action may be in the form of single command (event-condition-action)

or complex workflow having multiple optimization functions [41] [43].

The question of how to achieve desired results with appropriate scaling action is

multi-faceted problem. It requires real-time decision making, involving number

of interrelated factors namely; choosing one of the approaches: scheduled,

reactive, proactive or hybrid one, prioritizing between cost, performance, SLA

compliance, energy consumption etc vis-a vis autoscaling objectives,

developing and validating resource performance models / matching functions,

catering for application domain, maintaining correlation between local as well as

global decision making mechanisms, addressing scalability and fault tolerance

issues, handling inconsistent and incomplete data flow and dealing with cloud

infrastructure related issues like pricing models, VM boot-up times / scheduling

policies, migration costs, amount and type of resources available, network

latency, underlying cloud platforms (public vs private vs hybrid) etc [32] [43].

Some of these factors have been discussed briefly in Section 2.4 , 4.1 and 4.2.

2.3.4.4 Execution

The phase is responsible for implementing actions (as decided by planning

phase) through touchpoint effector interface and deals with how, what and when

part of 5W1H approach during autoscaling process. The change in behaviour of

managed resources as a result of these actions is subsequently monitored by

monitoring phase for further processing and the MAPE loop continues [32].

28

 Most critical challenge during the phase relates to system ability to adapt itself

to new changes at runtime, transparently and seamlessly. Actions during

execution phase need to have stable and predictable effect on functional as well

as non-functional requirements of system. Architectural style, safety / integrity,

fault management and pre-emption procedures to prioritize another action in

favour of on-going task are some of the issues that requires due consideration.

While it is not always possible to test all scaling actions beforehand; evaluating

major scenarios to validate their intended effects may be preferred. This can be

done either, by creating recovery points to handle scaling action faults on real

infrastructure or by using redundant backup hardware [42].

2.4 Taxonomy / Classification of Autoscaling Phenomenon

Autoscaling is one of the most diverse and extensively explored topic in field of

cloud computing with wide variety of underlying factors and features to choose

from. Researchers from industry and academia have proposed numerous

solutions by exploiting one of the these associated factors (while disregarding

others) to get the desired results, and the process still goes on. In order to

explain and comprehend these solutions fully, different taxonomies [44] [45] [46]

[47] [48] [49] [50] [51] have been devised on the basis of adopted

characteristics (approaches, strategies, methods, techniques etc.).

Although the extended classification proposed in following paragraphs do take

complementary approach and includes broad cues from above referred

taxonomies, it is more focused towards operational working of the phenomenon.

It discusses relevant concepts with much greater details, as accrued from

various authentic sources perused during the course of literature survey. Apart

from underlining the breadth of the concept as a whole, the proposed taxonomy

would also help in understanding; what is included in scope of this project and

what is not. Major characteristics highlighted by the taxonomy include purpose,

scope, approach, methods, affiliated management, modelling & evaluation and

stakeholders. (Figure 2.9)

29

Autoscaling

Approach

Purpose

Scope

IaaS

PaaS

SaaS

Methods

Reactive

Proactive

Horizontal Scaling

Vertical Scaling

Migration

Hybrid Approach

Hybrid

Cloud Bursting

Affiliated Management

Quality Attributes

Virtualization

Pricing Mechanism

SLAs

Containers

Stakeholders

Performance

Cost Optimization

Energy Savings

Fault Tolerance

Automation

Cloud Service Provider

End User

Cloud Management

Provider

Modeling & Evaluation

Experiment Platform

Application Benchmark

Workloads

Public Cloud

Custom TestBed

Simulator

Synthetic

Real

Figure 2.9 Taxonomy of autoscaling system

30

2.4.1 Purpose

Purpose / objective of autoscaling deal with ówhyô part of 5W1H approach

(Section 2.3.1.1) and include features such as reliable performance, cost

optimization, energy saving, automated infrastructure management and fault

tolerance. Preference of one objective over another varies depending upon

perspective at hand. From CSP point of view; cost optimizations and energy

savings may be top most priority while avoiding SLA violations or ensuring

customersô QoE (quality of experience) levels at the same time. On the other

hand, end user may only be interested in high availability and QoS (quality of

service), with no consideration of energy footprints. However, both the parties

may be interested in fault tolerance and automation to reduce burden in their

respective area of responsibility and minimize human intervention [65].

Likewise, purposes of autoscaling may also vary depending upon the kind of

application, for which the proposed solution is going to be employed. Major

domains include real time processing, scientific computations, ecommerce,

batch processing, social media, mobile / pervasive computing etc. Each of

these categories would have their own set of priority list to achieve through

autoscaling feature, based upon their peculiar requirements. For example;

consistent performance levels may be more significant for scientific

computations and real time processing as compared to social media platforms,

where cost optimizations may be higher in the priority list.

Being conflicting in nature, these objectives, cannot be achieved through single

autoscaling solution. In general, one solution may be able to cater particular

objective. However, certain innovative approaches may be devised to trade-off

a balance between opposing goals (maximizing performance as well as

minimizing cost) in order to improve QoE levels for all stakeholders,

simultaneously [66]. It would also be pertinent to mention that, monitoring as

well as evaluation metrics required to implement a particular objective, may not

be well-suited for another one.

Each purpose of autoscaling has been discussed briefly in Section 2.2.

However, further references (explored during the project) with respect to

performance [52] [53] [54] [55] [56], cost optimization [57] [58] [59] [60], energy

31

saving [61] [62], fault tolerance [82] and optimal solutions catering contradictory

objectives [63] [64] etc. can also be consulted for detailed explanation.

2.4.2 Scope

The terms deals with where part (Section 2.3.1.3) of 5W1H approach and

defines; where the actions associated with autoscaling phenomenon are being

monitored, processed and executed within cloud computing infrastructure. In

general, cloud computing is based upon service oriented architecture (SOA),

where everything can be offered as a service (XaaS). However, XaaS can be

broadly categorized into three basic service models namely; Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS)

[301] [302]. The architecture within cloud infrastructure and respective

responsibilities of different stakeholders within it can be illustrated through

Figure 2.10 and 2.11 respectively. Each of these basic service models has been

explained below, with reference to autoscaling features being implemented in

them.

Figure 2.10 Service based cloud layered architecture

