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Abstract 
In order to grow the food the world needs, there is a pressing need to gain a more detailed 
understanding of how innovative solutions can be incorporated into the agricultural supply 
chains, particularly within production, for environmentally, economically, ethically and 
socially viable food production. Despite a number of innovative solutions available, many 
challenges in agricultural supply are still prevalent, with researchers to date largely focusing 
on these challenges in isolation, as opposed to exploring the relationships held between these 
challenges. Thus, supported by Circular Economy, Agriculture, Industry 4.0 literature and 
expert opinions, agricultural supply chain challenges are modelled and analysed using ISM 
methodology to help uncover 12 agricultural challenges which ultimately impede goods 
moving within the supply chain. Findings discovered that the Unproductive Workers and 
Pesticide Hazards are the key drivers of agricultural challenges. The ISM Hierarchical model 
elucidates research propositions and a parsimonious model for future research.  
Keywords: Drone as a Service (DaaS), Circular Economy, ReSOLVE Framework, Industry 
4.0, ISM, MICMAC 
 

1. Introduction  

The world’s population continues to increase, thus having real implications for global food 
demand whilst necessitating the agricultural activity to expend in order to keep pace. It is 
expected that the food production will grow by two thirds in 2050 to secure adequate 
nutrition for an additional of two billion people (United Nation, 2015). With the modern 
agricultural system claimed to be wasteful (Toop et al., 2017) and entailing ethical concerns 
(Hendrickson and James, 2005), as well as the risk of reduction in crops yields due to the 
impact of climate change and Covid-19 (de Preneuf, 2020), there is a significant demand to 
establish an sustainable approach to supply chains  in agriculture, particularly within 
production, based on Circular Economy (CE) principles and the utilisation of innovative 
technologies as for profitable business practices.  Unlike the linear economy concept of ‘use 
and dispose’, a circular approach to resources offers the potential for a multitude of socio-
economic and environmental benefits (Patwa et al., 2020). However, factors such as lack of 
innovative approaches and technology utilisation for cleaner production and perception on 
facing uncertainty in terms of costs and return on investment, has meant supply chains have 
struggled with completely adopting CE principles (Jabbour et al., 2018).  
Supply chains by nature are complex and require oversight across each of its stages, non-
more so than food supply networks, which extends from the farmers, through to consumers, 
and has an increased emphasis placed on the movement of its produce, given its perishable 
nature. According to Rushton et al. (2006), movement of goods infers to physical good 
movements and storage, from when it was produced up until when it is consumed. However, 
within agricultural supply chains, the agricultural producers through to the manufacturers 
make up the essential components of the supply chain (Akkerman et al., 2010), which can 



ultimately have an impact across the entire supply chain. A Sustainable Supply Chain (SSC) 
will ensure good governance practices throughout the food lifecycle, including helping the 
production of food in an environmentally, economically, ethical and socially viable way. As 
such SSC becomes more pertinent in ensuring business continuity through optimisation of 
operational costs and maintenance of product integrity. 	
Despite the technological advancements of recent times, there remains a pressing need to find 
innovative solutions to the challenges faced within agriculture. The increased focus on 
agricultural technology is unsurprising, given agriculture’s role in reducing poverty and 
stimulating economic growth (Martin, 2018). This is compounded by the expected increase of 
the world’s population to almost 9.1 billion, especially in developing countries. Therefore, in 
order to secure food for this expanded global population, study suggest the production of 
food should grow by 70% (Vasconez et al., 2019). Henceforth, the rise in population present 
a constant threat to global food security (Coale and Hoover, 2015), further emphasising the 
crucial role of agricultural practices in providing food for future generations and significantly 
contributing towards food security. 
Given the rise in Industry 4.0 (I4.0) based technologies, which  facilitates automation, real 
time data capture and predictive capabilities, the traditional challenges associated to CE 
adoption and ethical approach to SSC may be better managed, through the application of such 
technologies. Nonetheless, there has been fairly limited knowledge on the relationships 
between CE, I4.0 and ethics, as they are often explored separately. This calls for a sound 
understanding on how the interplay between CE principles, I4.0 technology and ethics can 
assist in the application of Cleaner Agricultural Production (CAP).  

There is a growing stream of studies exploring I4.0 within agriculture, or known as 
Agriculture 4.0 (Belaud et al., 2019). For instance, Lezoche et al. (2020) explore both the 
implications and challenges of Agri-food 4.0 in their study and in doing so, touch upon some 
of the key operational challenges relating to the implementation of I4.0 technology. 
Moreover, Tantalaki et al. (2019) reveals that big data technologies creates a promising future 
in agriculture, through  providing real-time solutions as the result of agricultural automation. 
It is also argued  that agriculture 4.0 provides efficiency in food production, but also place 
emphasis on it potentially entailing social and environmental costs – hence demanding 
investigation on how it could be approached ethically (Rose and Chilvers, 2018).  Thus, 
while emphasis has been on advancing agricultural practices, the focus has been largely on 
technology. For instance, researchers are also increasingly exploring Artificial Intelligence 
(AI) techniques to assist farmers in meeting high agricultural demands, such as Young 
(2020), who explores how AI can develop environmentally-conscious agriculture and 
reducing deforestation for food production. Similarly, Jha et al. (2019) highlight the role of 
automation practices through key technologies such as Internet of Things (IoT), Connected 
Devices, , AI and  Deep learning in overcoming traditional agricultural challenges such as 
pesticides hazards, irrigation management, as well as managing the impact of agricultural 
practices on the environment. Therefore,  more can be done in terms of understanding the 
role of both technologies and CE principles in driving changes within agriculture.   
Given the emerging gaps between the interlaces of SSC, CE principles, ethics and AI 
technology in agriculture, this paper aims to identify relationships between key agricultural 
challenges in the backdrop of a SSC, whilst also exploring how I4.0 related technologies may 
assist in overcoming such key challenges. This is to ultimately offer useful insights that could 
drive greater efficiencies in agricultural supply networks through an ethical manner, in 
response of  rising environmental challenges and shifts in demand, consumption patterns and 
consumer attitude.   



The effective movement of good is becoming increasingly important in the present, uncertain, 
and critical times. Many studies have explored agricultural supply chain challenges, with 
focus has been placed largely on the transportation (Higgins et al., 2018), storage (Alawneh 
and Zhang, 2018), food loss (Aschemann-Witzel et al., 2017) and delivery of goods (Qin et 
al., 2019). Yet, little focus has been placed on establishing contextual relationships between 
factors which influence and impact agri-supply chain. Chapman (2010) reported that almost 
one-third of food loss occurs along the supply network, were attributed to stakeholders along 
the downstream supply, such as consumers and retailers – signposting a pressing need to 
further explore the factors which impact the supply of produce from upstream supply 
perspective, such as food producers. Accordingly, Parfitt et al. (2010)  posit poor harvesting 
techniques, as well as plant diseases and pests contributes towards food waste within the 
harvesting and storage phases of food supply chains.   

The extant literature indicates that a little focus to date has been placed on agricultural supply 
chain through I4.0 and CE lenses. Therefore, the focus of this research is placed on key 
agricultural challenges within upstream supply chain, through I4.0 offerings, ethics and CE 
theoretical lenses. By doing so, findings from this research have the potential to offer more 
holistic insights, which not only identifies agricultural supply chain issues, but also explores 
how these factors may interact and impact one another. This allows identification of the root 
cause issues within agricultural supply chain, permitting an exploration of its potential 
solutions.  

Panetto et al. (2020) highlight the importance of I4.0 technologies such as smart farming, 
sensors, and real-time virtualisation in supporting farming and overcoming challenges within 
agricultural supply chains. However, despite a plethora of challenges being identified, they 
mainly relate to environmental and societal challenges, such as food shortages and security, 
and pollution and depleting natural resources (Bonneau and Copigneaux, 2017),  and only 
limited practical approaches  have been taken to address these. This highlights an urgent need 
and further impetus for the food industry to adopt newer approaches to ensure productivity, 
sustainability and  competitiveness (Miranda et al., 2019).  

While the extant literature is not short of technological approaches – e.g. RFID, Augmented 
reality, 3D printing, Simulation, Autonomous vehicles, Robots, Cloud computing, AI and Big 
data to support the application of technologies within the supply networks, further insights 
are required to recognise and fully comprehend the nature of these challenges. This is 
particularly important given that the supply chain is made up of various interrelated 
components that contributes to its complexity. Moreover, while the solutions have a very 
operational focus, little studies to date have explored how they can also assist in advocating 
and endorsing CE principles. Accordingly, the paper focuses on the subsequent research 
questions: 

RQ1. What are the current key challenges that impact cleaner agricultural 
production within the supply chain? 
RQ2. To what extent are these key challenges interrelated? If so, what kind 
of relationships exists? 
RQ3. What is the potential of I4.0 and CE in overcoming the identified 
challenges and in contributing towards creating cleaner, ethical agricultural 
production?  

The aim is to extend beyond identifying the relationships between the factors identified in 
Fig.4. by exploring the role I4.0 can play in minimising or overcoming agricultural 
challenges, through the lens of CE principles.   



This article is structured as follows. Section 2 outlines the contextual relationship of 
agricultural and food challenges in agricultural, CE, I4.0 concepts as well as Ethics and CAP. 
Section 3 presents the research methodology, which is followed by the result and analysis in 
Section 4 Section 5 offers discussions on the results and Section 6 draws some conclusions, 
highlights the research limitations, before concluding with the future research agenda 
resulting from this present work.  

2. Literature review  
 

2.1 Circular Economy: ReSOLVE Framework    

The conceptualisation of CE has been widely debated since the last decade (Murray et al., 
2017), resulting into various definition of the CE. In general, a CE model can be referred to 
as a non-linear, regenerative and restorative by design practices aiming to detach 
consumption of non-renewable resources from growth, opposing the conventional ‘take-
make-waste’ economy model (MacArthur et al., 2016). Despite there not being an unified 
definition, the CE’s 3Rs principles have been applied extensively across, macro and micro 
levels, including cleaner production contexts (Sousa-Zomer et al., 2018). For instance, the 
concept of ‘reduce’ was adopted by Su et al. (2013) and Winans et al. (2017) in their 
research, ‘reuse’ concept in Castellani et al. (2015), and recycle in Birat’s (2015) research. 

Findings of an extensive review of the CE literature suggest that a gap between the concepts 
and the actual application of these principles is evident, despite of the recent academic focus 
and emphasis on CE. For instance, studies have highlighted a disconnect between CE 
concepts and their use (Sauvé et al., 2016), leading to renewed calls for an investigation into 
how CE’s principles, objectives and aims can be translated better into meaningful actions 
(Pauliuk, 2018). In overcoming this, Suárez-Eiroa et al. (2019) identify operationally focused 
CE principles, centred mainly on resource conservation, managing inputs and outputs system, 
system optimisation and creating awareness around CE. Moreover, Hobson (2016) places 
emphasis on technology advancements amongst other key factors as playing a vital role in 
translating CE principles into meaningful actions, for example through achieving optimal use 
of  material and minimising waste production.  
Likewise, Bekchanov and Mirzabaev (2018) also highlight how these principles can be 
implemented and aided through CE enabling technologies, to overcome adverse 
environmental issues and to enhance cost efficiency (Geissdoerfer et al., 2017). While the 
3R’s, have varying hierarchical importance, ultimately aiming to reduce resources being used 
can be seen as the leading principle within a CE system (Su et al., 2013). As such, the Reduce 
CE principle is the underpinning focus of this research from an agricultural context. Despite 
the focus on ‘reduce’, the research  looks beyond just ‘reducing’ resources, by exploring I4.0 
as a driver to offer a more holistic impact by reconfiguring the system to eliminate hazardous 
material, through resource longevity and system regeneration  (MacArthur and Waughray  
2016). In other words, the research looks to identify how ‘reducing’ resources use through 
I4.0 may help minimise adverse impact on the environment, increase efficiency and help 
maintain natural systems.  
With this in mind, it is imperative to apply CE principles, beyond merely conceptualising it’s 
potential, whilst also exploring how technological advancements, such as I4.0 technologies 
can help play a role in achieving CE principles. In facilitating this, Jabbour et al. (2018), put 
forward guidelines to improve the utilisation of CE principles for organizations engaged in 
I4.0 activities. Their roadmap is underpinned by the ReSOLVE framework, which can serve 



as an effective approach in assisting organisations to implement CE principles. Accordingly, 
the ReSOLVE framework is a central element in this ressarch, to help gain an insights into 
how I4.0 and CE can support clean, ethical agricultural production. This framework (i.e. 
Regenerate, Share, Optimise, Loop, Virtualise and Exchange) established by the Ellen 
MacArthur Foundation to facilitate CE-friendly decision making across various contexts, sets 
out to reconfigure the system for the purposes of  eliminating waste, enabling material reuse 
and to preserve the natural environment. Reconfiguration of the system seeks to eliminate 
activities that adversely impacts the environment as well as human health, including the 
generation and release of hazardous materials. In farming practices, this principle concerns 
with, among others, the use of pesticide and fertiliser for crops maintenance, as well as forest 
conversion activity for new farm opening which causes pollution. For instance, the 
conversion of forest to agricultural land in Cerrado, Brazil i.e. the second largest biome in 
South America – has severely endangered various flora and fauna species, putting them into 
extinction (Strassburg et al., 2016). Meanwhile, the burning of trees due to Amazon 
deforestation for cattle-ranching and soy-farming has released greenhouse effects (Bax et al., 
2016; Walker et al., 2000) and caused serious public health issue of malaria as the burnt 
forest turns into the breeding ground for mosquito (Hahn et al., 2014).  
Moreover, the regenerative agriculture practices recycling farm waste and using composted 
materials to return valuable nutrients to support soil health, which is of paramount in 
determining healthy growth of crops that would bring about positive yields (Devkota et al., 
2019). In this respect, the small scale farmers are prone to adopt practices such as integrated 
water resources management (Rahaman and Varis, 2005) and self-maintained habitat 
(Jackson, 2005). Supporting the same principle, a larger scale farm are more inclined into no-
till or reduced-ill farming method (Chauhan et al., 2013). Over time, this method would 
dramatically increase yield due to the deepening of the topsoil (Devkota et al., 2019; Jouzi et 
al., 2017), which then requires lesser fertiliser application (Bashir et al., 2019; Dong et al., 
2019).  

2.2 Ethical and cleaner production  

Ethics prevails as an important topic in the field of agriculture. Nonetheless, the broadly 
agreed upon “code of ethics” remains absent. This study approaches ethics in the context of 
“farm structure”, “food security”, and “environmental impacts”.  
Focusing on the general economic and social features of the farm such as its size and working 
condition of the farm workers, the debates on “farm structure” interrogate the implication of 
certain methods in farming on both – the workers well-being and the environment, which 
leads to the debates on applying substitute methods. Meanwhile, the “food security” 
discourses focusing on balancing the worldwide food supply chain with the agronomy 
advancement agriculture (i.e. providing sufficient food for the growing world population) 
raise concerns over crops protection against diseases due to modern environmental threats 
and bioterrorism, inviting enhanced safety solutions. Lastly, ethics related arguments on 
“environmental impact” question the legitimacy of crop production management, with 
common arguments on the safety of food and workers, overuse of water and soil, as well as 
repercussion on the ecosystem infringing the natural habitat of the wildlife. This has 
challenged both the researchers and farmers to revaluate ethical position and the existing 
approaches to farming, especially the standpoint on the conservation of materials and 
reducing environmental impact – i.e. the concept of cleaner production.  
Research suggests that connecting innovation to these concerns is pivotal in enabling ethical 
solutions (Lubberink et al., 2017). Hence, conceptualising how the use of I4.0 technology 



could mitigate the concerns of ethics in agriculture is important, as well as following the 
conduct of CP by envisaging their inter-relationships using the widely utilised Circular 
Economy’s ReSOLVE framework (see Fig.1). 
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Fig.1: ReSOLVE Framework (adapted from Ellen MacArthur Foundation, SUN and McKinsey Center for 
Business and Environment, Growth Within: A Circular Economy Vision for a Competitive Europe (2015). 
Based on S. Heck, M. Rogers, P. Carroll, Resource Revolution (2015) 

2.3 Industry 4.0 and Circular Economy for Cleaner Production  

Sustainable supply chain management suggests the continuous accountability for risk and 
negative impact led by actions throughout the supply chain. Studies suggest SSC is hampered 
by myriad of challenges particularly supplier-led (Yadav et al., 2020). As the initial input 
contributor, suppliers can primarily trigger and facilitate the smooth SSC adoption (Jin et al., 
2017). Therefore, close monitoring of suppliers’ activities is vital to avoid disturbance in SSC 
system (Gopal and Thakkar, 2016).  

Multitude of studies (Fatorachian and Kazemi, 2018; Jabbour et al., 2018) suggest I4.0 and 
CE weave the future of many industries. There are steady increase in adoption of these 
concepts in achieving global sustainability due to rapid evolution of technology, especially 
the one supporting automation and data intelligence, as well as reverse logistics practices 
(Hofmann and Rüsch, 2017). In SSC, I4.0 is heavily utilised to encourage digitisation, whilst 
forming a systemic approach, which enables  the use of sustainable resources to avoid 
“harming the environment” (Mastos et al. 2020; Moeuf et al., 2018). This includes tracking of 
anomalies within the supply chain for early interventions. Because of this, Bibby and Dehe 
(2018) agree that the co-evolution of I4.0 and CE enables, drives and determines the 
successful adoption of SSC practices in diverse industries, including agriculture. An 
increasing number of manufacturing industries are undergoing a transformation from linear to 
CE, accordingly, I4.0 is considered as key innovative technology in facilitating this.. 
However, much of the academic focus to date within CE has been on products as opposed to 
the service sector. This paper is concerned with Drones-as-a-Service, a new emerging and 
trending area of research and application.  
Exploring the extant I4.0 literature, it is evident the focus has largely been on ‘cyber-physical 
systems’, IoT, and cloud manufacturing and analytics (Kang et al. 2016; Zhong et al., 2017), 
rather than drones. While there remain limited insights into I4.0 technologies and CE, a 
handful of studies have attempted to explore the synergies and connections between I4.0 and 
organisational sustainability, however, the focus again, has been on cyber-physical systems, 
smart factory and additive printing (Stock and Seliger 2016), virtualization of manufacturing 
execution systems, cyber physical system, service oriented manufacturing systems (SoMS) 
(Trentesaux et al., 2016) and smart  production  systems, IoT, automation (Waibel et al. 
2017), at the expense of drones.   



The application of drones (remotely unmanned controlled aircraft) originated from the 
military, however, is now being utilised across various industries, for many purposes, such as 
emergency services, traffic management, logistics and distribution  (Environmental 
Technology, 2018). However, research pertaining to drones has highlighted the operational 
challenges of implementing this technology. Zhang and Kovacs (2012) suggest that drones 
are a cheaper and more convenient alternative than satellites and planes, as the former offer 
simpler working mechanisms, have a better sensor and camera optionality and most 
importantly in context of agriculture, offer frequent repetition of the flight over agriculture 
fields of produce. Yet, Khanal et al. (2017) in their review of precision agriculture highlight 
that despite all the opportunities and potential of unmanned aerial systems such as drones, 
high operating costs and a shortage of companies offering cost-effective solutions impedes 
the use of drones in precision agriculture. There are divergent views on whether the 
agricultural sector has fully reaped the benefits from these disruptive technologies 
advancements, as other sectors. Nonetheless, scholars and practitioners believe in the 
potential of I4.0, such as Robotics and AI in transforming the agricultural sector to 
Agriculture 4.0 is beyond recognition (Wolfert et al., 2017). Sharing the same tenet, this 
paper seeks to understand the challenges faced by the agriculture sector in regard to cleaner, 
ethical productions and threats to establishing a SSC, which can be overcome by the use of 
AI technology, or in specific – the AI Drone.  
Despite technology being a central point of discussion when exploring ethical, sustainable 
practices, one cannot overlook the role of stakeholders in this regard, thus wider questions 
relating to the moral disposition and values of agricultural stakeholders and what these values 
translate to in practice should also be taken into consideration (Meijboom and Brom, 2012). 
While Table 1 (see below) presents a holistic view of agricultural challenges, and more 
specifically within Agri-tech, a focal point of interest for this paper is to identify which of the 
challenges are the key drivers and have most impact on cleaner agricultural production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1 

Agri-tech focus and challenges 

 

3. ISM Methodology   

Interpretive structural modelling (ISM) is a methodical and cooperative method of analysing 
interrelationships between variables (Warfield, 1974). It allows us to establish a structural 
model between variables that are derived from experts’ opinions (Luthra et al., 2014). 
Moreover, MICMAC analysis explores and analyses the challenges for CAP based on their 
driving and dependency powers. Although there are various other techniques including 
analytic hierarchy process, analytic network process, DEMATEL, graph theory, structural 
equation modelling, etc., an evaluation of ISM with the other techniques conclude that ISM-
MICMAC based technique is relatively robust and more fit in analysing contextual 
relationships between variables when there is not any prior understanding of their 
interlinkages from the existing literature (Mangla et al., 2018).  
In this study, the integrated ISM-MICMAC approach is implemented using various steps as 
follows: First, the variables linked with the research problem at hand are identified In the 
context of this research, twelve key challenges of CAP are studied from the current literature 
and are listed as the variables, namely V1, V2, V3,…,V12 (see  
Table 2 ). 

Table 2  
Major CAP challenges 
#V Challenge Brief description  Sources 
V1 Illegal 

deforestation  
Monitoring and controlling illegal deforestation 
for new farm opening and excessive cutting of 
trees. It is particularly difficult to monitor the 
reforestation activities. 

Appiah et al., 2009; Bax et al., 
2016; Rajao et al., 2020; 
Walker et al., 2000 

 Area of focus Source(s) 

A
gr

iT
ec

h 
St

ud
ie

s Implementation issues Lindblom et al., 2017  
Ethical implications Frankelius et al., 2019; Gallenti et al., 2019;  

Millar, 2000; Van der Burg et al., 2019  
Data-driven management   Eastwood et al. 2012 
Movement towards  enacting and adapting smart 
farming technologies  

Eastwood et al., 2017;  Gnauer et al., 2019  

Dilution of  cultural fabric of farming  Burton et al., 2012 
Legal awareness – New traffic space Reger et al., 2018  

A
gr

ic
ul

tu
re

 c
ha

lle
ng

es
 Food security  Lindblom et al., 2017  

Reduced quality of cultivated products Shiva, 2016  
Pesticides  related health hazards Emran et al., 2020; Shammi et al., 2018;  

Sharifzadeh et al., 2019;  Sruthi et al., 2017  
Increased environmental pollution  Ampaire et al., 2020; Audate et al., 2019; 

Collins et al., 2019; Karanja et al., 2019; 
Okumah et al., 2018   

Ecological imbalance Peng et al., 2019 
Uncontrolled irrigation and soil erosion  Hillel et al., 2008 
Decreased migration  Vasconez et al., 2019 



V2 Lack of 
efficiency 

Efficiency, by reducing costs and increasing the 
yield. Yields efficiency remains a key challenge 
within agriculture.  

Devkota et al., 2020; Huang 
et al., 2017; Scupola and 
Zanfei, 2016 

V3 Lack of 
accurate 
predictions for 
seasonal 
output 

Agriculture is largely dependent on weather 
conditions; despite technological advancements - 
predicting accurate output for a season is also 
difficult due to unexpected weather conditions. 
By having accurate weather forecasts can help 
inform growers when is the best time to apply 
pesticides - reduce wastage and prevent drainage 
to river that could cause water pollution 
threatening health and safety of society or 
animals consuming the water. 

Liu and Huang, 2013; Bagheri 
et al., 2019 

V4 Theft and 
sabotage  

Security is a key agricultural challenge, as 
plantations/ farms located in rural areas that are 
often exposed to thefts. 

Clack, 2013; OECD, 2012 

V5 Inaccurate 
seeding  

Direct seeding method is a deterrent to the 
growers that apply no-till farming. To avoid 
tilling and to benefit from benefit from higher 
yields, healthier crops and less damage to the 
environment, the seeding process should be 
mechanised.   

Elliot, 2016; Diwate et al., 
2018 

V6 Unproductive 
workers   

Unproductive workers is a key issue in 
agriculture settings. If worker are not performing 
their duties, due to either lack of knowledge, 
skills or negligence can significantly impact  
yield.  

Diwate et al., 2018 

V7 Pesticides 
application and 
hazards  

Reducing the health and safety risk for workers 
who are exposed pesticide. The measurement of 
‘just right quantity’ of pesticide use of pesticides 
is difficult. 

Emran et al., 2020; Shammi et 
al., 2018; Sharifzadeh et al., 
2019; Sruthi et al., 2017  

V8 Workers health 
and safety 
risks 

Maintaining the health and safety of agriculture 
workers is very important and can be a challenge, 
particularly when the workers access risky and 
remote areas (e.g. mountains, hills, forest, etc.) 

Román-Muñiz et al., 2006; 
Lunner-Kolstrup and Ssali, 
2016 
 

V9 Movement of 
produce within 
supply chain  

The movement of agricultural produce along the 
supply chain whilst maintaining food safety and 
security  

Naik and Suresh, 2018; 
Akkerman et al., 2010; Smith, 
2008; Wognum et al., 2010; 
Parafitt et al., 2010   

V10 Pollution  Haze and preventing bushfires are extremely 
difficult especially across large areas of 
agricultural land. There is a need to find ways to 
fight bushfire and open burning (common for 
replanting). 

Nazeer et al., 2016;  Okumah 
et al., 2018; Asumadu- 
Sarkodie and Owusu, 2017; 
Pan et al., 2016 

V11 Soil 
Compaction  

Soil compaction resulting from growers and 
farmers walking on fertile land whilst working in 
the fields, which adversely impacts root growth. 
There is a need maintain optimum level of soil 
compaction for vegetable farms 

Talbot et al. 2018; Huang et 
al., 2017 

V12 Disease of 
plants  

Plant diseases is a key challenge, therefore ways 
in which preventing the crops disease has a 
significant impact on yield. 

Bagheri et al., 2019; Boyd et 
al., 2013; Sundström et al., 
2014; Gilligan, 2008; 
Stuthman et al., 2007  



Second, develop contextual interactions between listed challenges of CAP through 
questionnaire and data collection. Third, the structural self-interaction matrix (SSIM) is 
developed using the pairwise relations between identified CAP’s challenges through the 
majority opinions by the experts. Fourth, the initial reachability matrix (IRM) is developed 
using the SSIM. IRM is then translated into final reachability matrix (FRM) by testing 
transitivity in IRM. Fifth, the driving and dependence power of each challenge is calculated 
by counting the total number of binary ‘1s’ both transitive as well as non-transitive row-wise 
and column-wise in the given FRM. Sixth, different partitions levels are developed by 
identifying the same elements in both reachability set and antecedent set. When every 
element of reachability set is found is antecedent set, a third set is created, called intersection 
set and it essentially contains the same element(s) as in the reachability set. Reachability set 
constitutes of challenges it impacts whereas antecedent set consists of the challenges itself 
and other challenges that affect this challenge. Intersection set consists of the set of collective 
factors from both reachability as well as antecedent sets and different levels are identified in 
every iteration when reachability set becomes equal to the intersection set. Seventh, 
MICMAC graph is constructed using the driving powers and dependencies of every 
challenge. Finally, structural model using ISM is formed through the challenges of CAP 
through the digraph. The used methodology is shown in Fig 2. using ISM-MICMAC 
flowchart. 
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Fig. 2. ISM-MICMAC flow chart (Adapted from Rana et al., 2019b) 



4. Data Analysis                 

Data associated to the interlinks between the challenges of CAP were collected from nine 
experts, each whom had practical working experience in various companies, particularly in 
agriculture and technology domains and also the researchers who are the experts of 
technology adoption, CE and supply chain management. These individuals were reached 
through the approach of convenient sampling as one of the co-authors is work colleague of 
one cohort of respondents and another co-author knows the industrial experts from personal 
contact. These experts work with various companies and held different positions including 
Regional Director, Vice President, Software Engineer, and Data Scientist presents 
respondents’ demographic traits as shown below. 

Table 3.  
Expert profiles 
Experts (with 
pseudo name) 

Job Role Gender  Age group  Work experience  

T.O. Researcher in Logistics  Male  30-39 10 years  
E.B. Researcher in Food Security  Female  20-29 7 years  
K.M.  Researcher in Data Analytics  Male  30-39  11 years  
A.O.  Researcher in Technology 

Adoption  
Female  40-49 15 years 

D.N.  Researcher in geospatial and 
remote sensing, precision 
agriculture specialist 

Female 30-39  10 years 

C.K. Artificial intelligent and 
blockchain Specialist 

Male 60-69 30 years 

R.K. Artificial intelligent specialist. Male 40-49 15 years 
J.O. Software engineer, drone as 

service specialist 
Male 20-29 6 years 

R.L. Precision agriculture, drone as 
service specialist 

Male 30-39 10 years 

4.1 Self-structured interaction matrix (SSIM) 

The SSIM was developed (see  

 
 

Table 1) that has been filled in with related links between each pair of challenges of CAP by 
collating different matrices retorted by individual experts. SSIM is developed by using four 
different ciphers i.e. V, A, X, and O, which have the following interpretation: 

V: Variable i helps achieve or has influence on Variable j; 

A: Variable j helps achieve or has influence on Variable i; 
X: Variables i and j help achieve or influence each other; and 

O: Variables i and j are not related to each other (Hughes et al., 2016; Rana et al., 
2019a)  

 

 



 

Table 1 
Self-structured interaction matrix 

i/j 12 11 10 9 8 7 6 5 4 3 2 
1 O X V O V O A O X O V 
2 V A A V A A A A A A  
3 A A A V O A A A A   
4 O O V V A O A O    
5 O A O V A O A     
6 V V X V X A      
7 A O V O V       
8 A O A V        
9 A O A         

10 A V          
11 V           

4.2 Initial reachability matrix (IRM) and final reachability matrix (FRM) development 

In the further procedural step for the proposed framework using ISM, SSIM based matrix is 
converted into a matrix of two-fold numbers (i.e. 0 and 1). This is done by replacing ‘V’, ‘A’, 
‘X’ and ‘O’ in Table 4 (i.e. SSIM) into the values of ‘0s’ and ‘1s’ as per the following 
procedures (Rana et al., 2019b):   

• For each ‘V’ in SSIM, include ‘1’ in (i, j) and ‘0’ in (j, i) cell, 
• For each ‘A’ in SSIM, include ‘0’ in (i, j) and ‘1’ in (j, i) cell, 
• For each ‘X’ in SSIM, include ‘1’ in (i, j) and ‘1’ in (j, i) cell, and 
• For each ‘O’ in SSIM, include ‘0’ in (i, j) and ‘0’ in (j, i) cell. 

By converting all the symbols using the above procedures in SSIM, the IRM of the 
challenges of CAP is presented in Error! Reference source not found. below.  

Table 5 
Initial reachability matrix (IRM) 
V# V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 
V1 1 1 0 1 0 0 0 1 0 1 1 0 
V2 0 1 0 0 0 0 0 0 1 0 0 1 
V3 0 1 1 0 0 0 0 0 1 0 0 0 
V4 1 1 1 1 0 0 0 0 1 1 0 0 
V5 0 1 1 0 1 0 0 0 1 0 0 0 
V6 1 1 1 1 1 1 0 1 1 1 1 1 
V7 0 1 1 0 0 1 1 1 0 1 0 0 
V8 0 1 0 1 1 1 0 1 1 0 0 0 
V9 0 0 0 0 0 0 0 0 1 0 0 0 

V10 0 1 1 0 0 1 0 1 1 1 1 0 
V11 1 1 1 0 1 0 0 0 0 0 1 1 
V12 0 0 1 0 0 0 1 1 1 1 0 1 

[Note: V1: Illegal deforestation; V2: Lack of efficiency; V3: Lack of accurate predictions for 
seasonal output; V4: Theft and sabotage; V5: Inaccurate seeding; V6: Unproductive workers; 
V7: Pesticides application and hazards; V8: Workers health and safety risks; V9: Movement of 
produce within supply chain; V10: Pollution; V11: Soil compaction; V12: Disease of plants] 



Furthermore, FRM is derived from IRM by implementing transitivity rule as presented in 
Table 5. Transitivity in the FRM is represented using ‘1*’. We present transitivity using the 
following example: If X is linked to Y (XàY) and Y is linked to Z (YàZ) then the 
relationship between X and Z could be shown using (XàZ). This approach is used to identify 
transitivity to present the FRM through the notations of ‘0’, ‘1’, and ‘1*’ as follows: 
Step 1. Initiate using Row 1 and go down until the last row (i.e. Row n). Classify every 
occurrence of ‘1’ in Row 1(j) and use them to assist the further step. Ignore every reference 
for n:n such as 1:1, 2:2, etc. Step 2. For every occurrence of a ‘0’ across the entire row (j), 
keep finding the specific column ‘i’ and make a reference for each previously mentioned ‘1’ 
from the initial row but now alongside column. Step 3. If we find a match in Step 2, then it is 
converted into any occurrences of ‘0’ for the earlier setup to ‘1*’ and move on to the further 
occurrence of ‘0’ across the row (j). Keep working on with these steps until the entire 
complicated matrix is verified for transitivity (Hughes et al., 2016).    

Table 6 
   Final reachability matrix (FRM) 

V# 1 2 3 4 5 6 7 8 9 10 11 12 
1 1 1 1* 1 1* 1* 0 1 1* 1 1 1* 
2 0 1 1* 0 0 0 1* 1* 1 1* 0 1 
3 0 1 1 0 0 0 0 0 1 0 0 1* 
4 1 1 1 1 0 1* 0 1* 1 1 1* 1* 
5 0 1 1 0 1 0 0 0 1 0 0 1* 
6 1 1 1 1 1 1 1* 1 1 1 1 1 
7 1* 1 1 1* 1* 1 1 1 1* 1 1* 1* 
8 1* 1 1* 1 1 1 0 1 1 1* 1* 1* 
9 0 0 0 0 0 0 0 0 1 0 0 0 

10 1* 1 1 1* 1* 1 0 1 1 1 1 1* 
11 1 1 1 1* 1 0 1* 1* 1* 1* 1 1 
12 0 1* 1 1* 1* 1* 1 1 1 1 1* 1 

[Note: V1: Illegal deforestation; V2: Lack of efficiency; V3: Lack of accurate predictions for seasonal output; 
V4: Theft and sabotage; V5: Inaccurate seeding; V6: Unproductive workers; V7: Pesticides application and 
hazards; V8: Workers health and safety risks; V9: Movement of produce within supply chain; V10: Pollution; 
V11: Soil compaction; V12: Disease of plants] 

4.3 Partitioning of levels 

 CAP challenges are divided into various levels of hierarchical structure using the matrices of 
IRM and FRM. Diverse sets including reachability, antecedent and intersection sets are 
formed to divide these factors into various stages. For example, reachability set is a set of 
factors constituting the factor on its own and other factors influenced by it whereas 
antecedent set consists of a factor itself and other factors, which influence this factor. 
However, intersection set is the set of common variables between reachability and antecedent 
sets (Dwivedi et al., 2017). Challenges would be marked as Level I when both reachability as 
well as intersection sets become equal (see Table 1). For example, challenge such as 
‘movement of produce within supply chain (C9)’ has been assigned to Level I because for 
this challenge the element (i.e. V9) for both reachability as well as intersection sets is same. 
After assigning Level I to ‘V9’, this is removed from the rest of the procedure. This process 
is iterated until each challenge has been assigned a label. Partitioning of levels performed a 
total of five iterations to develop the ISM model where the challenges ‘V6’ (unproductive 
workers) and ‘V7’ (pesticides application and hazards) are labelled to Level V (see Table 8).  



Table 7 
Level partition – Iteration 
V# Reachability Set: R(Pi) Antecedent Set: A(Pi) Intersection Set: 

R(Pi)∩A(Pi) 
Level 

1 1,2,3,4,5,6,8,9,10,11,12 1,4,6,7,8,10,11 1,4,6,8,10,11 
 2 2,3,7,8,9,10,12 1,2,3,4,5,6,7,8,10,11,12 2,3,7,8,10,12 
 3 2,3,9,12 1,2,3,4,5,6,7,8,10,11,12 2,3,12 
 4 1,2,3,4,6,8,9,10,11,12 1,4,6,7,8,10,11,12 1,4,6,8,10,11,12 
 5 2,3,5,9,12 1,5,6,7,8,10,11,12 5,12 
 6 1,2,3,4,5,6,7,8,9,10,11,12 1,4,6,7,8,10,12 1,4,6,7,8,10,12 
 7 1,2,3,4,5,6,7,8,9,10,11,12 2,6,7,11,12 2,6,7,11,12 
 8 1,2,3,4,5,6,8,9,10,11,12 1,2,4,6,7,8,10,11,12 1,2,4,6,8,10,11,12 
 9 9 1,2,3,4,5,6,7,8,9,10,11,12 9 I 

10 1,2,3,4,5,6,8,9,10,11,12 1,2,4,6,7,8,10,11,12 1,2,4,6,8,10,11,12 
 11 1,2,3,4,5,7,8,9,10,11,12 1,4,6,7,8,10,11,12 1,4,7,8,10,11,12 
 12 2,3,4,5,6,7,8,9,10,11,12 1,2,3,4,5,6,7,8,10,11,12 2,3,4,5,6,7,8,10,11,12 
 In this way, Table 8 provides a challenge or the list of challenges at every iteration by 

eliminating the relevant challenge(s) from the previous step and classifying the new 
challenge(s) by the matched reachability set with the antecedent set and identifying the 
variable(s) for which both sets (i.e. reachability and antecedent sets) were equal.   

Table 8 
Levels of challenges of CAP 

 

 

 

 

 

 

4.4 Development of the canonical form of the FRM matrix 

A canonical matrix is developed in the next step in the ISM process. This matrix (see Table 
9) is established by clustering challenges in the same level across the rows and columns of 
the FRM. The variables are arranged in the table in the sequence of the levels assign to them 
as per Table 7. This matrix could be considered as another more convenient form of FRM for 
drawing the ISM model. Furthermore, the driving power and dependence power of each 
challenge is computed by counting the number of ‘1s’ row-wise and column-wise 
respectively in Table 8, which help us position these challenges in the MICMAC diagram in 
the next section. 

 
 

Iteration Level# Challenges of CAP 
1st I Movement of produce within supply chain (V9) 
2nd  II Lack of efficiency (V2) 

 
 Lack of accurate predictions for seasonal output (V3) 

 
 Disease of plants (V12) 

3rd  III Theft and sabotage (V4) 

 
 Inaccurate seeding (V5) 

4th  IV Illegal deforestation (V1) 

 
 Workers health and safety risks (V8) 

 
 Pollution (V10) 

 
 Soil compaction (V11) 

5th  V Unproductive workers (V6) 

 
 Pesticides application and hazards (V7) 



Table 9 
Canonical form of the FRM matrix 

V# 9 2 3 12 4 5 1 8 10 11 6 7 Level DRP 
9 1 0 0 0 0 0 0 0 0 0 0 0 I 1 
2 1 1 1 1 0 0 0 1 1 0 0 1 II 7 
3 1 1 1 1 0 0 0 0 0 0 0 0 II 4 

12 1 1 1 1 1 1 0 1 1 1 1 1 II 11 
4 1 1 1 1 1 0 1 1 1 1 1 0 III 10 
5 1 1 1 1 0 1 0 0 0 0 0 0 III 5 
1 1 1 1 1 1 1 1 1 1 1 1 0 IV 11 
8 1 1 1 1 1 1 1 1 1 1 1 0 IV 11 

10 1 1 1 1 1 1 1 1 1 1 1 0 IV 11 
11 1 1 1 1 1 1 1 1 1 1 0 1 IV 11 
6 1 1 1 1 1 1 1 1 1 1 1 1 V 12 
7 1 1 1 1 1 1 1 1 1 1 1 1 V 12 

DPP 12 11 11 11 8 8 7 9 9 8 7 5 - 106 

 [Legend: DPP: Dependence Power; DRP: Driving Power] 

4.5 MICMAC analysis 

MICMAC analysis is aimed to understand the driving power and dependencies of every 
challenge within the ISM. Populating the driving and dependence power within the 
MICMAC determines the positions of variables across one of the four quadrants in the 
MICMAC matrix (see Fig. 3). Therefore, the quadrant where the given factor is situated in 
the matrix indicates it overall driving or dependence nature and also the position of variables 
across various levels of the hierarchy in the ISM model. These four quadrants are (Rana et 
al., 2019a, 2019b): 
 
1. Independent – defines those variables which are of weak dependence and high driving 

power and are very frequently seen as key factors driving other factors up the hierarchy in 
the ISM model. These variables are generally seen toward the bottom of the ISM model. 

2. Dependent – defines variables that have high dependence and low driving power. These 
variables are the ones that are largely driven by other variables down the hierarchy in the 
ISM model and generally found at the top level of the model.   

3. Autonomous – defines variables which have both low driving as well as dependence 
power. They have very least influence or impact and manage only limited connections 
with the other variables in the model. 

4. Linkage – variables are the one with the high driving and high dependence power. They 
are found to be unstable as an outcome and any action taken on such variables is likely 
cause a parallel reaction influencing the given and other variables. 
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Fig. 3. MICMAC 
Most of the variables in the MICMAC matrix are within linkage quadrant with only a handful 
of them lie in Dependent and Independent quadrants. This clearly indicates that majority of 
the variables are with moderate to high driving power and dependencies. This cluster 
designates that a vast number of variables that lie between the bottom and top level in the 
ISM model, which indicate they have both driving and dependence power. The key 
characteristic of the variables under Linkage is that because of their nature and greater 
number of linkages, any failure between them may have a knock-on consequence and 
prospective to trigger failure among other variables (Rana et al., 2019a). 

The highest dependence power of ‘V9’ under Dependent quadrant indicates this variables as 
the most highly dependent variable with ‘V5’ and ‘V3’ being the variables with high 
dependence but moderate driving power as well. On the other hand, due to highest driving 
and lowest Dependence power ‘V7’ is considered as the only variable in Independent 
quadrant. Variable ‘V6’ also possesses the highest driving power and the modest dependence 
power and supplemented by the ISM model by having positioned at the bottom of the model.      

4.6 ISM model 

The last stage of the ISM process is to build the model. This model highlights the variables 
by showing the relationships between variables. All different variables are positioned across 
various levels in the hierarchy based on their driving and dependence power and the links 
between them are presented by taking reference from the FRM. The levels of variables are 
also linked with the MICMAC diagram as shown in Fig. 2. The top level (i.e. V9) of the ISM 
model is deriving from Level I partitioning and is also supported by MICMAC with the 
highest dependence power. The next three variables (i.e. V2, V3 and V12) just down to Level 
I is filtered out from Level II partitioning and they also tend to match with their position with 
the next higher dependence power of these variables. The further next level of iteration (i.e. 
Level III) populates two variables (i.e. V4 and V5), which demonstrate certain level of both 
driving as well as dependence power. The next to the bottom level of variables (i.e. V1, V8, 
V10 and V11) is the outcome of Level IV partitioning and these variables are more of driving 
power oriented variables with moderate dependence power. This could be easily recognised 
through their positions at the Linkage quadrant, which show the high driving power for all of 
them with varying but moderate dependence power. Finally, last two variables (i.e. V6 and 

Autonomous 
Dependent 

Independent Linkage 



V7) are filtered out at the Level V iteration and they could be seen to demonstrate the highest 
driving power from the MICMAC diagram. The interrelationships between variables at the 
same level and across the next upper level are established using the FRM matrix and this 
could be seen from the ISM model presented in Fig. 4.       

 

Fig. 4. ISM model for challenges of CAP 

5. Discussion  

The ISM model (see Fig. 2) shows the unproductive workers (V6) and pesticides hazards 
(V7) co-create at least ten key challenges in the context of CAP. More specifically, this 
highlights that in order to overcome issues relating to the movement of produce within agri-
supply chains, agricultural producers must explore ways in which to minimise the hazards 
resulting through pesticide exposure. In addition to these challenges, workers health and 
safety risks (V8) and pollution (V10) also interdependently influence one another and act as 
major challenges for CAP.  

Based on the ReSOLVE framework, the application of drones offers many opportunities in 
overcoming agricultural challenges, offering sustainable solutions and promote more ethical 
agricultural practices by addressing the “farm structure”, “food security” and “environmental 
impact” concerns, as well as increase adoption of CAP, as depicted in Fig. 5.  
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Fig. 5: Drones ReSOLVE framework application 

Based on the tenet of shifting to renewable resources facilitated by the biological cycles, 
“regenerate” insists the conservation and rehabilitation of farming system by strengthening 
the vitality of farm soil, and topsoil regeneration. This is attainable through the use of I4.0 
technology available on drones such as sensor to automate irrigation systems based on real-
time weather (MacArthur and Waughray, 2016), as well as to assess it (Mazur, 2016). This is 
made possible through a high-technology hyper spectral sensor, also known as ‘thermal 
sensors’ (Spalević et al. 2018: 98). This is particularly important to curb the growth of weeds 
in an overly moist soil condition, which can curtail yields to more than half (Abouziena and 
Haggag, 2016). Accordingly, weed management can also be maintained through data 
collected from drones, as such monitoring weed communities, particularly the allergen-
category breed that also threatens human health, which indirectly assist in preventive 
healthcare measures. 

The Internet of Things (IoT) enables effective communications not just between people, but 
also between machines. This enables accurate predictions of when and where the machineries 
or equipment are needed for use in farming, hence allows them to be shared between the 
farmers, rather than owned (i.e. “share” concept). Machine-to-machine communication also 
allows the mobilisation of a swarm of drones to perform tasks in large size farms, reducing 
the manpower needs. Furthermore, the use of sensors could help performance monitoring, 
which prevent breakdown that could be disruptive to the supply chain – i.e. food security.  
Through data captured from drones, one is able to assess plant health as images allow farmers 
to investigate leaf defoliation resulting from lack of water, which may damage plants are 
adversely impact production yields (Erickson et al., 2004). On top of this, the real-time data 
informs the decision of pesticide application based on crops’ health. These capabilities help 
to decrease wastes by optimising the water and pesticide application, which is another 
important concept of CE framework (i.e. “optimise”), allowing more the farmers to have 
more controls in managing their own performance (Hofmann and Rüsch 2017).  

Unlike other machines used in agricultural, drones have very little moving parts to wear out. 
In most cases, drones could last up until the flight firmware went outdated. In this case, 



drones are more capable in maintaining the close loop of the technological cycle (i.e. “loop” 
concept). Because of this minimum ‘down-time’, farmers are able to keep the business 
running over a protracted time period as opposed to the non-drone utilisation.    
The advancement of AI technology has allowed the drones to function autonomously and 
even ‘make their own decisions’. The autonomous drones could help the farmers to perform 
routine tasks, without direct human input, such as surveying a fence line and capturing 
images, before comparing the images and prompting the farmers of the discrepancies 
between historical and updated data (images). These functionalities are a direct application of 
the ‘virtualise’ concept, where the physical activities are replaced with virtual or services. 
On top of reducing the risk of human safety and error, which is part of the concerns with 
regards to ethics in agriculture, the virtualise of (drone) services potentially increases yield 
due to lower turn-around time for decision and intervention.   

Supporting the application of new technologies to substitute the old ones, the “exchange” 
concept promotes responsible consumption of the renewable resources while limiting the use 
of finite resources – which is in line with the use of drones in agriculture. Where the wind 
turbine or solar panels are used in farms, the utilisation of drones for preventive in monitoring 
the ‘fitness’ of solar panels or wind turbine is essential to avoid downtime due to power 
disruptions. This is another fit between drones and CE principles, as well as ethics in the 
context of agriculture.  
The application of drones offers many opportunities in overcoming agricultural challenges 
and offering sustainable solutions for CAP. For instance, drones’ capability to assess the 
irrigation or drainage of agricultural terrain through a specialised sensor (Mazur, 2016, 
Spalević et al. 2018) helps to stun the overuse of water and control the weeds growth, which 
indirectly cut the use of pesticide. Through data captured from drones, one is able to assess 
plant health as images allow farmers to investigate leaf defoliation resulting from lack of 
water, which may damage plants, are adversely impact production yields (Erickson et al., 
2004). Bekchanov and Mirzabaev (2018), in their research apply CE principles to minimise 
pollution and enhance soil fertility through reduction of fertilizers and pesticides use in the 
agriculture practice.  Similarly, based on the findings from the analysis, this research explores 
how efficient use of resources may help in reducing the application of pesticides within 
agricultural settings.  
Arguably, the I4.0 technologies could be the catalyst for CE principles and ethical, 
transparent agriculture to flourish, by providing real data informing decision to apply 
pesticide on targeted crops, that does not only assist in designing out waste and pollution, but 
also could facilitate the production of a healthier consumer food – which is more ethical 
practice.  

The I4.0 drone application of pesticides can have positive society-wide benefits, beyond just 
the economical, cost savings associated with the efficient use of pesticides, thus allowing 
farmers and other food producers to significantly reduce the use of pesticides, whilst also 
driving CE principles. Pesticides can adversely impact the environment, human health and 
also livestock. According to Choudhary et al. (2018), pesticides are also being detected in 
freshwater supplies, animal foods, which are exposed to such hazardous substances from a 
number of sources, such as pollution and pesticides use against insects. Thus, through the 
reduce principle, the precision application of pesticides via I4.0 can assist in efficient use of 
resources, design out waste and pollution, through effective and precise application and can 
contribute towards generative natural systems, by not contaminating water supplies and 
livestock feeds. This therefore highlights the potential of I4.0 in applying CE principles, for 
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Supporting this further, drones can also assist in categorising crops on the areas under 
monitoring, which can add significant value to farming activities where the ability to observe 
seedling on the soil surface is key – such as the corn field. Another key advantage of drones 
is the ability in which data can be obtained at a faster rate, thus allowing for actions to be 
taken more proactively. The data can also be captured relating to soil health, water 
management and the application of pesticides, thus promoting regenerative agriculture, where 
focus is on optimising the use of resources instead of diminishing them (Rodale Institute, 
2014).  
While much of this is reported, there are little insights into the perceptions and understanding 
of these applications from the context of the agricultural stakeholders, such as the workers in 
the agricultural fields. The highlighted challenges triggered from unproductive workers (V6) 
and pesticides hazards (V7), leads to workers health and safety risks (V8), pollution (V10), 
soil compaction (V11) and the potential of illegal deforestation (V1), which then in turn 
trigger theft and sabotage (V4) and inaccurate seeding (V5), which principally translate to 
plant diseases (V12) and inefficient and inaccurate seasonal output (V2 and V3) all which 
hinder and inhibit movement of produce within the supply chain (V9). These hierarchical 
relationships are logical, given that it highlights the importance of productive workers in the 
upkeeping of the physical dimensions of agriculture, such as security, as well as the role of 
pesticides exposure, which impacts workers health and therefore adversely impacting the 
health of yield and plants, thus leading to lack of produce in the agricultural supply chain.  
In order to realise the opportunities presented by all such approaches, there is a crucial 
demand to enable appreciation of the various collaboration types which can take place within 
the AI technology and the agricultural sector. Miranda et al. (2019) offer insights into this by 
highlighting the varying forms of humans-technologies collaborations in achieving this. They 



firstly propose the current state of art, referred to as human-human collaboration, in which 
humans participate without the means of technology in the  agricultural system, which can be 
considered the current status. This is followed by human-machine collaboration, attributing 
the interplay between human and numerous technologies and devices, which within agri-food 
settings, is mainly for monitoring or automation purposes. Thirdly, the authors propose 
Machine-Machine collaboration, such as robots, UAVs, and automated systems that have 
cognitive abilities to sense, decide and act without human intervention.  
When contextualising findings from this research in line with Miranda et al. (2019) proposed 
collaborations, it can be argued that the Machine to Machine interface may help overcome 
the issues relating to the movement of good. This is especially useful given that the driving 
factors underpinning and influencing the other key challenges are related to humans i.e. 
unproductive workers and pesticide hazards. Thus, with the human entirely out of the control 
loop and not being able to intervene, it may be worthwhile exploring this as future research. 
Though, given the Organizational, infrastructural, skills, training and adoption challenges 
highlighted in recent research (Lezoche, 2020) the human-machine collaboration seems more 
of a likely and realistic option.  

5.1 Contributions to theory  

There are a lack of previous studies, which have explored key challenges relating to 
agricultural supply chain in detail. More specifically, the research contributions of this study 
are articulated through combining existing agricultural, I4.0 and CE literature, to identify key 
challenges and possible solutions to agricultural supply chain issues. In doing so, this paper 
can be considered as one of the first, on CAP, which tries to organise its challenges and 
integrate them in a hierarchical model through ISM. Accordingly, this research has identified 
key agricultural issues impeding the movement of food produce along agricultural supply 
chain and as a result, this has assisted in generating a parsimonious model, which can be 
further tested through empirical research. Prior to this study, it was evident that the extant 
literature on CE has been rather largely viewed in context of products rather than services and 
not largely from agricultural settings. Taking this further, CE lenses are applied for service 
providers within agricultural context and aim to provide guidelines to agricultural service 
providers to explore CE. There are also a lack of studies, which have investigated the 
relationships between agricultural challenges, thus by applying ISM, the proposed research 
uncovers a number of interdependent relationships between agricultural challenges, which 
researchers can explore in future research. Moreover, through the application of the ISM 
approach, this research also minimises the gap between practice and theory by incorporating 
key insights from experts and practitioners rather than taking an entirely academic focus.  

5.2 Implications for practice  

The findings from this study present a number of practical implications on a local level for 
agricultural producers as well as offer more broader implications in terms of policy 
recommendations. Firstly, the extant literature is dominated by studies focusing on ways 
agricultural producers can increase their yield. By establishing relationships between 
agricultural challenges, agricultural producers and farmers have an opportunity to a take a 
more focused approach at tackling issues which are drivers for many of the challenges that 
lead to lower yield. For instance, the findings highlight how unproductive workers can lead to 
a host of agricultural issues, which in the first instance may seem unrelated. Therefore, by 
ensuring workers are productive and supported through apt knowledge and skills can help 
impact the overall yield.  



Furthermore, the findings highlight the underlying role of pesticide hazards and its 
application, in impacting movement of goods within the supply chain. Though studies have 
previously emphasised much emphasis on pesticide hazards and its adverse effect on health 
issues, this research emphasises that the pesticide hazards have wider-reaching impact, 
beyond personal health, in which it also impacts other aspects of agricultural supply chain. 
Thus, it is imperative for both agricultural producers and also policymakers to find ways in 
which pesticide exposure is minimised.  
However, with this said, there is a pressing need for not only agricultural/rural landowner and 
policy makers to engage with these findings, but also for the hands-on farmers and 
operational agricultural workers, to be aware of such challenges, given the provenance of 
agricultural challenges identified in this research are applicable to operational, agricultural 
workers. Therefore, it is suggested that policymakers exert much effort on educating and 
highlighting the issues related to the agricultural challenges to the actual workers, thus 
willingness to engage on their part is imperative. 

6. Proposed theoretical model and propositions 

This research aims to extend beyond identifying the relationships between the factors 
identified in Fig.7. by exploring the role I4.0 can play in minimising or overcoming 
agricultural challenges, through the lens of CE principles.   

 
Fig. 7. Proposed model for the use of AI-Drone in CAP 

Previous studies have uncovered the promise of I4.0 related technologies in reducing plant 
disease rates, such as IoT-based monitoring system (Khattab et al., 2019) as well as the role 
of drone sensors in helping minimising plant disease through earlier detection. More 
specifically, Stella et al. (2017) report how sensors can help identify apple scab infections, 
whilst also emphasising how the optimisation of pesticides is a priority and of high 
importance for farmers of the future. Sensors can help capture valuable data such as the 
temperature and moistness of soil leaf, level of precipitation, wind speed, as well as solar 
resource  (Khattab et al., 2019), which may be vital in monitoring the condition of plants. 
While many studies have explored the potential of sensing techniques in detecting diseases 
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and in monitoring crops (Mahlein et al., 2012; Spalević et al., 2018), the possibilities 
presented by drones have further increased the potential of such applications. Therefore, there 
is a need to explore whether through the application of drones, pesticides use can be 
minimised, which in turn can lead to healthier yield and overall the movement of more 
produce within the supply chain. Thus by utilising I4.0, there may be the potential of 
designing out waste and minimising pollution. Therefore, the following proposition is put 
forward: 
Proposition 1: The effective and precise application of pesticides will significantly reduce 
plant disease and pollution.  
Agricultural work conditions are often the subject of an ethical debate. While the literature on 
pesticides related health implications is well developed (Shammi et al. 2018; Bonner et al., 
2017), more needs to be understood regarding approaches which can be taken to help reduce 
the health and safety risks farmers face through pesticides exposure. Traditionally, tracking 
workers for excessive exposure to pesticides is largely considered impractical, due to firstly 
monitoring tools being economically inaccessible and also due to protection from pesticides 
is largely associated with the use of personal protective equipment (PPE), which has its own 
set of challenges, particularly given the hot environments in which workers should apply 
them and that, in general, PPE is considered the least effective form of controls for workers 
(Keifer et al., 2010). There are also a shortfall of studies centred on farmers behaviours and in 
particular, their attitudes relating to pesticides use, as studies have previously indicated that 
farmers may still excessively spray pesticides, despite it being widely accepted that this may 
be detrimental to their health (Liu and Huang 2013). Accordingly, given the limited tools and 
techniques in minimising pesticide hazards, as well as lack of insight into the motivations 
behind farmers excessive use of pesticides, there is a need to explore whether through the 
application of drones, pesticides related hazards can significant be reduced, thus leading to 
healthier farmers and agricultural workers. Therefore, the following proposition is put 
forward:  
Proposition 2: The application of pesticides through Precision I.40 Drones will significantly 
reduce workers health and safety challenges and lead to more produce in the Supply Chain.  
The thermal imaging capability of the AI-drones helps the farmers to assess the health of 
their crops (Calderone, 2017). The “multi-spectral sensors” mounted on the drones allows a 
farmer to precisely apply pesticides – i.e. to target certain crops and apply certain quantity of 
pesticide only where and when it is needed, rather than applying a uniform amount of 
pesticide  across the entire field. This practice does not just ensure the health of the crops but 
also the health of consumers. The excessive application of pesticides on crop would not just 
lead to various health issues to its consumer (Fuhrimann et al., 2019; Schreinemachers et al., 
2020), but could also increase the operational cost unnecessarily – shrinking the farmer’s 
margin of yield (Devkota et al., 2019 ). Moreover, Todorović et al. (2018) suggests any input 
towards crops could directly affects the yield, the farmer’s income, as well as the 
environmental quality. Given these, the key to obtain and sustain a bigger margin of yield 
from the crops and ensure the production of ‘healthy’ crops for safe consumption lies in the 
precise application of the pesticides on the crops (Bhandari et al., 2018; Mie et al., 2017). 
Consumers may fear for their health to consume the agriculture produces in absence of 
precise measures and monitoring of the pesticide application (Margni et al., 2002). Jouzi et al. 
(2017) argued that the use of pesticide is one of the main reasons why consumer choose to 
consume organic produce rather than the non-organic. The change of consumer preference 
towards organic crops has subsequently caused the yield gained by the conventional non-
organic crop farmers to dwindle. As the result, it can be asserted that application of the right 



quantity of pesticide to crops are key to CAP. Therefore, the following proposition is put 
forward: 

Proposition 3: Precise pesticides application will lead to healthier crops and yield. 
Healthier crops translates to better food production, therefore having significant impact on 
both the environment and those who consume from it. The crops output not just underscores 
the farmers yield (Todorović et al., 2018), but also guarantees the production of adequate 
output to ensure enough supply of food for the world’s population (Dong et al., 2014). The 
output is determined by various intertwining factors, particularly the soil nutrients and 
fertilization (Dong et al., 2019). Fertilisation is a common yet precursor measure to ensures 
the crops are supplied with nutrients needed for growth by improving fertility of soil (Huang 
et al., 2017). However, the high input of fertilizer bring about environmental implications that 
are damaging to health, ecosystem and resources – calling for a sustainable agricultural 
practices via adoption of precision agriculture method (Todorović et al., 2018). This has 
become more serious concern as Parfitt et al. (2010) asserts that the urbanisation is expected 
to increase sharply with the expansion of global population to nine billion by 2050. The 
steady growth of global population with upward urbanisation trend would further cause 
instability in food supply chain (Srovnalíková and Ditkus, 2016). This, together with the 
demand for high variety and fast delivery of food with minimal costs require a more complex, 
cost-sensitive supply chain strategy (Gružauskas et al., 2019). An extra focus should be given 
to the “last-mile delivery” as it currently represents a significantly high cost in the whole 
supply chain, due to uncertainty and disturbances (de Souza et al., 2014), as well as inability 
to cope with disruptions (Managa et al., 2018). Gružauskas et al. (2019) propose that food 
supply chain collaboration can be improved by enhancing its collaborative technologies and 
strategies that could align demand and supply, reducing the uncertainty and disturbances. 
Forecasting of weather is one of the vital activities in farming, as it will help the farmers in 
daily decision makings, especially on crop irrigation and time to fertilize, which will result in 
a profitable crop or failure. The use of AI drones in agriculture would help to inform farmers 
ranges of data in timely and prompt manner. Therefore, the following proposition is put 
forward:  
Proposition 4: AI drone will facilitate prediction of crop output that minimise uncertainty 
and disturbances in agricultural supply chain 
Previous research indicates that the agriculture activities would account for up to 16% 
climate change in 2050, due to carbon emission and land degradation (Pinguet 2020). The 
situation calls for a change in farming practices – not just to reduce save the climate but also 
to protect the farmers against the economic loss in the aftermath. AI-drone, which is often 
used in the precision agricultural practices could partly mitigate this issue by cutting pollution 
in farming activities such as the use of light aircraft in seeding and pesticide application. The 
sensor attached to the drone allows farmers to precisely monitor the crops, allowing right 
amount of fertilisers or pesticides prescriptions at the right time, which helps the treatment 
while reducing environmental impact i.e. pollution due to the excessive use of such materials. 
A study by Canadian Government confirms that crops are vulnerable to death-leading 
“injury” when exposed to air pollutants (Ministry of Environment Canada, 2013), which 
would not only affect the growth of the crops and the farmers’ yield, but threatens the supply 
in general. Therefore, the following proposition is put forward:  

Proposition 5: Lack of pollution due to the use of AI drone lead to uninterrupted movement 
of produce in the supply chain 



While the thermal imaging capability of the AI-drones assists farmers in evaluating crops 
conditions, (Calderone, 2017), the use of GPS and geospatial systems on drone (thus the 
drone is called the AI-Drone) allows farmers an access to a ‘ready to use’, real time, location-
based data. This data informs the farmers of the potential yields or risks, thus could be used 
to perform intervention (Pinguet, 2020). Early intervention – for instance application of 
pesticide to curb the spread of the disease to other crops, is vital in ensuring the quantity 
harvest, which also underscores the security of movement in the supply chain – i.e. 
preventing ‘break-down’ of supply. Therefore, the following proposition is put forward :  

Proposition 6: Accuracy of prediction due to the use of AI drone secures movement of the 
produce in the supply chain. 

Another key challenge highlighted in this research is that of Plant diseases (V12). The extant 
literature also supports this, for instance, Mahlein et al. (2012) explore technology that 
detects plant diseases to precisely target the affected  crop for protection, which utilise the 
multispectral, convoluted data. In the other hand,   plant pathology, engineering, and 
informatics can be combined in a multi-disciplinary approach to screen fungicide and 
overcome the challenge of  resistance breeding. Moreover, Khanal et al. (2017) also place 
emphasis in their study on the use of hyperspectral sensing  to monitor crop stresses and 
diseases, as well as the irrigation stress. Thus highlighting the opportunities presented by I4.0 
related technologies in overcoming traditional agricultural challenges, such as plant diseases. 
Therefore, the following proposition is put forward: 

Proposition 7: Precision treatment of plant disease using AI drone facilitates smooth 
movement of the produce in the supply chain. 

Workers health and safety has also been highlighted as a key challenge in this research (V8), 
and is also a key ethical challenge reported in previous studies. For example, in advocating 
the importance of working conditions for farmers and farm communities in light of ensuring 
food security, Lunner-Kolstrup and Ssali (2016) reveal a lack of awareness among the 
farmers particularly in  developing country contexts, of health and safety issues, disease 
management, as well as knowledge on how to prevent injuries within agricultural settings. In 
addition to pesticides exposure, studies have also highlighted other worker health and safety 
factors prevalent within agriculture, such as fatigue, limited PPE, as well as oversight on the 
health and safety threats (Lunner-Kolstrup et al. 2016; Mitloehner and Calvo 2008). Thus, 
proactive efforts in overcoming such ethical issues can significantly improve working 
conditions, labour productivity and thus improve the movement of goods within supply chain 
settings (Lunner-Kolstrup and Ssali 20016). Therefore, the following proposition is put 
forward : 
Proposition 8: Workers health and safety underpins the movement of goods within supply 
networks 

7. Conclusion, limitations and future research 

This research aimed to explore key challenges associated with agricultural supply chains, in 
doing so and more specifically, the research set out to identify how these key challenges 
influenced one another and what the relationships were between these challenges. 
Accordingly, this research reveals the underlying role of pesticide application and its 
associated health hazards, as being a key fundamental driver for many of the challenges faced 
within the supply chain. Moreover, the research also identified how pesticide application 
plays a role in influencing other factors within the supply chain, which ultimately, hinders 
cleaner agricultural production within the supply chains. This provides a potentially 
important precedent for agricultural stakeholders, such as farmers, policymakers, food 



producers, who are in the pursue of, or are currently engaged with cleaner agricultural 
practices. With this said, and in line with the extant literature, it is clear the role of pesticides 
and the concerns relating to its application and impact both on crops, and the workers who 
are exposed to it. Exploring this further through CE lenses and a review of I4.0 related 
literature, it is also identified that managing the application of this can be potentially achieved 
through the application of AI drones, thus leading to CAP, where resource-efficient 
agricultural practice is achieved through the reduction in fertilizer and pesticide use. Findings 
from this work can alert food producers and policymakers alike of the advantages and 
positive societal wide benefits of implementing I4.0 drones. In addition to pesticide use, 
agricultural stakeholders, through this research can help them identify, other associated 
challenges, which may also adversely impact their agricultural productivity. Not only are the 
findings suggestive of the economical and cost effectiveness resulting from reduced 
pesticides use, but they also allude to the wider reaching benefits of minimising the hazards 
associated with excessive pesticides use, on plants, livestock, humans and the environment as 
a whole. Ethics was also a focal aspect of this research, which has contributed further towards 
the academic discussion relating to, CE, its integration with I4.0 technologies, and how this 
can significantly role in  mitigate ethical and socio-environment agricultural challenges.  
This is about awareness of the CE concepts and knowledge on the potentials of I4.0 
technologies. One of the main takeaways is to consider ethical issues at early stage of 
agricultural supply chain – i.e. the point of production through CE lens, and to propose 
innovative solutions in addressing them. The findings offer another avenue, through which, 
ethical considerations relating to existing approaches to farming can be re-evaluated, 
especially from the perspective of  reducing environmental and health related impact. 
Accordingly, there is a pressing need for investment in technological advancements and 
training within agricultural settings, in order for the ethical and cleaner agricultural benefits 
to be fully realised.  

Despite the fact that this research offers valuable insights into identifying the interrelating 
nature of challenges associated with cleaner agricultural production within agricultural supply 
chains, the key limitations of this research must be acknowledged. For instance, the 
parsimonious model  developed through inputs from the experts and the literature is yet to be 
tested through empirical research. Moreover, although experts played a central role in 
developing the model, they were from a small sample size, therefore human biases and 
predilection can also be regarded as limitation of this research.  
In summation, this research proposes a parsimonious model which can be tested by 
researchers in this field, to help them understand the extent to which, I4.0 drones can 
overcome agricultural challenges. It is therefore, proposed that further research is undertaken 
in order  to complete the validation of the propositions developed from this research, and that 
too, across different setting, which will ultimately assist agricultural stakeholders in scenario 
building and action planning, towards  successful implementation of an ethical, clean, 
agricultural production.  
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