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Abstract: 

In a dynamic business environment like the energy sector, power plants face several complex 

risks, including both technical and non-technical risks. These risks are not isolated, as their 

impact may affect a series of interrelated risks. Those risks may change with time, which in 

turn, makes the strategic decision-making process less effective. Understanding the dynamic 

behaviour of a complex system is very important to achieve a more sustainable overall 

performance of the power plants. Thus, it is important to further develop a systematic risk 

assessment methodology that could help to identify and analyse the interdependencies among 

risks and to understand the dynamics of these risks in complex systems. This paper develops 

a system dynamics (SD) methodology to support the development of risk assessment models. 

This paper highlights the environmental perspective. The first step to develop a SD model 

will be applied, while the final SD model will be discussed in another paper. 

Keywords: system dynamic; risk assessment; failure mode and effect analysis; non-technical 

risks. 

 

1. Introduction 

In a modern society, where the complexity and competition are increased, the importance of 

assessing risks; particularly the difficult predictable one that has significant impacts on the 



2	|	P a g e 	
	

economy are also increased (Radivojević and Gajović, 2014). Along with that, increasing 

complexity and dynamics of organisations in modern society leads to an increase in the level 

of risks. Accordingly, the risk management process has increased in various sectors (Verbano 

and Venturini, 2011). Risk management is an increasingly important driver of an 

organisations success. Thus, organisations have become more worried about risk. 

Organisations consider risks as a driver of strategic decisions which may affect the 

organisation's performance. Therefore, implementing a comprehensive risk approach that 

covers all risk types will increase organisation benefits. To achieve the organisation’s 

objectives, there is a need to understand these risks. Hence, organisations need to understand 

and determine the overall level of risks within their process activities. Accordingly, risk 

management is a crucial part of the strategic management of an organisation (AIRMIC, 

ALARM and IRM, 2010) so, It’s essential to understand and manage risks that affect the 

performance of an organisation (Garbuzova-schlifter and Madlener, 2016). The key part of 

risk management is the assessment step of significant risks. This step helps in achieving 

maximum sustainability value of the organisation, furthermore, helps in improving the 

understanding of the potential risks that may affect the performance of an organisation. 

Therefore, this step increases the organisation’s success and reduces the failure, disruption or 

uncertainty of the organisation. Risk assessment is a key part of the decision-making process 

(AIRMIC, ALARM and IRM, 2010). Risks and uncertainties ( ex. uncertainties in demand, 

fuel prices,…etc.) affect the long term planning (Alishahi, Moghaddam and Sheikh-El-

Eslami, 2012). ISO 31000 Risk Management guidelines define risk as to the effect of 

uncertainty on objectives. (Moura Carneiro, Barbosa Rocha and Costa Rocha, 2013) describe 

the risks like the possibility of occurring undesired events and how while the risk 

management has been defined as the tool that has been utilised to various risks in machines or 

process. Risk assessment is a key activity (or sub-process) of the larger risk management 

process.  

Risk assessment is a process to evaluate the occurrence and the severity of uncertain events. 

Current risk assessment approaches may not consider the dynamics of risks, as these may 

change with time. In addition, these current approaches may not consider the 

interdependencies of different risks. The evidence in the literature demonstrates that research 

opportunities exist to address the dynamic nature of interdependencies of risks along different 

stages of the life cycle of power plants the occurrence of potential risks can disrupt operations 

in a critical way, and cause significant losses (Li, Ren and Wang, 2016). (Pan, Korre and 
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Durucan, 2016). These risks could be catastrophic events like fire, floods or smaller events 

like failures and breakdowns. All these risks will cause revenue losses, reduction of 

production rates, affecting planned production goals, and these may lead to reduced 

reliability. These could also damage the reputation of the company.  

Industries have various technical and non-technical risks. Non-technical risks are the risks 

that arise from the internal interactions of a business with a wide range of external 

stakeholders.  These interactions include interactions with the regulatory, economic, public, 

social, and environmental and governmental organisation (Adekoya and Ekpenyong, 2016). 

Non-technical risks are risks rise from external stakeholders/environment(non-contractor) and 

cause undesirable deviation from the aim. Non-technical risks can be categorised into socio-

economic risks, environmental,  security risks (ex. human right abuses by project security), 

regulatory risks, political risks, commercial risks , organisational risks, human risks,  and 

health risks  (Ite, 2016). Industries have not to match between technical and no-technical 

risks. However, non-technical risks in the oil and gas industries are more complex. Thus, 

industries need more attention to risk assessment and management of the non-technical risks. 

Sources of non-technical risk can be categorized to legal security, stakeholders risks, local 

contracting, environmental, partners, contractor and communities (Adekoya and Ekpenyong, 

2016). In addition, technical and non-technical factors is a crucial element in the successful 

implementation of a risk management process includes seven areas. Non-technical risks 

influence the decision-making process. non-technical factors include economic factors, 

environmental, employment, infrastructure, availability of resources, and regulatory 

(International Atomic Energy Agency, 2002). 

Industries and organisations have focused more on the technical part over the years. 

However, the non-technical risks are the main cause losses in organisation performance, for 

example, the non-technical risks cause 75% of cost losses in projects (Ite, 2016).  

Furthermore, 65% of project failures raise from people, organisations and governance, 21% 

results from management process and procurement strategies, and 14% due to external 

factors ( government intervention, environmental failures)  (Adekoya and Ekpenyong, 2016). 

On the other hand, these types of risks can’t quantify easily (Ite, 2016).  Generally, if non-

technical risks are managed effectively, the overall risks can be reduced. effective 

management of non-technical risks contribute to better returns on investment and achieve 
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sustainability for organisations (Ite, 2016). Effective asset management decision-making is an 

essential part to increase the organisation value (IAM, 2015). 

Understanding the nature of system interdependencies plays a crucial role in minimising the 

probabilities and consequences of cascading risks in interdependent systems (Katina et al., 

2014). To be sustainable, a balance between the economic, environmental and social 

perspectives in the decision-making process are required (Ite, 2016). To analyse long term 

effects, a dynamic model to assess risks in the long term is essential. Due to the complexity 

and the dynamic nature over time of systems, the risk assessment and analysis in a complex 

system is challenging furthermore, the available risk assessment tools can’t consider the 

interdependency through risks which mean that the behavior of the system can’t predict  

(Jamshidi et al., 2018). Thus, Industries need more risk assessment for effective identification 

and management of non-technical risks where technical and non-technical risks will continue 

to increase significantly in industries (Ite, 2016).  Similarly, for moving to a sustainable 

energy system, a method that recognises the complexity of energy systems in relation to 

technological, social, environmental, and economic perspectives are required (Bale, Varga 

and Foxon, 2015). 

Various risk analysis approached are available to assess risks. However, these risks don’t talk 

into account the dynamic nature of risks or feedback loops, furthermore, can’t quantify the 

full impact of various risks. thus, these tools are inefficient to assess the actual influences of 

risks. Where most of these tools assess the risks from a qualitative perspective. While SD 

approach has the capability of risk quantification of the full impact of various risks and 

consider the direct and indirect effects of each risk through the feedback loop analysis thus 

each impact of risk can be quantified (Nasirzadeh, Afshar and Khanzadi, 2008).  Lack of 

knowledge regarding cause-effect makes the risk assessment process as a difficult process 

using traditional methods (Jensen and Aven, 2018).   

The available risk assessment models focus only on the technical part (operational level). 

Industries have various technical and non-technical risks. Non-technical risks are the risks 

that arise from the internal interactions of a business with a wide range of external 

stakeholders.  These interactions include interactions with the regulatory, economic, public, 

social, and environmental and governmental organisation (Adekoya and Ekpenyong, 2016). 

Non-technical risks are risk rise from external stakeholders/environment (non-contractor) and 

cause undesirable deviation from the aim.  Non-technical risks can be categorized to socio-
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economic risks, environmental,  security risks (ex. human right abuses by project security), 

regulatory risks, political risks, commercial risks , organisational risks, human risks,  and 

health risks  (Ite, 2016). Industries have not to match between technical and no-technical 

risks. However, non-technical risks in the oil and gas industries are more complex. Thus, 

industries need more attention on risk assessment and management of the non-technical risks 

(Adekoya and Ekpenyong, 2016).  

On the other hand, the current risk assessment and management research focus on assessing 

and managing the low probability-high impact systemic risk and ignore the low impact risks 

(WEF, 2013). The complexity of systems is considered as a source of deviation from normal 

behaviour and source of unpredictable system behaviour due to the interaction between the 

entire elements. The traditional sequential models don’t consider the entire interactions thus, 

are not suitable for analysing complex systems (Bouloiz et al., 2013). Accordingly, there is a 

need to develop a framework for assessing various types of risks specifically, at the strategic 

level. The most challenging problems in building complex systems today arise in the 

interfaces between components (Leveson, 2000). 

The current risks assessment tools ignoring outcomes of uncertainty and the outcomes of 

dispersion (Grimsey and Lewis, 2002). Current risk assessments tools typically use various 

models to deal with risks, but these approaches don’t take into account the internal 

interactions between risks (International Atomic Energy Agency, 2002). Similarly, there are 

many risk analysis methods such as structural decomposition and expert investigation 

method. These methods didn’t take the linkages ( interaction)  between risk factors into 

account (Wan and Liu, 2014). Traditional risk models are ineffective in dealing with human 

error and decision- making in complex systems and environment (Komljenovic, Loiselle and 

Kumral, 2017). 

On the other hand, a complex system is a network of a number of components that interact 

with each other. To describe these interdependencies, conceptual, mathematical, and 

computational tools are developed. Organisational mapping of complex systems includes 

seven areas the first part is the historical roots for the complex systems (systems theory, 

nonlinear dynamics, and game theory)  and the second part is more studied area ( evolution 

and adaptation, collective behaviour, pattern formation, and networks) (Sayama, 2015). 

Complexity is the difficulty of predicting system behaviour. The main challenge of 

complexity in a risk assessment context is that the knowledge of the overall system is limited 
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even the knowledge of sub-activity (sub-system) is strong. Current risk analysis approaches 

are based on models reflecting the knowledge of the sub-activity and ignoring the overall 

activity (Jensen and Aven, 2018). 

Energy is one of the most significant factors of national socio-economic strength. The effects 

of environmental, economic, and social perspectives of energy are key to the development of 

all societies (Azadeh and Vafa Arani, 2016). Thus, given the importance of energy for 

societies. Power plants failures may cause significant financial impacts. For example, thermal 

power plants in Malaysia reached losses of $43M USD due to operational availability in a 

period of 2.5 years (Wai Foon and Terziovski, 2014). In addition, Spada et al. (2018)  state 

that accidents in the energy sector have short-term impacts on energy security, where 

catastrophic events may lead to energy policy changes with the purpose to increase long-term 

energy security. Risk management is very important to support the successful and sustainable 

performance of the energy sector, and more specifically, of power plants. Energy sector 

requires more significant integrated management for technical and non-technical risks (Ite, 

2016).   

As stated above, it is clear that the available risk assessment models focus only on the 

technical part (operational level), not to the strategic level additionally, the current risk 

assessment research focuses on assessing and managing the low probability-high impact risk 

and ignore the low impact risks. Furthermore, the current research doesn’t consider the 

interdependencies and the dynamic nature of risks over time which will affect the long term 

of organisations. Thus, there is a need to develop a framework for assessing various types of 

risks specifically, the hidden and the non-technical risks at the strategic level. This research 

will provide and generate a strategic system dynamics risk model to show how the systematic 

approach help in developing the framework.  

This paper presents a systematic methodology to build System Dynamics (SD) models to 

assess non-technical risks in the energy sector, specifically applied to power plants. A 

strategic approach (long-term view) will be applied to the identification and assessment of 

non-technical risks. This will ensure a risk assessment for a more sustainable performance of 

the organisation. This kind of system dynamics model can help decision makers (e.g. risk 

managers) to understand the interdependencies of key risks in different stages of the life cycle 

of an energy plant and the behaviour of those risks over time. In this way, managers will be 

better informed to design effective risk management plans. 
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The paper initiates with a literature review on complexities in power plants, system dynamics 

approach, system dynamics applied to the energy sector, principles of process modelling, the 

proposed methodology to build a system dynamics model for risk assessment is explained in 

section 3. Various risks perspectives to assess risks and applying the methodology to 

environmental perspective are clarified in section 4.  A discussion on the benefits of the 

approach is included in the last section. This research contributes to the development of an 

SD methodology to support risk assessment as a strategic decision-support tool. 

2. Literature Review 

2.1 Power Plants as a Complex System: 

Power plants are considered as complex systems where catastrophic effects will have resulted 

from failures and risks (Orme & Venturini , 2011) along with,  Sterman,( 2000) describes the 

main characteristics for complex systems as Dynamic and changes over time; tightly coupled, 

which leads to feedbacks ; Nonlinearity due to interacting various factors in decision making; 

Time delays in feedback (trade-offs) and Policy resistant. In the same context, (Kang and 

Golay, 2000) confirm that it cannot be decomposed the system complexities in a systematic 

way and expound the complex interrelationships between various variables within the system. 

Decision-making regarding risks is very complex thus, SD approach will be applied in this 

research to help in understanding the behavior of the system in the long term at the strategic 

level (Jonkman, Van Gelder and Vrijling, 2003). From engineering and economics 

disciplines, the energy sector has been dominated by hard modelling approaches (Dyner, 

2000). The interactions in complex systems vary at various layers of the hierarchy 

(Efatmaneshnik, Ryan and Bradley, 2016).   

Complex systems are modelled as a hierarchy of organizational levels. For understanding the 

complex environmental, social, and economic factors contributing to poor decision making 

and providing a policy to improve the risk decision-making process, SD can be used 

(Komljenovic, Loiselle and Kumral, 2017). Complexity is the uncertainty of confidence in 

risk assessment (Johansen and Rausand, 2014).  

In the current system dynamic literature, a hierarchy has received little attention. 

Furthermore, SD has two crucial problems firstly, it is misapplied and secondly, people have 

misinformed the goals, the limitations and the expected outcomes. On the other hand, SD 
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needs good communication with the public and technical people ((Barlas, 2002); (Featherston 

and Doolan, 2012)).  Hard modelling approach like SD is needed if the level of uncertainty 

increase (Dyner & Larsen, 2001). In complex systems, policy makers can assess the 

probabilities but not the certainties of particular outcomes (Dekker, Cilliers and Hofmeyr, 

2011).  At the strategic level, there is very little application of hard modelling methods where 

uncertainties are enormous and the risk is high at the strategic level, therefore, it is difficult to 

depend on mathematical modelling for strategic decisions. Along with that, (Kotir et al., 

2016) affirm that offering a learning tool for decision makers for improving their 

understanding of the long term dynamics behavior is the main aim of the modelling process. 

2.2 System Dynamics as a Methodology to Model Complex Systems: 

A complex system can be modelled by Discrete Event Simulation (DES), Agent-Based 

Simulations (ABS) and System Dynamics (SD). These approaches are utilised to improve the 

decision-making process of complex systems (Konstantinos Mykoniatis, 2015). The main 

used approaches to deal with complex systems are SD, and Agent-Based Modelling (ABM) 

(Ding et al., 2018) (Kunc, Morecroft and Brailsford, 2018). 

SD is a top-down approach allows for the construction and validation convenient model.  SD 

is an approach to visualise, analyse, and understand complex dynamic feedbacks. The core of 

this method is the feedback structure with high order, loops and nonlinearity.  SD is based on 

the accumulation of flows in stocks. SD doesn’t depict individual differences and can’t 

provide full understandings of how the emergent macro phenomena can be affected by the 

microscopic stakeholders’ behaviour (Ding et al., 2018). SD is applied to analyse problems 

from a comprehensive thinking and macro perspective. SD can be applied to analyse a 

dynamic evaluation process under various states.  SD can’t understand explain the behavior 

of the micro-behaviour system because SD ignoring the relationships between the macro and 

micro behaviour.  SD focuses on the feedback and relationships (flow) which simulate the 

behavior of a SD. SD is proper for analysing the interactions between various elements. SD is 

not considering spatial interactions. SD can over various levels of aggregation. Thus, SD has 

the highest abstraction level. SD is not proper for a complex system with unknown structures. 

Because it is based on equations to quantify the relationships between variables. 

SD and Agent-Based Simulation (ABS) are the two most commonly used modelling methods 

in complex systems. SD is a continuous time simulation model and focusing on macro-level 
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problems  (Kunc, Morecroft and Brailsford, 2018); (Ding et al., 2018). SD approach mapping 

a problem onto a generic structure that helps-understanding the causal causes and the 

system’s behaviours’ (Greasley, 2009). The Discrete Event Simulation (DES) replicating the 

structure of the systems and allowing performance to be measured under various scenarios 

(Greasley, 2009). Simulation is categorised into a continuous and discrete event. Continuous 

simulation is utilised to model systems that vary continuously with time. SD has applied this 

approach then it becomes a crucial tool for analysing human-based systems and enabling 

organisational learning ((Seng, 1994); (Forrester, 1961); and (Greasley, 2009)). The human 

systems in SD can be described in terms of delays and feedback.  

Discrete event simulation is concerning with modelling of systems that can be represented by 

a series of events.  The simulation defines each event and moves from one to the next. SD 

understanding why things happen by identifying the structure and behaviour.  The structure 

leads to certain types of behavior. SD modelling the transformation of resources as a 

sequence of linked (levels/stocks). However, the system behavior is difficult to predict, due to 

the delays and feedback loops. SD approach models at a high organisational level and 

aggregates the movement of a number of individual items into a flow rate. Furthermore, SD 

revealing statistics of measures at an aggregate level and plotting to observe and understand 

the behaviour of the system over the long-term periods due to the long time scales of 

operating feedback loops in strategic systems (Greasley, 2009). SD providing a methodology 

to help business and government organisations in strategy development, analysis dynamics 

process, and in policy options. SD can capture the factors that affect the system behavior in a 

causal loop diagram. SD shows the links and feedback loops through the elements in the 

systems. SD software allowing a policymaker to adjust parameters of a system, add new 

linkages and feedback loops, and rearrange (structure) components of the system. Thus, 

policymakers can observe system behavior under various scenarios and conditions. SD is 

proper to model continuous processes, systems where behavior changes in a non-linear way, 

SD is used in strategic policy analysis. SD models continuous processes and human behavior 

plays a crucial role in SD models and this is more difficult to quantify (Sweetser, 1999). SD  

dealing with “deterministic complexity” and the unfolding future is significantly pre-

determined by enduring feedback structure (Kunc, Morecroft and Brailsford, 2018). SD is 

recommended more for understanding complex systems while ABS for learning behavior. SD 

is applied to explore systems at a high aggregation and abstraction level (Konstantinos 

Mykoniatis, 2015). SD is applied on meso to macro level for fewer details of abstraction. SD 
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is recommended for strategic complex problems, macroscopic policy, and aggregated 

perspectives. SD is applied to gain in-depth understanding and learning of complex systems 

behavior in the long term. SD focuses more on the flow and dynamic feedback behavior of a 

certain complex scenario and is applied in policy making at the strategic level (Konstantinos 

Mykoniatis, 2015). 

Discrete events simulation (DES) is used to model strategic issues, as well as non-linear 

relationships, feedback loops, and continuous systems. SD is focused more on the analysis of 

systems. In SD, the structure is crucial in determining system performance. SD is less proper 

to provide a detailed representation of a system DES simulation replicating the structure then 

the behavior is identified. The structure can be replicated by collected data on process flows, 

demand patterns, and process times.  The model provides a useful suitable prediction of real 

system performance. Discrete-event simulation describing the system behavior by modelling 

their stochastic nature.  However, the overall effect of changes to the system is hard to predict 

due to the linkages between processes. DES, modelling operational process (ex. 

manufacturing service facilities). The operational performance measures (ex. production 

output levels and customers served) are needed.  It is not proper to analyse decision making 

in operations strategy. Discrete-event simulation is moderating tool between functional areas 

(ex. marketing and operations) and helping change at a strategic level. Building a process 

map is the first step in discrete event simulation. In this step, the logical relationship between 

the elements in the process can be defined. Discrete-Event simulations modelling humans a 

resource rather than reflecting their behavior on performance.  Discrete event simulation 

taking the known structure of a system (ex. the process flow) and trying to discover how it 

behaves under various conditions using scenario analysis.  Discrete-event approach providing 

performance measures at a discrete level because it is able to carry information about each 

entity within the model ((Greasley, 2009); (Sweetser, 1999). Discrete-event simulation 

dealing with “stochastic complexity” and the unfolding future is partly and significantly 

determined from multiple interacting random processes  (Kunc, Morecroft and Brailsford, 

2018). DES replicating the performance of a system and providing a policy-maker insight 

into if the system is modified, how that system can perform.  DES model needs accurate data 

on how the system operated in the past, or accurate estimates on the operating characteristics 

of a proposed system (Sweetser, 1999). DES is focused more on models’ particular processes, 

not entire systems.  In DES, the structure is important and accurate historical data or 
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estimates of future performance are required to populate the model and produce statistically 

valid results. DES models discrete and reflecting analysis of historical data  (Sweetser, 1999).  

Discrete Event Simulation (DES) is applied on meso to micro level for more details of 

abstraction. ABS approach is recommended for strategic complex problems, interacting 

entities, spatial distributions, and heterogeneity.  DES is applied for stochastic variations and 

linear relationships occur in complex systems. DES is more suitable for queuing systems or 

to assess and compare alternative scenarios and is described as a process-centric approach, 

furthermore, it is applied to help in decision and prediction making in operational and tactical 

organisational levels. DES is suitable to capture emergent phenomena and identify 

interactions and operations of agents  (Konstantinos Mykoniatis, 2015).  

Agent-Based Simulation (ABS) is applied to study the emergent phenomena of diverse 

structure (Konstantinos Mykoniatis, 2015). ABM combines a time dimension with a space 

dimension. ABM needs a lot of details to simulate over a long period of time due to the large 

numbers of parameters and rules. These parameters are difficult in the identification and to 

determine the prediction robustness, extensive sensitivity analysis is required.  However, 

ABM can process a relatively small number of agents due to ABM sensitivity od the small 

variations. In addition, ABM ignores the interactions between macro factors and agents.  

ABM considering the spatial factors and ignoring the feedback relationship of various 

economic and social factors.  ABM capturing the final level of detail. Thus, ABM can be 

applied at lower abstraction levels. ABM representing the complex systems based on a 

certain number of simple rules (Ding et al., 2018) 

System dynamic is a system modelling and dynamic simulation approach for capturing the 

dynamic complexity in socio-economic and biophysical systems (Guo and Guo, 2015). The 

aim of SD is in identifying how the model structure and decision policies help in producing 

the observable behaviour of a system to implement decision policies (Qudrat-Ullah and 

Seong, 2010). System dynamic is a computer-aided approach to policy analysis and design 

which has been applied to dynamic issues in complex systems. To organise available 

information into computer simulation models; SD utilises concepts from the feedback control 

field (Forrester, 1991). Furthermore, SD is an effective tool that analyses various systems to a 

qualitative and quantitative approach (Sisodia, Sahay and Singh, 2016).  SD offers a 

conceptual (qualitative ) and quantitative approaches for simulation complex 

interdependencies; nonlinearity interactions and feedbacks among systems variables 
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(Elsawah et al., 2017). SD enables modelling interactions among systems and of various sub-

systems models. SD enables representing models as a feedback system to mimic the entire 

interactions through the system. SD can be applied for complex models, contain many 

feedbacks, and highly dynamic (Thompson and Bank, 2010). SD helps in understanding the 

complex systems using the feedback loops and stock-flow diagrams (Liu and Zeng, 2017).  

Along with that, SD is a powerful tool for understanding the dynamics of decision making in 

complex systems over time, particularly feedback. SD focuses on modelling the changes in 

the behavior of a system ((Nabavi, Daniell and Najafi, 2017); (Aslani, Helo and Naaranoja, 

2014); (Shafiei et al., 2015); (Park, Kim and Jung, 2014); (Kotir et al., 2016); and (Sterman, 

2000)). Similarly, SD is a strategic tool for analysing the effects of various policies and 

scenarios on the system's behavior (Dastkhan and Owlia, 2014). policy-makers and 

researchers have extensively used SD in management and social systems (Anand, Vrat and 

Dahiya, 2006). System dynamics is a suitable tool to enhance and accelerate organisational 

and managerial learning under the complexity of competitive technological innovation (Lomi 

and Larsen, 1999).  For improving the provision of decision support process; SD can be 

integrated with MCDM methods (Elsawah et al., 2017).  

SD is an analysis method which combines between the qualitative and quantitative analysis 

and used for nonlinear complex systems to understand the underlying behavior of these 

systems over time ((Liu and Zeng, 2017); (Forrester, 1961); and (Wei et al., 2012)). SD 

shows how complex system behavior change over time. SD deals with two aspects: a 

dynamic study of system behavior and systemic study of the feedback principle (Bouloiz et 

al., 2013). SD helps in capturing the internal feedbacks and time delay which affect the entire 

system behavior  (Xi and Poh, 2014). SD is applied to analyse various systems economic, 

social, and environmental systems (Park, Nepal and Dulaimi, 2004).In addition, SD focuses 

on the policies and dynamic behavior of the system which is the crucial strategic feature of 

the top management (Coyle, 1996). SD is a modelling approach allows of representing the 

system in terms of feedback  (Bouloiz et al., 2013). SD is applied to support decision-making 

processes by utilising different tools. These tools are qualitative such as causal loop diagrams 

and quantitative by using the mathematical language to identifying the relationships between 

variables (Barnabè, 2011). SD is a tool used to define different strategic issues and different 

kinds of risks (Lomi and Larsen, 1999). 
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SD differs from other modelling approaches which deal with steady-state solutions. SD 

simulates the dynamic response and system behavior with time. To model feedback 

interactions, the dynamic behavior of the system is created by following the changes in stocks 

and flows values over time (Elsawah et al., 2017). System dynamics is the theory of system 

structures ( studying the causal interactions between system components) (Bouloiz et al., 

2013). Variables of system dynamics have been categorised into auxiliary variables, stock, 

and rate. The behaviors of systems have been saved in the system memory (the stock 

variable). While the input and output of the (memory) stock variable and the rate variables 

are obtained by the auxiliary variable. Stock variables and delays cause dynamics of the 

system. Delays (delays include information delays and physical delays) happen when a 

variable does not affect another variable. SD has some characteristics such as: considering 

both short and long terms effects of variables in the modelling of system dynamics. All 

dynamics arise from the interaction of positive (reinforcing) loops; and negative (balancing) 

loops ((Azadeh and Vafa Arani, 2016); (Meyers, 2009); (Meyers, 2009); (Barnabè, 2011); 

and (DE LA BARRA, 1989)). The positive loop amplifies what is happened in the system 

and generate exponential growth or decay to reflect the dynamics’ behavior. The negative 

loop tries to respond to the trends within a system and tries to make a balance ((Barnabè, 

2011); (DE LA BARRA, 1989)). However, SD depends on quantitative data for generating 

feedback and building the model (Luna-Reyes and Anderson, 2003). 

 

System dynamics model is a powerful tool for understanding and analysing the system 

behavior and improving the knowledge about companies, competitors and market. 

Furthermore, helping in build effective policies of management and develop the most suitable 

decisions for companies ((-Bach and Čerić, 2007); (Morecroft, 2015); (Yeo, Pak and Yang, 

2013); (McLaughlin and Olson, 2017); and (Dastkhan and Owlia, 2014)).  The usefulness of 

simulation models is on the ability of these models to link system behavior patterns with the 

system structures.  SD as a policy model; is built to analyse policy and assigned the possible 

future scenarios, and management purposes (Qudrat-ullah, 2012). However, SD can be 

utilised to collect data, stakeholder participation and thinking and learning (Elsawah et al., 

2017).  

 

Developing a SD model needs a wide range of sources of knowledge. This knowledge covers 

qualitative and quantitative data from experts, stakeholder groups, policy makers or 

practitioners, document analysis; Interviews, workshops and focus group (Elsawah et al., 
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2017). It cannot be decomposed the system complexities in a systematic way and expound 

the complex interrelationships between various variables within the system (Kang and Golay, 

2000).  

Complex behavior of a system emerges from the interaction between the system components 

(Dekker, Cilliers and Hofmeyr, 2011). Establishment of a causal relationship between the 

variables is the core of the system dynamics model. CLD  is used to analyze the complex 

interactions between the system’s internal variables, the polarity of the causal link can be 

increased or decreased (Wan and Liu, 2014). The relationship between variable (A) and 

variable (B) can be represented by an arrow. The direction of the arrow starting from the 

cause variable (A) and directed to the effect variable (B). If the relationship between 

variables (A) and (B) is positive (+) this means that an increase/decrease in the variable (A) 

causes an increase/ decrease in the variable (B). If the relationship between variables (A) and 

(B) is negative (-) this means that an increase/ decrease in the variable (A) cause a decrease/ 

increase in the variable (B). Thus, the feedback can be negative or positive. The variables in 

the (positive) loop (reinforcing loop “R”) increase or decrease. Variables in the (negative) 

loop (balancing loop) stabilising with time. A relationship between variables (A) and (B) is 

depicted in Figure 1. 

 

 

 

 

Figure 1 : Cause-Effect Relationship Between Variable (A) and (B) 

 

2.3 System Dynamics Applied to the Energy Sector 

System dynamic approach has been widely applied to research on capacity expansion 

mechanism, performance improvement and policy analysis of energy industry (Pan, Liu and 

Li, 2017a). SD  is applied to study and analyse the impact of the climate changes on cooling 

systems, efficiency and the power production of German thermal power plants and quantifies 
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possible output reductions of these power plants in mid and long terms (Hoffmann, Häfele 

and Karl, 2013). 

In contrast, SD is used to construct a simulation model of China’s PV power development 

and they consider the economic and technical factors. SD method cannot only model system's 

real behavior, but also clarify the relationship between main variables within the system (Guo 

and Guo, 2015). As well as, SD is applied for China’s oil industry from a supply chain aspect 

and they concentrate on the issues related to the over-capacity problem and energy security 

issues and also, they develop a  system dynamic model for oil supply chain analysis (Pan, Liu 

and Li, 2017b). 

Energy is one of the most significant factors of socio-economic strength. Effects of 

environmental, economic, and social energy are obvious facts in all societies (Azadeh and 

Vafa Arani, 2016). In the electricity sector, system dynamics models have been using to get 

the interaction between the variables of the electricity system such as electricity generation 

cost, investments, demand, production capacity, environmental sensitivity, pricing of 

electricity, and allow of the inconsistency in the elasticity of substitution through the 

competing electricity generating technologies nuclear, hydro, and thermal. The national 

energy policy evaluation, energy investments and uncertainty, conservation policy analysis, 

inter-fuel substitution, privatisation of electricity industry, energy efficiency and electricity 

substitution, energy consumption analysis, and electricity-related emission assessments have 

been studied. The complexity of the system comes from interactions of dynamic and non-

linear variables. Dynamic variables have been including. Various stocks of electricity 

generation capacity, fuel supply and price dynamics, regulatory regimes, and advances and 

challenges in technologies for electricity generation where this complexity makes the 

decisions of sustainable policy as a difficult task (Qudrat-Ullah, 2013).  

SD is a suitable tool to simulate complex energy systems and analyse their dynamics 

(Dastkhan and Owlia, 2014). SD is utilised for constructing a simulation model to understand 

the behavior of the photovoltaic (PV) sector in Spain, which is a very complex system with a 

response, feedback and long-time frame (Movilla, Miguel and Blázquez, 2013). SD deals 

with internal feedback loops and time delay which affects the behavior of the system.  

A system dynamic model of China’s oil supply based on a simplified framework is 

established. A hybrid system dynamics-mathematical programming approach is developed to 
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design a biodiesel supply chain from biomass areas to consumption markets (Pan, Liu and Li, 

2017b). 

System dynamics is considered as one of the most powerful tools for strategic planning. SD is 

a tool for system thinking that helps researchers to build complex integrated problems 

(Azadeh and Vafa Arani, 2016). To overcome the drawbacks of the current risk analysis 

methods, SD approach is applied to analyse the investment risks in renewable energy which 

helps investors in understanding which risks are more probable to occur then a suitable 

scientific decision can be taken (Liu and Zeng, 2017). In the same energy area, SD model is 

built to study and analyse the effect of using a circular economy of the coal power and 

cement in China, where analysing the effects means, how circular economy can reduce the 

emission and the pollution of the plant and increase the profit. However, parameters of 

variables in SD have been taken from enterprise and government survey data. The results of 

the SD model show that solid waste and waste heat recycling can make massive profits for 

coal power and cement plants (Dong et al., 2017). 

SD method is extremely relevant for sustainable development research, as the integration of 

various sectors and ecosystem-based management in larger models have been allowed 

(Deenapanray and Bassi, 2015). SD model is a powerful tool for understanding and analysing 

the system behavior. Furthermore, helps in building effective policies of management and 

finding the most suitable decision for companies (-Bach and Čerić, 2007).  

SD has been applied to analyse various systems economic, social, and environmental systems 

(Park, Nepal and Dulaimi, 2004). SD is applied in the various area ( social science and 

engineering) (Thompson and Bank, 2010). System dynamics is a tool for energy systems 

analysis and is suitable to model complex environments where the interactions of the 

environment and socio-economic variables are clearly demonstrated (Xiao et al., 2017).In 

addition, SD is a crucial part of modelling the influence of feedbacks inherent in energy 

systems where this helps in providing appropriate energy policies (Mutingi, Mbohwa and 

Kommula, 2017).  

2.4 Principles of Process Modelling 

As mentioned before, the developed model to assess none-technical risk in this research 

includes nine risk sub-systems as illustrated in Figure 2. Each sub-system includes various 
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risk variables. In this paper, the environmental sub-model will be developed and explained by 

applying the developed SD stages that are explained in the research methodology section. 

3. The Improved Methodology to Develop System Dynamics models 

The aim of system dynamics modelling is to improve the understanding process of complex 

systems regarding companies' performance which is related to the internal and operating 

structure and policies. This complexity generates through the interactions between system 

variables (in our research between various risk variables). 

The developed methodology in this research is based on literature review and data collected 

in power plants in the Middle East through a questionnaire survey and focus groups 

interviews. The details of the collected data method will are clarified in future in another 

paper due to limitation where this paper focuses only, on describing the improved stages to 

develop a SD model.. 

 

 

 

 

 

 

 

 

 

 

Figure 2 : SD Model Structure for Non-Technical Risks 
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To construct a SD model, typical stages are followed as described in the literature. The 

current literature shows that the applied steps to develop SD model are very general, not clear 

and missing many activities required to develop a robust model with minimum errors and 

time. Furthermore, SD illustrates the structure of the decision-making process but not the 

seen structure on a personnel organisation chart (Forrester, 1992). However, in this research, 

systematic (step-by-step) and enhanced and clear stages for developing a robust SD model 

are clarified as shown in this section. SD is a complex graphical modelling technique to 

represent and understand the behavior of complex systems over time. To enhance the 

understanding process, SD utilises various qualitative tools such as Causal Loop Diagrams 

(CLD), Stock and Flow Diagrams (SFD) and system archetypes.  

In the decision-making process, management is the process to convert information to action. 

The decision-making is the process of converting the fluctuating flows of information into 

control signals that determine rates of flow in a system. The policy (or decision rule) is a 

description of how the information is converted into actions in the decision-making process. 

However, the policy is a rule showing the day-by-day operating decisions, which are the 

actions taken. Thus, the policy gives the relationship between information inputs and decision 

flows. Depending on the definition of the management term, the success of management 

based on the selected information and on the conversion process. In formulating the policies 

in modelling (the rate equations), decisions are generated from the available variables at the 

decision points. In the dynamics of information feedback systems, humans are not powerful 

problem solvers therefore, using a simulation software will help in understanding the problem 

(Forrester, 1992).  

However, practitioners opinions and judgments on methodologies are vital for improving the 

quality of the model results (Elsawah et al., 2017). Modelling as a continual process of 

iteration, can’t build by starting the first step then continuing in the sequence of activities 

(Sterman, 2000). Most practitioners develop the model in a single stage afterwards, test the 

model where this will not provide a high quality and robust model that reflects the reality (-

Bach and Čerić, 2007). For example, Yeo et al., (2013) formulate  SD steps from (Ahmad 

and Simonovic, 2000) framework, these two frameworks are covered general steps to develop 

a SD model and missing many stages that are required to build a clear and robust model. 

Thus, in this research, the mentioned issue will be resolved by building a robust SD in clear 

and deep analysed stages. This will help in understanding the model behavior and build more 

reliance model with high accuracy and minimum errors.  According to Forrester and Coyle’s, 
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there are no clear steps to show the validation process (test the mode, verification and the 

final validation). In addition, the conceptualisation, CLD and SFD stages are omitted in 

Forrester’s chart. These stages should be clear enough to trace the error in the developed 

model and reducing any accumulation of errors. To develop a SD model, four steps should be 

followed according to (Forrester, 1961) articulating of the problem ( define the aim of the 

model and identify the components), describing the causal relationships between these 

components through a causal loop diagram or influence diagram, developing the stock and 

flow diagram, and finally, formulating simulation model. 

The current methodologies are not systematic. In addition, the current steps are not clear; and 

provide a general idea for the final developed model without giving any clarification of how 

each sub-model is constructed where the SD deals with complex systems and breaking down 

step is required to build a robust model and increase the accuracy and the confidence in the 

developed model. However, the improved SD simulation process for this research can be 

summarised as the following systematic stages which have been described below. 

As shown in Figure 3, the required phases to develop a SD model include four main stages 

which are: 

1. Model conceptualization (problem identification; determining the system boundary; 

creating sub-models from the main causal loop diagram). 

2. Model Simulation (deploying equations for the step-by-step model (systematically); 

model expanding after the first step of verification; Re-conducting the evaluation 

tests; test sub-model; developing the final stock-flow diagrams; model formulation; 

model simulation software).  

3. Model Validation (model test; model verification; model validation). 

4. Model Implementation (recommendation of implementation; implementation plan, 

model implementation, policy design and evaluation). 

However, there is no optimal procedure to build a useful model (Barnabè, 2011). To 

overcome the limitation in the current structure of developing a SD model, the 

following clear and systematic stages can be applied to develop any system dynamic 

model. 
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To overcome the limitation in the current structure to develop an SD model, the following 

clear stages can be applied to develop a system dynamic model. However, variations can be 

found depending on the nature of the problem but generally, the main clear stages of 

modelling are clarified and explained as follow: 

1. Problem Identification (Define simulation objectives) 

 

The available information is a crucial step to build a SD model. From the available data, the 

problem can be identified which reflects the difficulty in the real system. The available data 

includes the current literature review and any mental data that can be acquired by survey 

questionnaires or interviews. The success of SD modelling depends on the identification of 

the importance and purpose of the model (Forrester, 1991). Thus, the first stage to develop a 

SD model is to define the problem and the aim for developing the model ((Aslani, Helo and 

Naaranoja, 2014); (Park, Kim and Jung, 2014)). In this step, the dynamic issue of risks 

impacts of power plants performance will be studied. The effects of various risks on the 

availability, efficiency and operational and maintenance cost of power plants have been 

studied.  For example, 7% of the revenue cash flow is consumed by operation and 

maintenance activities of the plant. 8% of these costs result from unplanned (forced outages) 

maintenance.  
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Figure 3: SD Model Developing Stages 
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The unplanned events will cause a significant impact on plant profitability due to the high 

repairing cost of these activities. Accordingly, the profitability and insurer’s competitiveness 

of an organisation can be enhanced by improving the risk management process. Therefore, 

alleviating risks will reduce the insurance cost and help in the continuity of the operating 

plants (Orme and Venturini, 2011). Unplanned (forced outages) accident will cause of 

revenue loss and damage the business operation reputation and credibility. In addition, assess 

the impact of risk on performance, broad risk measures have been used such as availability, 

probabilistic safety assessment, reliability, component unavailability, total accident 

frequency, downtime period (Mohammad Hadi Hadavi, 2009). In the same context, factors 

that have been affected by risks and impacted on the performance of power plants can be 

efficiency, availability, degradation, and outages (NOH, 2012). 

 

2. Determining the System Boundary (Key Variables) 

Formulation of the dynamic hypothesis including a clear determination of exogenous and 

endogenous variables (determining the system boundary) (Elsawah et al., 2017). After the 

problem is identified, the second step to build the system dynamic model is to determine the 

system boundary. A model boundary summarises the scope of the model by determining the 

endogenous variables, the exogenous parameters and the excluded variables ((Ackermann et 

al., 2007); (Wei et al., 2012); (Kotir et al., 2016); and (Luna-Reyes and Anderson, 2003)). 

The SD can be categorised to exogenous parameters; endogenous variables; and the flow of 

the system behavior with time  (DE LA BARRA, 1989).  

Exogenous variables are the variables “arising from without”  which means from outside the 

system boundary interaction ((Sterman, 2000); (Ackermann et al., 2007)). Exogenous 

parameters are parameters outside the system. These parameters are constant and will not 

change their behavior over time within the model (DE LA BARRA, 1989). Exogenous 

parameters inputs are needed to show how the variables change from time to time (DE LA 

BARRA, 1989). The Exogenous parameters are external parameters that affect different 

subsystems but are not influenced by them (Dastkhan and Owlia, 2014).  

On the contrary, endogenous variables are the dynamic factors that arise within the system 

(DE LA BARRA, 1989) and generating the dynamics of a system through variables 

interaction ((Sterman, 2000); and (Ackermann et al., 2007)). However, if the endogenous 
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variables are more; that indicates the “model generates interesting dynamic behavior from 

within the system’’ (Pasaoglu Kilanc and Or, 2008). 

In SD, the focusing is on endogenous explanations with a small number of exogenous factors. 

There are many mapping system structure tools help in constructing the system boundary and 

represent the causal loop structure such as model boundary diagrams, Causal Loop Diagrams 

(CLD), and Stock and Flow Diagrams (SFD) (Ackermann et al., 2007). However, the hardest 

steps in successful modelling are identifying the system boundary and the degree of 

aggregation (Ackermann et al., 2007). 

 

3. Creating sub-models from the main CLD 

Breaking down the CLD structure to create the first simple model by considering one stock 

and flow while other indicators can be considered as variables or parameters. Risk Indicators 

can Identify potential sources of complexity, determine the critical sources of complexity, 

indicate confidence in risk evaluation. Thus, risk indicators help to acknowledge, reduce, and 

describe complexity in risk assessment (Johansen and Rausand, 2014). CLD can explain how 

flows influence stocks while SFDs give more detailed and quantified the graphically the 

relationships between stocks and flows (Lane, 2016). 

 

4. Model Conceptualization 

After the problem has been identified, the main variables that have a significant effect on the 

performance have been determined (Aslani, Helo and Naaranoja, 2014). The conceptual 

model is the mathematical/verbal representations (mimic) of the problem. Is developed 

through a modelling and analysis stage (Kleijnen, 1995). Model conceptualisation focuses on 

the model scope (Elsawah et al., 2017). Thus, The first stage is the conceptualization process 

stage. This stage includes problem identification; determining the system boundary; and 

creating sub-models from the main causal loop diagram.  
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5. Developing the Stock-Flow Diagrams for each sub-system 

 

SFD is a quantitative model introducing the time dimension by considering the rate of change 

over time (Bouloiz et al., 2013). The Stock-Flow Diagrams are developed, and the equations 

are quantified after the CLD’s have been constructed. Quantitative analysis can be simplified 

using SFD. Simulation the SFD will help in evaluating the system's behavior under multiple 

scenarios (Nabavi, Daniell and Najafi, 2017). CLD’s show the feedback structure of systems. 

SFDs show the physical structure where the material, money and information accumulation 

among the system are tracked ((Ackermann et al., 2007); (Wei et al., 2012); and  (Luna-

Reyes and Anderson, 2003)). Furthermore, the integration process is the process of flows 

accumulating and de-cumulating in stocks (Meyers, 2009). Hence, it is recommended to build 

the SFD after analysing the system (-Bach and Čerić, 2007). However, the importance and 

the magnitude of causal relationships between different variables can be explained through 

the SFD but not in the CLD (Dastkhan and Owlia, 2014). The concept of SDF is focused on 

the understanding of system causality (Nielsen and Nielsen, 2015). 

The complex nonlinearity of systems can be very sensitive to the initial conditions 

(Hämäläinen and Lahtinen, 2016). Changing the state (levels) of the system will change the 

system behavior  (Nielsen and Nielsen, 2015). SFD encourage numerical thinking. These are 

much more difficult for stakeholders to understand thus, training is needed to allow 

stakeholders developing SFD’s  (Elsawah et al., 2017).  

Quantifying SD models variables is a challenge (Howick et al., 2008). Similarly, translating 

the CLD into the numerical model is a challenging iterative process  (Elsawah et al., 2017). 

The SFD starting after the verification step of the CLD. The modeller should identify the 

stocks and flows in the system, then articulate a model that reflects the reality (Breierova, 

2001). In the same context, converting the CLD to SFD provides more quantitative data to 

show the cause-effect relation through various variables in CLD  (Yeo, Pak and Yang, 2013). 

Furthermore, SFD provides more detailed information comparing with the CLD. A dynamic 

hypothesis could be a statement, CLD, or SFD that could be proven if it is correct or wrong 

after a comprehensive investigation. These hypotheses are dynamically depending on the 

interdependency (cause-effect) of various risks indicators (variables) through the whole risk 

model. Conceptualising the dynamic hypothesis is describing of how to structure and policies 

generating the dynamic behavior (Elsawah et al., 2017). 
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However, there is no model can be ideal. According to that; a refinement process should be 

done for all hypothesis (Ranganath and Rodrigues, 2008). In this research, the risk variables 

are obtained depending on various data collection (literature review, focus groups and survey 

questionnaires); as clarified previously. 

 

 

6. Quantifying the relationships of the model by establishing equations for each 

sub-model (Model Formulation) 

SD enabling of building initial system model with starting approximated values. Providing 

that the model structure is well defined. The overall model can be determined based on this 

initial model. SD model is a group of differential algebraic equations developed based on 

experiential and measured data. SD model consists of three elements stock, flow and 

auxiliary variables and constants (Thompson and Bank, 2010).  

SD is designed for understanding dynamic complexity and cause-effect over time. These 

cause-effect relationships are translated into mathematical expression in the SFD (Seng, 

1994). As a consequence, after the relationships (cause-effect) between variables are 

determined, it would be quantified by establishing a simple mathematical expression for all 

variables, stocks, flows and assigned the parameters constants values (Aslani, Helo and 

Naaranoja, 2014). CLD and SFD are translated into equations in a specialised system 

dynamics language (Dyner, 2000). Due to implementing differential equations in SD; system 

dynamic is a quantitative model (Teufel et al., 2013). Understanding systems variables and 

their interactions are very important to analyse the behavior of complex systems, such as 

energy systems (Mutingi, Mbohwa and Kommula, 2017). However, SD does not require 

complex mathematical expression to develop the model (Ahmad and Simonovic, 2000). 

Afterwards, model performance can be checked. In this step, the errors or analogical relations 

can be caught thus, it is easier to rebuilt and complete the model systematically. System 

dynamic can signify these relationships between variables either linear or non-linear. 

Accordingly, this will help in addressing the dynamic influence of various risks on complex 

systems such as power plants. 

After all above steps, the hypothesis can be tested through experiments in the real system or 

data collection ((Ackermann et al., 2007); (Wei et al., 2012); (Kotir et al., 2016); and (Luna-

Reyes and Anderson, 2003)). However, CLD and SFD describe the interrelations between the 
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model variables. SD depends on quantitative data for generating the feedback and building 

the model while qualitative data are utilised at all modelling process levels (Luna-Reyes and 

Anderson, 2003). Similarly, SD is combined with qualitative and quantitative methods where 

it can deal with non-linear, multiple feedback and complex time-varying system problems 

(Xiao et al., 2017). 

 

7. Model Expanding 

After the errors have been checked and corrected, expanding the model with one or more 

feedbacks should also be verified by field experts.  

 

8. Re-conducting the evaluation tests (as clarified in stage 10) 

Depending on the test results, the modeller can determine if the new feedback should be 

inserted, then the tests also repeated until the model is satisfied.  

 

9.   Developing the final Stock-Flow Diagrams 

 

After the important policies are described, this description will be translated into a computer 

simulation model. However, the simulation model does not include complex mathematics 

(Forrester, 1991). The Stock-Flow Diagrams (SFDs) have been developed and the equations 

are formulated depending on the previous stages. Sub-models behavior will be compared 

with information for the real system. This information is collected either from expert 

knowledge (survey questionnaires; focus groups interviews; historical data or literature 

review). A comparison will yield changes, these changes must be adjusted through returning 

to the previous stage to reconstruct the model either by testing the values of the parameters or 

checking the available data. Afterwards, modify the model structure to align between the 

reality of the system behavior and the model behavior.  

 

10. Model Test, Verification  and Validation 

Model calibration is the process to estimate the model parameters to match between 

simulated and observed behavior  (Xi and Poh, 2014). Model verification is the process of 
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checking that the computerised model and its implantations are accurate and satisfy the 

identified purpose (Sargent, 2011); (Li and Lu, 2018). 

Model testing is a vital step of the modelling process and assists in building confidence in the 

developed model (Elsawah et al., 2017). Similarly, the model calibration, direct structural 

tests, and sensitivity analysis are performed to increase the confidence in the model (Xi and 

Poh, 2014). 

Verification and validation focus on model tests ( structure and behavior ) (Elsawah et al., 

2017). Model validation and verification is a critical step of quantifying the confidence, 

predicting the accuracy of the engineering prediction or model calculations and building 

credibility in numerical models thus, supporting the policy-makers of the needed information 

to take high-consequence decisions (Thacker et al., 2002). Verification is the process for 

assuring that the model is correct and agreed with the specifications and assumptions (Min, 

Yang and Wang, 2010). Verification is the process for assuring that the model is correct and 

agreed with the specifications and assumptions ((Min, Yang and Wang, 2010); and (Kleijnen, 

1995)). Model verification is checking if the computer program of the computerised model 

and the related implementation are correct (Sargent, 2013). Verification is the process to 

determine if the conceptual model is correct with the model implementation. The verification 

process is concerned with errors removing and identification by comparing the analytical 

solutions with the numerical solutions (Thacker et al., 2002). 

 

11. Model Simulation 

Simulation models are a powerful tool to test possible organisational changes (Howick et al., 

2008). A simulation model is a mathematical computer model that can be used for policy 

analysis and scenario analysis (Barnabè, 2011). Simulation models represent all the links 

between the model variables by algebraic relationships which determine the behavior of the 

model (Forrester, 1968). Simulation is the only method to expose hidden behavior in the 

model structure and determine the behavior in complicated nonlinear systems, where the 

needed data of the interdependencies and the decision policies converting to a computer 

simulation model by translating the original descriptive structure to computer instructions 

(Forrester, 1991). Simulation is the last stage of hypothesis furthermore, they assert that this 

step is a key role of behavior prediction of the complex systems (Ranganath and Rodrigues, 

2008). 



28	|	P a g e 	
	

 

Simulation is rapidly increased to simulate the system behavior to solve problems and help 

policy-makers in their decision-making process instead of physical experiments in many 

several fields like engineering design, risk analysis, and performance estimation (Sargent, 

2011); (Li and Lu, 2018). Simulation modelling of risk management helps in understanding 

the behavior of systems (Zio, 2018). The decision-making process based on the results of the 

developed model (Sargent, 2011). However, before the simulation run, initial conditions for 

each variable must be defined (Bouloiz et al., 2013).  

 

12. Recommendations for Implementation 

Analysis of the simulation output is the most important step in the validation process of 

models (Min, Yang and Wang, 2010). However, after the model has been validated, 

recommendations would be communicated for the power plants top management team. At the 

implementation stage, the modelling team needs to translate the study vision to the users. In 

this stage, a deep discussion is required. However, understanding the simulation output by 

policy-makers consider as a challenges stage during the modelling process (Luna-Reyes and 

Anderson, 2003). 

13. Implementation Plan 

The modeller can meet the management team in the organisation to draw the plans for the 

recommendations. 

14. Model Implementation 

Implementation: focuses on the model application (Elsawah et al., 2017). The model can be 

implemented depending on the implementation plan. After the validation process of the 

developed model. 

15. Policy Design and Evaluation 

After the model structure and behavior have been constructed and validated, it will be used to 

evaluate and design policies for enhancement. Accordingly, management strategies that will 

meet the long-term operation goals of the system (Park, Kim and Jung, 2014). Policies will 

change by changing the parameters then, a new simulation can be run. The new policy 

behavior will be compared with the old policy behavior to evaluate the most suitable policy. 
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However, SD is a powerful decision support tool for strategic policy testing and selection (Xi 

and Poh, 2014). 

The key aim of SD is policy design. The policy design consists of formulating new strategies, 

decisions and structure but not only changing the values of the parameters. Policy design 

includes re-designing the stock and flow structure, reducing time delays, and changing the 

flow and the quality of information at the decision points and process. Besides, assessment 

for the robustness of policies and their sensitivity to uncertainties in model parameters and 

structure should be done to check the performance under a wide range of alternative scenarios 

(Vogstad et al., 2006). Furthermore, the interactions of different policies should be 

considered (Sterman, 2000). Along with that, the relative desirability of the policies can be 

evaluated by comparing the behavior from the new policy with the behavior from the old 

policy (Forrester, 1992).  

 

4. Partially Application of the Methodology to Develop an Environmental Risks 

Perspective 

4.1 Development of Various risk perspectives to assess risks  

Due to the complexity and larger number of risk categories covered ( nine risk categories), 

SD risk model in this research is breaking down to nine sub-system models to better 

understating of the model  these sub-models are related to risk categories as the following 

but, a case study example for the environmental risk is developed in this research. 

1. Supply chain sub-model: 

From our previous work, BSC-AHP framework shows that the supply chain perspective 

includes two risk indicators production risk and disruption risk. These two risks have a 

significant impact on power plants performance. 

2. Customer/Demand Risk Sub-model: 

These risks may generate from demand forecasting problem or from the policy and & 

regulations. 
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3. Social Risk Sub-model:  

Regarding the social perspective, the impact of energy sources available in social wellbeing 

in terms of employment opportunities, poverty, pollution and health; community 

development and culture; education; and employment opportunities. However, the social 

perspective is influenced by the economic perspective (Vera et al., 2005).  According to 

(Kytle and Ruggie, 2005)  social risk management strategies are extremely complex. Social 

risk occurs when an empowered stakeholder takes up a social issue area and applies 

pressure on a corporation thus, companies will change policies in the marketplace. Social 

risks arise from business decisions. For example, taking a decision to employ workers in a 

developing country without full acknowledgement to international labour standards could 

cause a company to overcome labour rights which cause unwanted public criticism of its 

value chain practices.  Social risks may include lack of motivation for staff, lack of 

innovation, the poor relationship between parties, labour strikes risk and social challenges. 

4. Economic Risk Sub-model: 

Risks which result from inflation and interest rate, supplier price risk (fuel price), the price 

of electricity risk and asset depreciation risk. On the other hand, Organizations utilising 

assets to meet their needs. The implementation of identified risks should be integrated with 

the asset management implementation plan. Organisations should manage their risks at 

many organisational levels. Operating, technical, and enterprise-wide. However, risk 

management is a crucial supporting part of an asset management system. Risk management 

plans can be integrated into the asset management plan or created separately  (International 

Standard Organization, 2012). 

5. Environmental Risk Sub-model: 

Environmental risks are the risks which may result from environmental regulations or human 

toxicity risk, noise impact caused by energy systems, bad odours risk, solid waste risk and 

GHG emissions. (Dastkhan and Owlia, 2014) assert that the environment subsystem is dealt 

with the environmental aspects of the electricity generation system.  

Energy production will produce pressures on the environment which means that the 

environmental dimension is influenced by the economic and social perspectives (Vera et al., 

2005). (Cimren, Bassi and Fiksel, 2010) claim that no integrated model can be found in the 

current literature that links the influence of environment and sustainable energy policies. To 
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compare the effects of the decision-making process in policy design and business 

development plans in the electricity sector, several scenarios are modelled.  These scenarios 

should consider environmental policies (Foley et al., 2010). 

6. Technological Risk Sub-model: 

The technological risk is the potential for technology to cause an effect on company 

performance and cause disruption such as obsolescence risk, improved fuel 

efficiency/efficiency of the combustion risk and sustainable technology innovation risk. 

(Dastkhan and Owlia, 2014) clarify that the technology perspective is dealt with the effect of 

technology development programs on the pollution reduction to be sustainable for the long 

term.  (Aon Risk Solutions, 2017) shows the importance of the technologies/innovation 

where it is added for the risk categories and ranked it as 20 where it is expected to be number 

10 globally and in the second rank for the technology industry. 

7. Internal and Operational Risk Sub-model: 

Internal and operational risks are the risk that is related to the internal and operational 

business process such as technical risk, material or equipment quality risk, start-up cost risk, 

operating cost risk, and scarcity of resources risk (Shortage of materials and equipment). 

Operational risks cover regulators and industry and are difficult in measuring and managing 

(Bodnar, Marston and Hayt, 1998). 

8. Human Resources Risk Sub-model: 

Risks that may occur due to loss of key personnel, poor labour productivity, poor training, 

sick leave, IT infrastructure (scarcity of skills/technique) and inappropriate employee's safety. 

(Aon Risk Solutions, 2017)  assert that if the companies haven't a motivation procedure to 

their employees that will lead to falling behind the competition.  risk analysis is affected more 

by the organisational factors than behavioural and physical performances. Furthermore, the 

dynamic nature as human-machine interaction. The human contribution to risk assessment is 

a crucial and integral part of risk analysis. In the last 2 decades, a dramatic human 

contribution to accident development has been increased with 70%–80% (Cacciabue, 2000) . 

Along with that, the individual human behavior is impacted by the environment 

(Komljenovic, Loiselle and Kumral, 2017). Complexity and uncertainties create risks. 
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Complexity is a crucial factor in influencing organisations.  To better understanding and 

managing of complexity, top management must recognise how employees see it at all levels 

thus the added value is retained while the unadded values are removed. Thus, the complex 

dynamics of organisations are incorporated into management thinking (Gorzeń-Mitka and 

Okręglicka, 2015) 

9. Management Risk Sub-model: 

These risks are related to top management decisions thus, various management risks can 

cause a significant effect on the company performance, some example of these risks are 

partnership relationship risk, inappropriate organisational response to changing environment 

risk, inappropriate organisational structure risk, ineffective integrating and managing 

enterprise resources risk, unclear strategy for achieving organisational objectives, poor 

coordination, mismatch between organisational strategy and culture, interaction between 

stakeholders and Information sharing problems. The key source of risk today is the 

organization itself (Komljenovic, Loiselle and Kumral, 2017) .  

Power plants are a complex system which is illustrated by a set of nonlinearity equations and 

multiple feedback loops which will change system behaviour over time. These nine 

categories of risks interact with each other and will generate feedbacks loops. To assess these 

risks and take appropriate decisions, companies need to develop a clear understanding of this 

complex system. (Ang, Choong and Ng, 2015) describe how some risk affects each other, for 

example, exchange rates and purchasing power of certain currencies play a key role to 

determine how much payment should people and country pay for energy import. Prices 

changes of fuel will cause problems in securing energy which in turn affect the decision 

maker's ability for planning in the short term.   

On the other hand, (NOH, 2012) has been identified the factors that have been affected by 

risks and impacted on the performance of power plants. These factors are efficiency, 

availability, degradation and outages.  In the same context,((Oyedepo et al., 2014) ; (Raja, 

2006); (Wai Foon and Terziovski, 2014)) demonstrate that power plants performance (ex. 

efficiency, reliability) has socio-economic importance on the company operating the plant 

and the nation. In addition, they confirm that the top measures for power plants performance 

are efficiency, reliability, the capacity of the plant, plant factors (utilisation factor, capacity 
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factor, and load factor), availability, generation unit cost, fuel cost per unit generation staff 

productivity, breakdown maintenance, etc. 

However, in this research three factors are utilised to study the power plant performance 

which affected by various risks. These factors are availability, efficiency and operational and 

maintenance cost. Thus, the developed SD methodology will help to understand how various 

risks affect the power plants performance (availability, efficiency and operational and 

maintenance cost) in the long term.  

4.2 Apply the Methodology to the Environmental Perspective: 

The following section explains the developed SD methodology which can be applied to 

assess and model SD risk model. 

To build the SD model for assessing the environmental risks, the problem is identified then 

the system boundaries are addressed as shown in Table 1. Accordingly, the CLD has been 

created for the environmental sub-model as revealed in Figure 4. 

Table 1 : Risk Factors (Endogenous and Exogenous) affecting the strategic Environmental 
Perspective and define the system boundaries 

Code  Endogenous Variable 
ER1 Environmental Risks  
ER2 Environmental Uncertainties 
ER3 Environmental Certainties 
ER4 Availability Risk 
ER5 Outage Hours  
ER6 Power Plants Efficiency risk 
ER7 Technical Risks 
ER8 Risk of Operational and Maintenance Cost 
ER9 Aggravation of Operational and Maintenance 

Cost 
ER10 Waste Handling Risk 
ER11 Noise Impact Risk 
ER12 GHG Emissions 
ER13 Lost Time Injuries Risk 
ER14 Bad Odours Risk 
ER15 Soil Pollution Risk 
ER16 Solid Waste Risk 
ER17 Human Toxicity Risk 
ER18 Industrial Water Reuse Risk 
ER19 Accident Fatalities Risk 



34	|	P a g e 	
	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 shows the exogenous and endogenous variables for the environmental sub-model, 

depending on this table the cause-effect and interrelation between various variables can be 

utilised to create the CLD. 

ER20 Recycling of Treated Water Risk 
Code  Exogenous Variable 
ER21 Disruption Risks 
ER22 Mortality Risk 
ER23 Environmental Regulations Risk 
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Figure 4 : Causal Loop Diagram of the Environmental Risks 

 

As depicted in Figure 4, the environmental risks in power plants will be generated from 

various variables, these variables are interconnected through each other. Cause-effect though 

social challenges, disruption risk, production risk, poor coordination problems, mortality risk, 

environmental regulations, waste handling, noise impact, GHG emissions, lost time injuries, 

bad odours risk, soil pollution, solid waste, human toxicity, industrial water reuse risk, 

accident fatalities, and recycling of treated water risk. These risks affect the power plant 

performance (availability of power plant, the efficiency of the power plant, and the 

operational and maintenance cost). However, the results of the developed model will be 

explained in detail in future paper.  

 

Environmental risks are the risks of the environmental systems and to human health (Chen et 

al., 2011). The environment subsystem is dealt with the environmental aspects of the 
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electricity generation system (Dastkhan and Owlia, 2014). The complexity of environmental 

issues and decision making have a group of challenges for utilising SD as a methodology for 

modelling environmental problems  (Elsawah et al., 2017). Energy production will produce 

pressures on the environment which means that the environmental dimension is influenced by 

the economic and social perspectives (Vera et al., 2005). However, no integrated model can 

be found in the current literature that links the influence of environment and sustainable 

energy policies (Cimren, Bassi and Fiksel, 2010). However, to compare the effects of the 

decision-making process in policy design and business development plans in the electricity 

sector, several scenarios are modelled. These scenarios should consider environmental 

policies (Foley et al., 2010). 

 

5. Discussion and Conclusion 

In the created CLD for the environmental sub-model, the interrelations between various 

environmental risk variable impact the availability, efficiency, and operational and 

maintenance cost of the power plant are described. From the system boundary in Error! 

Reference source not found.1, the CLD is created and presented in Figure 4. Environmental, 

social, and internal and business process risks interact together. The influences of lost time 

injuries, GHG emissions, solid waste risk, noise risk, soil pollution, bad odour risk affect the 

performance of a power plant. The interaction between solid waste risk, soil pollution risk, 

bad odour risk, lost time injuries, accident risk and the environmental uncertainties will lead 

to producing the environmental, health and safety risks. These risks affect the availability, 

efficiency, and operational and maintenance cost risks.  This paper developed clear and 

systematic stages to develop an SD model for non-technical risks in power plants. 

Understanding these risks is a vital step to manage the risk.  
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