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ABSTRACT This paper investigates the interaction phenomena of the coupled axons while the mutual
coupling factor is presented as a pairwise description. Based on the Hodgkin-Huxley model and the coupling
factor matrix, the membrane potentials of the coupled myelinated/unmyelinated axons are quantified which
implies that the neural coupling can be characterised by the presented coupling factor. Meanwhile the
equivalent electric circuit is supplied to illustrate the physical meaning of this extended model. In order
to estimate the coupling factor, a data-based iterative learning identification algorithm is presented where
the Rényi entropy of the estimation error has been minimised. The convergence of the presented algorithm is
analysed and the learning rate is designed. To verified the presented model and the algorithm, the numerical
simulation results indicate the correctness and the effectiveness. Furthermore, the statistical description of the
neural coupling, the approximation using ordinary differential equation, the measurement and the conduction
of the nerve signals are discussed respectively as advanced topics. The novelties can be summarised as
follows: 1) the Hodgkin-Huxley model has been extended considering the mutual interaction between the
neural axon membranes, 2) the iterative learning approach has been developed for factor identification using
entropy criterion, and 3) the theoretical framework has been established for this class of system identification
problems with convergence analysis.

INDEX TERMS Neural coupling analysis, extended Hodgkin-Huxley model, equivalent electric circuit,
information entropy, iterative learning, convergence analysis, statistical description, kernel density
estimation.

I. INTRODUCTION
The interaction widely exists between the axons in nerve
fibres. For example, the ephaptic interaction phenomena is
known to exist in vivo and is not insignificant [1]. However,
most of the existing results did not investigate the coupling
problem or ignore this interaction. Basically, most of the
existing results have been developed based on thewell-known
Hodgkin-Huxley model [2]. Almost all of these results, such
as Frankenhaeuser-Huxley model [3], focus on the response
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of the individual axons in order to describe the mechanism
of the membrane potential. On the other hand, the neural
coupling in brain is investigated in [4] however these cou-
pling analysis is mostly about the cognitive- emotional-based
without the mechanism description in neural-electrical sense.
Moreover, the neuron and electrode interaction has been con-
sidered in [5] where an equivalent electric circuit is devel-
oped. This circuit is difficult to extend to multi-axon nerve
fibres and no approach is taken into account for the parameter
identification in this circuit. Similarly, a mathematical study
of the nerve fibre interaction is given in [6] in simplified
geometrical format which is also difficult to generalise.
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Is it possible to use a similar mechanism descriptive
approach to characterise these couplings between peripheral
nerve axons? Tying to answer this question forms the purpose
of this paper.

There is no existing solution to characterise these cou-
plings which is the main challenge of this research. There-
fore, the mutual coupling factor is presented in this paper
to describe the axon-to-axon interaction which means that
the neural couplings can be characterised if the mutual cou-
pling factor can be estimated. However, due to the strong
nonlinearity and randomness, the identification problem is
very difficult to solve even the description of the interaction
can be introduced by coupling factors. Although some algo-
rithms are given in [7], these algorithms cannot be applied
directly. Motivated by the iterative learning control [8]–[10],
the iterative learning identification [11], [12] can be consid-
ered as a possible approach to achieve the objective where
the batch-based information can be used to overcome the
nonlinearity of the model. Notice that the challenge of this
research also brings the benefits not only for the theoretical
research but also for the neural applications. Based on the
presented characterisation, the interaction can be analysed
using the numerical approach and the performance of the
neural applications can be enhanced, such as neural prosthesis
design and development [13], [14].

Following the discussion above, the contents and the nov-
elties of this paper can be summarised as follows: At first,
a descriptive model for the interaction between the coupled
axons has been presented which is motivated by the Hodgkin-
Huxley equation. The mutual coupling factor matrix has been
introduced into this model which can be adopted as an exten-
sion of any exiting membrane potential models. Based upon
this approach, the couplings can be described and charac-
terised once the mutual coupling factor is known. Secondly,
a data-based iterative learning identification algorithm is pre-
sented to estimate the mutual coupling factors if these factors
are unknown, where the entropy-based performance criterion
is proposed. Information entropy is a mathematical descrip-
tion of the randomness which is widely used for performance
optimisation [15], [16] and filtering design [17], [18]. To ver-
ify and analyse this presented algorithm, the convergence has
been demonstrated by both numerical simulation and analytic
proof. As the last part of this paper, the further discussions are
given. The statistical description of the interaction is briefly
introduced using the similar approach. The measurement,
conduction and simplified approximation of the nerve signals
are presented via measurement equation, partial differential
equation (PDE) and ordinary differential equation (ODE),
respectively.

Then the rest of this paper is organised as follows:
In Section II, a simplified example is given to illustrate the
interaction between two coupled axons using the conductance
and Hodgkin-Huxley model, which leads to the equivalent
electric circuit. Following the this description, the generalised
extended Hodgkin-Huxley model has been presented for n
coupled axons, where the mutual coupling factor has been

introduced as the characterisation of the neural interaction.
The entropy-based iterative learning algorithm is presented
in Section III. Particularly, the performance criterion, algo-
rithm procedure and convergence analysis are given in this
section. Section IV shows the numerical simulation results
based on the presented model and algorithm. All these results
indicate that the presented algorithm can be applied to find
out the mutual coupling factor and further characterise the
axon-to-axon couplings. Some useful discussions are given
in Section V. In the end, Section VI concludes the novelties
and contributions of this paper.

There are some symbols will be used in the modelling and
identification, therefore the key symbols are demonstrated by
Table 1 in order to enhance the readability of the paper.

TABLE 1. Table of key symbols.

II. EXTENDED HODGKIN-HUXLEY MODEL
A. A SIMPLIFIED DESCRIPTION OF TWO COUPLED AXONS
The simplest situation of the neural interaction can be
described by two different membranes which belong to two
nearby coupled axons. Ignoring connective/interstitial tissue
for now, the extracellular space between these two axons
can be described as a simple conductance. Therefore the
interaction current would be driven by the voltage between
the respective external membrane potentials. Combining the
Hodgkin-Huxley model with this interaction description,
the model of two coupled membranes can be obtained as
follows:

cm1

∂Vm1

∂t
= −Iion1 − g12

(
Vout1 − Vout2

)
cm2

∂Vm2

∂t
= −Iion2 − g21

(
Vout2 − Vout1

)
(1)

where Vm denotes the membrane potential, g stands for the
conductance and Vout is the external membrane potential.
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Note that g12 = g21, while the Iion is the current of the potas-
sium, sodium and leakage channels. Moreover, the currents
of ionic channels can be further expressed by the following
equations:

Iioni = INa,i + IKa,i + Ileak,i, i = 1, 2 (2)

where

INa,i = m3
i
(
Vmi , t

)
hi
(
Vmi , t

)
ḡNa

(
Vmi − VNa

)
IKa,i = n4i

(
Vmi , t

)
ḡKa

(
Vmi − VNa

)
Ileak,i = ḡleak

(
Vmi − Vleak

)
(3)

Notice that n,m and h are non-linear functions of Vm and time
t which is illustrated in [2]. The model can be extended to n
axons based on the two-axon form. However, the interaction
is mutual and we can combine multi-axon into one virtual
axon [19], then we use two-axon model in this paper to
indicate the methodology without loss of generality.

B. THE EQUIVALENT ELECTRIC CIRCUIT
The equivalent electric circuit is illustrated by Fig.1 for three
axons, for generality. Based on the above discussion for two
coupled membranes, it has been shown that the conduc-
tance exists between each two coupled axons. Then it can
be claimed that these interactions can be generalised using
the pairwise description, in other words, the neural coupling
of the axons can be further characterised by the format of
symmetric conductance matrix.

FIGURE 1. The description of the extended membrane model with
interaction. (a)The chosen three coupled axons in the multi-axons nerve
fibres; (b)The simplified transverse diagram according to (a); (c)The
equivalent electrical circuit with mutual coupling factors for 3 coupled
axons based on Hodgkin-Huxley model.

Note that the conductance matrix in this equivalent electric
circuit is considered as real constants which means that the
dynamic of the interaction has been neglected and the con-
ductance is time-invariant.

C. GENERALISED COUPLING DESCRIPTION OF n AXONS
Based upon the presented extended Hodgkin-Huxley model,
the generalised model can be obtained naturally for n cou-
pled membranes using the pairwise conductance. Therefore,
the generalised model for n coupled membranes is given as
follows:

cm1

∂Vm1

∂t
= −Iion1 −

n∑
j=1

g1j
(
Vout1 − Voutj

)
...

cmn
∂Vmn
∂t
= −Iionn −

n∑
j=1

gnj
(
Voutn − Voutj

)
(4)

Thus, the model can be further rewritten in the following
compact form using the vector expression:

V̇ = C̄
(
−Ī −4Vout

)
(5)

where

V =
[
Vm1 , . . . ,Vmn

]T
Vout =

[
Vout1 , . . . ,Voutn

]T
Ī =

[
Iion1 , . . . , Iionn

]T (6)

C̄ = diag
{

1
cm1

, . . . ,
1
cmn

}
(7)

4 =


γ1 −g12 · · · −g1n
∗ γ2 · · · −g2n
...

...
. . .

...

∗ ∗ · · · γn

 (8)

with γi =
n∑
j=1

gij − gii, i = 1, . . . , n.

Notice that 4 can be further used to characterise the cou-
pling, then we can define 4 as the mutual coupling factor
matrix where ∗ denotes the symmetric element.

Moreover, the relationship between the external membrane
potential and the trans-membrane potential can be given by
the following definition.

V = Vin − Vout (9)

where Vin denotes the internal membrane potential.
Due to the fact that the internal membrane potential is

dominated by the applied stimulation current Iap, we can
claim that there exists a non-linear function as follows:

Vin = f
(
V , Iap

)
(10)

Thus, the complete description of the mutual interaction
between the coupled nerve fibres is as follows:

V̇ = C̄
(
−Ī −4f

(
V , Iap

)
+4V

)
(11)

Furthermore, to simplify the expression, this model above
can be expressed as a general non-linear differential equation
with Vm, 4 and Iap.

V̇ = f̄
(
V , 4, Iap

)
(12)
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Based on Eq.(12), the coupling can be characterised by
the mutual coupling factor 4 identification using the exper-
imental data of Vm and Iap. Since the experimental data set
is always described by discrete point set, the discrete-time
format of Eq.(12) can be approximated by

Vk = Vk−1 + ts f̄
(
Vk−1, 4, Iap

)
(13)

where k and ts stand for the sampling index and sampling
time, respectively.
Remark 2.1: The current exchange causes the interactions

between the axons, where we suppose that the escape current
can be ignored then the current from axon one will fully
transmit to axon two. As a result, it can be described as a
symmetric form in the formulation.

III. COUPLING CHARACTERISATION
A. ENTROPY-BASED PERFORMANCE EVALUATION
Basically, we can characterise the interaction for n coupled
axons if the membrane potential signals of these n individual
axons can be measured and collected. In practice, the mea-
surement noise cannot be avoided once the electrode interface
has been taken into accounts, then the measured membrane
potential can be formulated by

V̄k = Vk + ek (14)

where e denotes the error and the noise of the measurement.
Note that it is impossible to accurately model all the axons
in the nerve fibres therefore the measured signal of n axons
would be affected by some other un-modelled axons. These
influences cannot be treated as the disturbance then we con-
clude them as the error of the measurement.

Suppose that the initial value of the mutual coupling factor
is selected properly as 4̂, then the estimated measured mem-
brane potential can be expressed as

ˆ̄Vk = ˆ̄Vk−1 + ts f̄
(
ˆ̄Vk−1, 4̂, Iap

)
(15)

Comparing to the actual measured data, the estimated error
can be further expressed by

Ṽk
(
4̂
)
= V̄k − ˆ̄V k

(
4̂
)

(16)

Actually, the initial value of 4̂ can be selected as any real
matrix however a proper initialisation can reduce the time of
identification.

Note that we can obtain a data set of the estimated error
with k elements if we consider this operation as one batch.

Ṽd
(
4̂d

)
=

[
Ṽ T
d,1

(
4̂d

)
, . . . , Ṽ T

d,k

(
4̂d

)]T
, d = 1 (17)

Similarly, we can have d batches of the data set if we repeat
this operation for d times. Therefore, the objective of this
algorithm is to find out the optimal coupling factor matrix
4̂d to minimise the estimated error using the data vector with
d-th batch.

Since the data set is a vector with the error and zero-mean
noise of the measurement, the statistical performance crite-
rion is considered as the cost function, however this error data

set cannot be assumed to obey Gaussian distribution. Due to
the nonlinearity of the mutual couplings among the axons,
the distribution of the measured membrane potentials will
be non-Gaussian variables which leads that the estimation
error sets would also be non-Gaussian. Therefore, motivated
by [20], we use the following mathematical expectation and
quadratic Rényi entropy criterion [21] to deal with the possi-
ble non-Gaussian stochastic distribution.

Jd = E
(
Ṽ T
d

(
4̂d

)
Ṽd
(
4̂d

))
+ H

(
Ṽd
(
4̂d

))
(18)

where

H
(
Ṽd
(
4̂d

))
= − logb

∫
γ 2
d (αd )dαd (19)

while γd and αd denote the probability density function of the
d-th batch estimated error set and the random variable of this
data set, respectively. In particular, the entropy is equivalent to
variance for the Gaussian random variable and the associate
probability density function will become sharper with the
attenuation of the entropy [22].

Based on the concept of the information potential [21],
the performance criterion above can be rewritten as the fol-
lowing expression if the base of the logarithm function is
selected as 0 < b < 1.

Jd = E
(
Ṽ T
d

(
4̂d

)
Ṽd
(
4̂d

))
+ P

(
Ṽd
(
4̂d

))
(20)

where the information potential is given as

P
(
Ṽd
(
4̂d

))
=

∫
γ 2
d (αd )dαd (21)

Since the selected logarithm function is monotone decreas-
ing function, the minimum can be obtained if the transformed
performance criterion is minimised.

B. ITERATIVE LEARNING IDENTIFICATION
Next, the iterative learning approach is applied to estimate the
coupling factor matrix 4 based on the collected data and the
presented model.

4̂d = 4̂d−1 − εd
dJd−1
d4d

∣∣∣∣
4d=4̂d−1

(22)

where εd > 0 stands for the step of the gradient descent.
Thus the identification strategy can be illustrated by Fig. 2.
Basically, the step is also the learning rate of the iterative
algorithm, the εd should be chosen properly to guarantee the
convergence of the iterative learning algorithmwhich is going
to be analysed in the next subsection.

In practice, the derivative can be replaced by the difference
then the formula can be rewritten as

4̂d=4̂d−1 − εd
Jd−1−Jd−2
4̂d−1 − 4̂d−2

, s.t.
∥∥∥4̂d−1−4̂d−2

∥∥∥ ≥ δ
(23)

where δ > 0 denotes the pre-specified threshold.
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FIGURE 2. Block diagram of the presented iterative learning strategy.

Note that the probability density function can be estimated
by the data directly using the kernel density estimation [23]
as follows.

γ̂d =
1

kh̄

nk∑
i=1

Gσ

(
αd − Ṽd,i

h̄

)
(24)

where Ṽd,i denotes the signal element of the vector Ṽd . Based
upon this approximation, the information potential can also
estimated by

P
(
Ṽd
(
4̂d

))
=

1(
kh̄
)2 nk∑

i=1

 nk∑
j=1

Gσ

(
Ṽd,j − Ṽd,i

h̄

)2

(25)

Thus, the value of the performance criterion can be cal-
culated for each batch, where Gσ and h̄ denote the Gaussian
kernel function and binwidth, respectively. Particularly,Gσ is
selected as follows.

Gσ (x) =
1
√
2π

exp
(
−x2

2σ 2

)
(26)

C. ALGORITHM ANALYSIS
Before the presented algorithm is implemented, the essential
analysis has to be given where the most important analysis
should be the convergence of the presented algorithm.

It has been shown that the performance criterion is formed
by mean value and the entropy where the entropy is approx-
imated by kernel density estimation. Then we firstly analyse
the sub performance criterion only with entropy, which can
be expressed as follows:

Jsub,d = H
(
Ṽd
(
4̂d

))
(27)

Based on the kernel density estimation and this sub perfor-
mance criterion, the following Lemma can be obtained.
Lemma 3.1: Using the sub performance criterion (27) and

the iterative learning formula (22), the convergence can be
guaranteed if there exists a learning rate εd such that the
following sign equation holds.

sign (εd ) = −sign
(
sup

(
Ṽd−1

)
sup

(
∂Jd−1
∂4d−1

))
(28)

where sign denotes the sign function.
Proof: This proof is given in Appendix A.

Similar to Lemma 3.1, let’s consider the mean value part of
the performance criterion as the sub performance criterion.

Jsub,d = E
(
Ṽ T
d

(
4̂d

)
Ṽd
(
4̂d

))
(29)

Then the following lemma can be obtained.
Lemma 3.2: Using the sub performance criterion (29) and

the iterative learning formula(22), the convergence can be
guaranteed if there exists a learning rate εd such that the
following inequality can be satisfied.

ĀdεTd εd + 2B̄dεd + C̄d < 0 (30)

where the coefficients are defined as follows:

Ād = t2s C̄
T C̄

k−1∑
j=1

j∑
i=1

((
dJd−1
d4d−1

(
fd,i − Vd,i

))T
×
dJd−1
d4d−1

(
fd,i − Vd,i

))
(31)

B̄d = t2s C̄
T C̄ITd,i

k−1∑
j=1

j∑
i=1

(
dJd−1
d4d−1

(
Vd,i − fd,i

))

− ts ˆ̄V T
d,1C̄

k−1∑
j=1

j∑
i=1

(
dJd−1
d4d−1

(
Vd,i − fd,i

))

− tsC̄
k−1∑
j=1

j∑
i=1

V̄ T
j+1

(
dJd−1
d4d−1

(
fd,i − Vd,i

))

− t2s C̄
T C̄

k−1∑
j=1

j∑
i=1

((
fd,i − Vd,i

)T
×
dJd−1
d4d−1

4d−1
(
fd,i − Vd,i

))
(32)

C̄d = t2s C̄
T C̄

k−1∑
j=1

j∑
i=1

(
ĪTd,i Īd,i + 2ITd,i4d−1

(
fd,i − Vd,i

))

− 2ts ˆ̄V T
d,1C̄

k−1∑
j=1

j∑
i=1

(
Īd,i +4d−1

(
fd,i − Vd,i

))
+ t2s C̄

T C̄
k−1∑
j=1

j∑
i=1

((
fd,i − Vd,i

)T
4̄
(
fd,i − Vd,i

))

− 2tsC̄
k−1∑
j=1

j∑
i=1

V̄ T
j+1

(
Īd−1,i +4d−1

(
fd−1,i − Vd−1,i

)
−Īd,i −4d−1

(
fd,i − Vd,i

))
+ k ˆ̄V T

d,1
ˆ̄V d,1 (33)

while 4̄ = 4T
d−14d−1.

Proof: This proof is given in Appendix B.
Replacing the sub performance criterion by the presented

performance criterion, the following theorem is given.
Theorem 3.3: Using the iterative learning identifica-

tion(22), the convergence of the estimated mutual coupling
factor can be guaranteed if there exists a learning rate εd such
that conditions (28) and (30) can be satisfied.
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Proof: For any d-batch, the presented iterative learn-
ing identification algorithm is convergent if the following
inequality hold.

Jd − Jd−1 < 0 (34)

which implies that the performance criterion strictly decrease
with the increase of the iteration.

Substituting the formula of the performance criterion,
we have

E
{
Ṽ T
d

(
4̂d

)
Ṽd
(
4̂d

)
− Ṽ T

d−1

(
4̂d−1

)
Ṽd−1

(
4̂d−1

)}
+P

(
Ṽd
(
4̂d

))
− P

(
Ṽd−1

(
4̂d−1

))
< 0 (35)

Note that this inequality condition can be satisfied if the
following two inequalities hold at the same time.

Ṽ T
d

(
4̂d

)
Ṽd
(
4̂d

)
−Ṽ T

d−1

(
4̂d−1

)
Ṽd−1

(
4̂d−1

)
< 0 (36)

P
(
Ṽd
(
4̂d

))
− P

(
Ṽd−1

(
4̂d−1

))
< 0 (37)

Note that the second inequality holds if the sign of the
learning rate εd can be selected by Lemma 3.2 due to the
equivalence of the information potential criterion and entropy
criterion. Meanwhile the first inequality can be satisfied
directly by Lemma 3.1. Therefore the proof is completed
combining the conditions of the presented Lemmas.
Based on this analysis, the procedure of the presented

iterative learning algorithm can be illustrated by the following
flow chart.
Remark 3.1: If we only have the measured data set,

the dimension of the model should be confirmed before esti-
mating mutual coupling factor, i.e. the number of the axons
in the model. The optimal dimension can be approximated
following mutual information criterion [24], however we can
characterise the interaction even if the dimension of themodel
is improper. The characterisation would be reflected by the
value of the estimated mutual coupling factor which would
be affected by the pre-specified number of the axons in the
model.
Remark 3.2: In practice, as the step is fixed for each batch,

the selection of the step can be small for the initial value. Then
the convergence can be guaranteed for re-selection following
condition (30). Otherwise, the unconverging batch can be
abandoned.

IV. NUMERICAL SIMULATIONS
A. NEURAL COUPLING DEMONSTRATIONS
To verify the performance of the presented model, a numer-
ical simulation is given in this section. Firstly, we choose
the standard Hodgkin-Huxley model with the appropriate
parameters [2]. Without loss of generality, we considered the
simulation as three axons while the membrane potentials of
these axons are denoted byVm1 ,Vm2 andVm3 . The objective is
to show the responses of the coupled axonswhenwe stimulate
only one of the axons. Note that the simulation is based on
the non-clinical data, where the key point of this section is to
validate the presented identification algorithm.

FIGURE 3. The flow chart for the presented iterative learning
identification algorithm.

FIGURE 4. The responses of the coupled axons.

To start the simulation, the stimulus is set as an intracellular
current density of 0.1mA/cm2 and the duration is 0.2 ms,
which is similar to the settings in [25]. When this stimulus is
applied to axon 1, the responses of axon 2 an axon 3 are shown
in the following figure, while the mutual coupling factors are
selected as g12 = 0.00055, g13 = 0.0002 and g23 = 0.0005.
From Fig.4, it is clear that if the coupling factor is small,

which means that axon 1 has a very small effect on axon 2,
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FIGURE 5. The responses of the coupled axons.

FIGURE 6. The error curves of the estimation for 4 different batches.

then axon 2 cannot produce an action potential. If the cou-
pling factor g12 = 0.001, Fig.5 indicates that the action
potential can be formed if the coupling factor is big enough
even if there is no artificial stimuli on axon 2 and 3.

B. COUPLING FACTOR IDENTIFICATION
Following the simulation results above, a simple example
is investigated as a numerical illustration where three cou-
pled axons are considered. Then, as the main result of this
section, the iterative learning algorithm is applied for a known
Hodgkin-Huxley model with a fixed coupling factor matrix
g12 = 0.001, g13 = 0.0002 and g23 = 0.0005. Based upon
the presented algorithm, the error data of the estimation can
be collected for each batch, which is shown in Fig. 6 and the
associate value of the performance criterion is demonstrated
by Fig. 7. Both of these results show that the presented
identification algorithm is convergent for the interaction char-
acterisation. In the end, Fig. 8 the curve of the estimated
coupling factor shows that the estimated coupling factors are
very close to the pre-specified coupling factors.

Using this numerical example, we validate the presented
algorithm. In practice, the neural interaction among axons can

FIGURE 7. The decrease of the performance criterion.

FIGURE 8. The batch-based estimated mutual coupling factor.

be characterised following this algorithm with the measured
experimental data.

In particular, the results of using least-square method have
been demonstrated in [26] as a comparison. The investi-
gated model is of strong non-linearity, the coupling factor
identification is sensitive based on the real-time data pro-
cess. Alternatively, we can use evolutionary algorithms and
deep learning network to train the model which lead to the
good results if the computational workload can be ignored.
Furthermore, these algorithms cannot guarantee the conver-
gence in theory sense. The presented algorithm considered
the characteristics of the axon membrane and the theoretical
analysis has been developed in terms of convergence which
is different from other data-based evolutionary algorithm and
AI algorithms.

V. DISCUSSIONS
A. THE MEASUREMENT OF NERVE SIGNALS
It is very difficult to measure each individual axons, mostly
the neural signal data we collected is the integral of many
axons. Considering the measurement techniques, such as
voltage/current clamping [27], extracellular electrode [28],
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uncertainties between various data batches, the process can
be further modelled following Markov jump form, then the
adaptive strategy for batch-to-batch learning can be extended
using the framework in [33], [34].

APPENDIX A
PROOF OF LEMMA 3.1

Proof: According to property of the convergence,
the sub performance criterion has to be decrease function
along with the batches d , which leads to

H
(
Ṽd
(
4̂d

))
< H

(
Ṽd−1

(
4̂d−1

))
(51)

Then we have

logbP
(
Ṽd
(
4̂d

))
> logbP

(
Ṽd−1

(
4̂d−1

))
(52)

which means that

logb

 P
(
Ṽd
(
4̂d

))
P
(
Ṽd−1

(
4̂d−1

))
 > 0 (53)

Since b can be selected as 0 < b < 1, the inequality can
be rewritten by

P
(
Ṽd
(
4̂d

))
P
(
Ṽd−1

(
4̂d−1

)) < 1 (54)

Notice that the information potential is always
non-negative, then the inequality can further expressed by

P
(
Ṽd−1

(
4̂d−1

))
> P

(
Ṽd
(
4̂d

))
≥ 0 (55)

which implies that the convergence should be resulted in the
following condition.

∂P
(
Ṽd−1

(
4̂d−1

))
∂d

< 0 (56)

Substituting the kernel density estimation, then we have

∂

∂d

 1(
kh̄
)2 k∑

i=1

 k∑
j=1

Gσ

(
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=
2(
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j=1
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(
Ṽd,j − Ṽd,i
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)

×
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j=1

∂

∂Ṽd
Gσ

(
Ṽd−1,j − Ṽd−1,i

h̄

)
∂1

∂d


=

2

σ 2
√
2π
(
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k∑
i=1


k∑
j=1

Gσ

(
Ṽd−1,j − Ṽd−1,i

h̄

)

×

 k∑
j=1

exp

−
(
Ṽd−1,j − Ṽd−1,i

)2
2
(
σ h̄
)2

1∂1
∂d


 (57)

where

1 = Ṽd−1,j − Ṽd−1,i
∂1

∂d
=
∂Ṽd−1,i
∂d

−
∂Ṽd−1,j
∂d

(58)

Note that Ṽd−1,i and Ṽd−1,i denote the elements of the
vector Ṽd−1. Thus there always exist two real positive number
Md and Nd such that the following inequalities hold.

∂1

∂d
≤ sup

(
∂Ṽd−1
∂d

)
− inf

(
∂Ṽd−1
∂d

)

< Md sup

(
∂Ṽd−1
∂d

)
(59)

1 ≤ sup
(
Ṽd−1

)
− inf

(
Ṽd−1

)
< Nd sup

(
Ṽd−1

)
(60)

where sup (·) and inf (·) stand for the supremum and infimum
operations.

Moreover, since the estimation error is bounded and dom-
inated by the estimated coupling factor, we can also claim
that there exists a real positive number M̄d then the following
inequality holds.

∂Ṽd−1
∂d

≤ M̄d
∂4d−1

∂d

∣∣∣∣
4d−1=4̂d−1

(61)

Using the iterative learning formula (22), the inequality
above can be rewritten as

∂Ṽd−1
∂d

≤ εdM̄d
∂Jd−1
∂4d−1

(62)

Substituting Eq.(59) - Eq.(62) into Eq.(57), the following
condition can be obtained to satisfy the inequality (57) since
Gσ (·) is Gaussian distribution function.

N̄d sup
(
Ṽd−1

)
sup

(
εd
∂Jd−1
∂4d−1

)
< 0 (63)

where N̄d = NdMdM̄d > 0 and the condition (28) can be
obtained which completes the proof.

APPENDIX B
PROOF OF LEMMA 3.2

Proof: According to property of the convergence,
the sub performance criterion needs to be decrease function
along with the batches d , which leads to

E
(
Ṽ T
d

(
4̂d

)
Ṽd
(
4̂d

)
−Ṽ T
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This inequality can be restated by
ˆ̄V T
d
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< 0 (65)

Notice that ˆ̄V T
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(
4̂d−1

)
ˆ̄V d−1

(
4̂d−1

)
is always positive

then the inequality above can be further expressed as
ˆ̄V T
d

(
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)
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< 2V̄ T
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(
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The estimated membrane potential vector can be further
expressed by the following equation substituting the discrete-
time format of the model.

ˆ̄V d

(
4̂d

)
=

[
ˆ̄V
T

d,1,
ˆ̄V
T

d,1 + ts f̄
T
(
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)
, . . . ,

ˆ̄V
T
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f̄ T
(
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)]T
(67)

This expression results in the following inequality.
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)
(68)

Note that the first elements of each batch data vectors are
equal to each other which is denoted by

ˆ̄Vd,1 = ˆ̄Vd−1,1 (69)

Thus, we have
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To simply the expression, we use fd,i to denote the function
f
(
ˆ̄Vd,i, Iap

)
, the inequity (66) can be rewritten by

k ˆ̄V T
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ˆ̄V d,1 − 2ts ˆ̄V T

d,1C̄
k−1∑
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(71)

Substituting the iterative learning formula, the condition
(30) can be given and the proof can be completed.
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