
















IRL752: CNS Drug Exposure—Levels and Functional
Effect. Preliminary experiments aiming to establish the
relation between brain exposure of IRL752 and functional
effects were carried out using microdialysis sampling and
reverse dialysis perfusion of the drug.
IRL752 (16.7 mmol/kg, s.c.) resulted in peak concentrations

of the drug in cortical and striatal dialysates, amounting to

∼400 nmol/l 40–60 minute after administration (see Supplemental
Material). With an estimated probe recovery of IRL752 of
∼10%–12%, this corresponds to brain extracellular levels of
the drug in the range of ∼3 to 4 mM. This is in fairly good
agreement with an estimation of unbound brain concentra-
tions around ∼2 mM at this dose, which was obtained by
a different approach and derived from data on unbound peak

Fig. 6. Effects of IRL752 in the RL test. The
effect of acute treatment with IRL752 (1.0–
10 mg/kg = 4.7–47 mmol/kg, s.c, 45 minutes prior
to testing) and SKF38393 (6mg/kg, i.p, 60minutes
prior to testing) on scPCP-induced impairment on
performance in the reversal learning task. Data
are shown asmean6 S.E.M. % correct responding
(n = 9 to 10) and were analyzed by ANOVA and
post hoc Dunnett’s test. Significant reduction in
percent correct responding in the reversal phase
compared with the vehicle group ***P , 0.001.
Improvement in responding compared with
scPCP alone in the reversal phase; P = 0.055;
##P , 0.01; ###P , 0.01. sc, subchronic.

Fig. 7. Effects of IRL752 on gene expression in different brain regions, measured by quantitative polymerase chain reaction. Shown are the gene
expression (mRNA levels) effects of IRL752 (2.4–21.3 mg/kg = 11–100 mmol/kg, s.c.) in the rat limbic region (Limb), striatum (Stri), frontal cortex (Ctx)
and hippocampus (Hipp) 65 minutes after administration; controls received corresponding vehicle injection (saline; NaCl 0.9% v/w). Genes monitored
were: Arc, c-fos (cellular DNA-binding proteins encoded by the c-fos genes), egr1, Npas4, BDNF, Homer1 (a postsynaptic scaffolding protein), and Nptx2.
Genes are divided into “Rapid” and “Delayed” onset IEGs, as shown in the graph. Results are presented as percentage of controls (mean 6 S.E.M.; n = 5
animals/treatment group). Statistics: one-way ANOVA followed by Dunnett’s test (two-sided), *P , 0.05; **P , 0.025; ***P , 0.01 vs. corresponding
controls. Data are sorted by gene, then by region, and then by ascending dose from left to right. Ctrl, control.
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plasma concentrations of IRL752 after 11 and 50 mmol/kg,
s.c, assuming no active transport across the blood-brain
barrier (unpublished data). Taking a conservative approach,
the approximate free-CNS exposure would thus range

between 1 and 6 mM in the 11–50 mmol/kg s.c. dose interval
(Fig. 1). Local reverse dialysis perfusion of IRL752 (1, 10, and
100 mM; 3� 20minute/concentration level) via the probe into
the PFC resulted in increased catecholamine output: 10 mM

Fig. 8. IRL752 time course of effects on
rat brain regional dialysate levels of DA
(top panels) and NA (bottom panels).
Effect of IRL752 (5.6–150 mmol/kg, s.c.;
dose color scheme from light to dark blue)
on dialysate DA and NA in the rat PFC
(n = 4–7; left panels) and striatum (Stri)
(n = 3–6; right top panel, and n = 4 and
n = 1–3 for 5.6–16.7 and 50–150 mmol/kg,
respectively; right bottom panel) 0–180
minutes after administration. Shown are
the mean dialysate levels/20-minute sam-
ple 6S.E.M. expressed as percentage of
baseline values (average of the three
fractions collected 40 to 0 minutes be-
fore dosing).
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to ∼250% (DA) and ∼350% (NA), 100 mM to ∼360% (DA), and
∼650% (NA) of baseline levels (Supplemental Material).

Discussion
The in vivo profile of the novel phenyl-pyrrolidine IRL752 is

consistent with its characterization as a multitarget, regiose-
lective cortical neurotransmission enhancer with potential
clinical usefulness in, for example, Parkinson disease de-
mentia (PD-D) or other cognitive insufficiencies. The neuro-
chemical properties of IRL752 suggest a concerted impact on
PFC catecholamine and cholinergic neurotransmission and
synaptic activity–related gene expression and a capability to
reverse motor hypofunction and impairments in models of
cognitive failure but without major effect in either normal or
drug-induced hyperactive behavioral states. Taken together,
the findings suggest a capacity to strengthenmultiple systems
believed to be impaired in motor and cognitive deficiency
manifestations.
The pharmacological profile of IRL752 differs from other

drugs known to modulate cortical monoamine transmission

(e.g., monoamine reuptake inhibitors, psychostimulants, anti-
depressants, or antipsychotics). In addition to the striking
cortical-over-basal-ganglia catecholamine transmission-promoting
selectivity profile of IRL752, the brain tissue neurochemical
data suggest that the compound does not to any major extent
activate or inhibit negative feedback mechanisms on neuro-
transmission in monoaminergic projection areas. Moreover,
its behavioral activity features indicate that IRL752 lacks
stimulatory or inhibitory effects on motor function in normal
states while reversing behavioral inhibition in tetrabenazine-
treated rats—an experimental animal model of deficient
catecholamine transmission, like in PD. Also, IRL752 does
not affect d-amphetamine–induced hyperactivity and only
mildly and inconsistently attenuated MK-801 (dizocilpine)-
induced hyperactivity, which is thus indicative of low
impact on acute hyperdopaminergic and hypoglutamatergic
states.
Interestingly, IRL752 displayed clear-cut procognitive

effects in the NOR and RL tests, reversing the cognitive
impairment induced by scPCP administration. It has been
shown that scPCP abolishes the increase in PFC DA during
a NOR retention trial, which is suggested to underlie the

Fig. 9. IRL752 time-course effects on rat
brain regional dialysate levels of seroto-
nin (5-HT). Effect of IRL752 (5.6–150
mmol/kg, s.c.; dose color scheme from light
to dark blue) on dialysate 5-HT in the rat
PFC (n = 2–7; left panel) and striatum
(Stri) (n = 2–6; right panel), 0–180 minutes
after administration. Shown are the mean
dialysate levels/20-minute sample6S.E.M.
expressed as percentage of baseline values
(average of the three fractions collected 40
to 0 minutes before dosing).

TABLE 4
Comparison of the peak effects of IRL752 on extracellular amines in different brain regions
Shown is the peak effect of IRL752 (50 mmol/kg = 10.7 mg/kg, s.c) expressed as % of baseline in dorsal hippocampus, ventral hippocampus, nucleus accumbens, PFC, and
striatum.

Dorsal Hippocampus Ventral Hippocampus Nucleus Accumbens Frontal Cortex Striatum

DA 150% 250% N.E. 285% N.E.
NA 250% 370% 130% 380% 160%
5-HT 170% 150% 150% 220% 170%

N.E., no effect (,120% of baseline).
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accompanying cognitive deficiency seen after this treatment
(McLean et al., 2017). In this context, the ability of IRL752
to enhance extracellular levels of DA and NA in the PFC but
not in (the DA-dominated) striatal and nucleus accumbens
areas is particularly noteworthy. The cortical catecholamine
increases were likewise accompanied by increases in ACh in
this region and (to a lesser extent) in the ventral hippocampus.
The neurochemical signature as well as the behavioral profile
of the compound is thus distinct from that of psychostimulants
(e.g., phencyclidine and d-amphetamine) (Hertel et al., 1995)
and indicates a disparate biologic substrate for the
transmission-promoting effect of IRL752. The PFC is gener-
ally considered to be of key importance for cognitive function,
with a pivotal role repeatedly being ascribed to intact
catecholaminergic neurotransmission in this region (Arnsten,
1998; Robbins and Arnsten, 2009; Arnsten, 2011; Robbins and
Cools, 2014; Millan et al., 2016). The association of ACh loss
with deterioration of cognitive processes is likewise well-
established. Indeed, there is ample evidence that executive
and other cognitive functional impairment in PD-D may be
associated with PFC DA as well as forebrain cholinergic
deficits (Bohnen et al., 2003; Hilker et al., 2005; Narayanan
et al., 2013; Gratwicke et al., 2015). Taken together, it is
therefore suggested that IRL752 with its balanced and re-
gionally selective transmission-strengthening properties
across catecholamine and ACh systems may find clinical
usefulness in conditions like PD-D.
The observed IRL752-induced changes in gene expression

pattern are consistent with the above idea. Thus, the com-
pound caused dose-dependent increases in the expression of
mRNA for the rapid IEGs Arc, c-fos, egr1, and Npas4. The
corresponding transcription factors and effector proteins are
known to be linked to neuronal plasticity, recent neuronal and
synaptic activity, and associated procognitive action (e.g.,

Okuno, 2011; Sun and Lin, 2016). For example, Arc is involved
in the consolidation of memory and in connected processes,
such as long-term potentiation, and is triggered intra-
arterially by synaptic NMDA receptor–related mechanisms
(Bramham et al., 2010) associated with enhanced monoamine
transmission (Millan et al., 2016). Npas4 is uniquely activated
by neuronal activity versus extracellular factors, is expressed
only in neurones, and affects synaptic connections in both
excitatory and inhibitory neurons, thereby providing another
important IEG link between neuronal activity, learning, and
memory (Sun and Lin, 2016).
The distinctive in vivo pharmacological profile of IRL752

likely reflects a joint impact onmore than one target. Based on
the in vitro characterization of IRL752, it is hypothesized that
a combination of antagonism at 5-HT7 and a2-adrenoceptors
may be primarily underlying the potent regioselective in-
crease in PFC monoamine-dependent neurotransmission.
Preliminary CNS IRL752 exposure data concur with this
prediction. Although antagonism of 5-HT7 receptors has been
demonstrated to contribute to enhanced cortical DA efflux, the
neuronal localization of any such action remains to be de-
termined (see Wesołowska and Kowalska, 2008; Blattner
et al., 2019). Selective blockade of a2C-adrenoreceptors
relative to (mainly postsynaptic; Erdozain et al., 2019) a2A-
adrenoceptors also seems to promote DA in the PFC (see Uys
et al., 2017a, and references cited within), whereas a2A-
adrenoceptor antagonism may be important for boosting
ACh output (Zaborszky et al., 2004). Although a potential
contributory effect from inhibition of SERT cannot be entirely
ruled out based on currently available data, the in/ex vivo
neurochemical profile of IRL752 clearly differs from typical
SERT inhibitors. Finally, the s1 receptor affinity of IRL752
may additionally imply an effect on cell survival mechanisms
and neuroplasticity (e.g., Nguyen et al., 2015). Notably, all the

Fig. 10. IRL752 time-course effects on
ACh in rat PFC and ventral hippocampus
dialysates. IRL752 was given at 50 mmol/kg
s.c., and PFC (left panel) or ventral hippo-
campus (right panel) dialysate levels of ACh
were monitored for 3 hours post–drug
administration. Shown are the mean di-
alysate levels/20-minute sample 6S.E.M.
expressed as percentage of baseline val-
ues (average of the three fractions col-
lected from 40 to 0minutes before dosing),
mean 6 S.E.M. (n = 2–4).

IRL752—a Cortical-Preferring Cognition-Promoting Agent 415

 at A
SPE

T
 Journals on A

ugust 17, 2020
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


T
A
B
L
E

5
S
um

m
ar
y
ov

er
vi
ew

of
m
ic
ro
di
al
ys
is
,
be

h
av

io
ra
l,
an

d
ge

n
e
ex

pr
es
si
on

ef
fe
ct
s
of

IR
L
75

2
an

d
se
le
ct
ed

pr
oc
og

ni
ti
ve

co
m
pa

ra
to
rs

S
ou

rc
es

fo
r
co
m
pa

ra
to
r
da

ta
ci
te
d:

A
to
m
ox

et
in
e:

B
ym

as
te
r
et

al
.,
20

02
;
S
w
an

so
n
et

al
.,
20

06
;T

za
va

ra
et

al
.,
20

06
;
C
ai
n
et

al
.,
20

11
;
IR

L
A
B
,
un

pu
bl
is
he

d
da

ta
.M

et
h
yl
ph

en
id
at
e:

G
er
as

im
ov

et
al
.,
20

00
;
B
ym

as
te
r
et

al
.,
20

02
;

M
ar
st
el
le
r
et

al
.,
20

02
;B

er
ri
dg

e
et

al
.,
20

06
;T

za
va

ra
et

al
.,
20

06
;B

an
er
je
e
et

al
.,
20

09
;S

eu
an

d
Je

nt
sc
h
,2

00
9;

R
ow

le
y
et

al
.,
20

14
;I
R
L
A
B
,u

n
pu

bl
is
h
ed

da
ta
.C

lo
za

pi
n
e:

H
er
te
le

t
al
.,
19

97
;W

es
te
ri
n
k
et

al
.,
20

01
;I
ch

ik
aw

a
et

al
.,

20
02

;S
h
ir
az

i-
S
ou

th
al
le

t
al
.,
20

02
;D

ev
ot
o
et

al
.,
20

03
;S

h
il
li
am

an
d
D
aw

so
n
,2

00
5;

A
bd

u
l-
M
on

im
et

al
.,
20

06
;G

ra
ys
on

et
al
.,
20

07
;R

ob
bi
n
s
et

al
.,
20

08
;I
R
L
A
B
,u

n
pu

bl
is
he

d
da

ta
.C

ar
ip
ra
zi
n
e:

N
ei
ll
et

al
.,
20

16
;K

eh
r
et

al
.,
20

18
;

H
u
an

g
et

al
.,
20

19
;W

at
er
s
et

al
.,
20

20
;I
R
L
A
B
,u

n
pu

bl
is
h
ed

da
ta
.V

or
ti
ox

et
in
e:

M
ør
k
et

al
.,
20

13
;P

eh
rs
on

et
al
.,
20

13
,2

01
8;

du
Ja

rd
in

et
al
.,
20

14
;W

al
la
ce

et
al
.,
20

14
;I
R
L
A
B
,u

n
pu

bl
is
he

d
da

ta
.A

ti
pa

m
ez
ol
e:

K
au

pp
il
a
et

al
.,

19
91

;H
aa

pa
li
n
n
a
et

al
.,
19

98
;T

el
le
z
et

al
.,
19

99
;D

ev
ot
o
et

al
.,
20

03
;L

ap
iz

an
d
M
or
il
ak

,2
00

6;
B
on

di
et

al
.,
20

10
;M

er
va

al
a
et

al
.,
19

93
;I
R
L
A
B
,u

n
pu

bl
is
he

d
da

ta
.I
da

zo
xa

n
:D

ev
au

ge
s
an

d
S
ar
a,

19
90

;C
ou

ll
et

al
.,
19

96
;H

er
te
le

t
al
.,

19
97

;T
el
le
z
et

al
.,
19

99
;S

w
an

so
n
et

al
.,
20

06
;U

ys
et

al
.,
20

17
b;

IR
L
A
B
,u

n
pu

bl
is
he

d
da

ta
.F

lu
pa

ro
xa

n
:T

el
le
z
et

al
.,
19

99
;M

il
la
n
et

al
.,
20

00
;B

or
th
w
ic
k,

20
17

;I
R
L
A
B
,u

n
pu

bl
is
he

d
da

ta
.D

is
cl
ai
m
er
:P

er
m
ut
at
io
n
s
of

ex
pe

ri
m
en

ta
l

co
n
di
ti
on

s
an

d
di
ff
er
en

ce
s
in

se
t-
u
ps

be
tw

ee
n
la
bo

ra
to
ri
es

pr
ec
lu
de

di
re
ct

h
ea

d-
to
-h
ea

d
co
m
pa

ri
so
n
s
of

ef
fi
ca
ci
es

an
d
re
sp

on
se
s
am

on
g
ag

en
ts
.
T
hi
s
ap

pl
ie
s
br
oa

dl
y
bu

t
m
ay

be
pa

rt
ic
u
la
rl
y
ap

pa
re
n
t
w
it
h
re
ga

rd
to

co
gn

it
iv
e

be
h
av

io
ra
l
te
st
in
g.

C
om

po
u
n
d

A
to
m
ox

et
in
e

M
et
h
yl
-p
h
en

id
at
e

C
lo
za

pi
n
e

C
ar
ip
ra
zi
n
e

V
or
ti
ox

et
in
e

A
ti
pa

m
ez
ol
e

Id
az

ox
an

F
lu
pa

ro
xa

n
IR

L
75

2

K
ey

ta
rg
et
s

N
A
T

D
A
T
,
N
A
T

5-
H
T
2,

a
2,

H
1

D
3,

D
2,

5-
H
T
1A

S
E
R
T
,
5-
H
T
3

a
2

a
2

a
2

5-
H
T
7,

a
2,

S
E
R
T
,
s
1

P
ro
co
gn

it
iv
e

Y
es

(A
D
H
D
)

Y
es

(A
D
H
D
)

Y
es

(S
ch

iz
)

Y
es

(S
ch

iz
)

Y
es

(D
ep

r)
V
ar
ia
bl
e

V
ar
ia
bl
e

V
ar
ia
bl
e

T
B
D

D
os
e
ra
n
ge

0.
3–

3
m
g/
kg

=
1.
2–

12
m
m
ol
/k
g,

i.p
.

0.
5–

30
m
g/
kg

=
2.
15

–
12

9
m
m
ol
/k
g,

i.p
.
or

P
O

0.
1–

10
0
m
g/
kg

=
0.
3–

30
0
m
m
ol
/k
g,

s.
c.
,
i.p

.,
or

P
O

0.
2–

3
m
g/
kg

=
0.
23

–
7
m
m
ol
/k
g,

P
O

or
s.
c.

2.
5–

10
m
g/
kg

=
8.
4–

34
m
m
ol
/k
g,

s.
c.

0.
5–

4.
5
m
g/
kg

=
2.
4–

21
.2

m
m
ol
/k
g,

i.p
.
or

s.
c.

0.
25

–
20

m
g/
kg

=
1.
23

–
98

m
m
ol
/k
g,

i.p
.
or

s.
c.

0.
63

–
10

m
g/
kg

=
3.
2–

51
.3

m
m
ol
/k
g,

s.
c.

or
i.p

.

10
.6

m
g/

kg
=

50
m
m
ol
/
kg

,
s.
c.

N
A

P
F
C

In
cr
ea

se
(∼

30
0)

In
cr
ea

se
(∼

29
0)

In
cr
ea

se
(∼

35
0 –

39
0)

N
o
ef
fe
ct

In
cr
ea

se
(∼

27
0)

In
cr
ea

se
(∼

25
0)

In
cr
ea

se
(∼

25
0)

In
cr
ea

se
(∼

24
0)

In
cr
ea

se
(∼

38
0)

D
A

P
F
C

In
cr
ea

se
(∼

32
5)

In
cr
ea

se
(∼

35
0)

In
cr
ea

se
(∼

36
0–

40
0)

N
o
ef
fe
ct

In
cr
ea

se
(∼

27
5)

In
cr
ea

se
(∼

26
0)

In
cr
ea

se
(∼

21
0)

In
cr
ea

se
(∼

15
0)

In
cr
ea

se
(∼

28
5)

D
O
P
A

P
F
C

In
cr
ea

se
(∼

15
0)

N
o
ef
fe
ct

In
cr
ea

se
(∼

25
0)

N
/A

In
cr
ea

se
(∼

15
0)

In
cr
ea

se
(∼

18
0)

In
cr
ea

se
(∼

13
5)

In
cr
ea

se
(∼

18
0%

)
N
o
ef
fe
ct

5-
H
T

P
F
C

N
o
ef
fe
ct

N
o
ef
fe
ct

D
ec
re
as

e
(∼

45
)

N
o
ef
fe
ct

In
cr
ea

se
(∼

41
0)

In
cr
ea

se
(∼

16
0)

N
o
ef
fe
ct

N
o
ef
fe
ct

In
cr
ea

se
(∼

22
0)

D
A

S
tr
i

N
o
ef
fe
ct

In
cr
ea

se
(∼

21
0–

25
0)

In
cr
ea

se
(∼

15
0–

17
0)

N
/A

N
o
ef
fe
ct

N
o
ef
fe
ct

N
o
ef
fe
ct

N
o
ef
fe
ct

N
o
ef
fe
ct

D
O
P
A

S
tr
i

N
o
ef
fe
ct

N
/A

In
cr
ea

se
(∼

19
0)

N
/A

N
o
ef
fe
ct

N
o
ef
fe
ct

N
o
ef
fe
ct

N
o
ef
fe
ct

N
o
ef
fe
ct

5-
H
T

S
tr
i

In
cr
ea

se
(∼

15
0)

In
cr
ea

se
(∼

32
0)

D
ec
re
as

e
(∼

65
)

N
/A

In
cr
ea

se
(∼

36
0)

N
o
ef
fe
ct

D
ec
re
as

e
(∼

50
)

D
ec
re
as

e
(∼

70
)

In
cr
ea

se
(∼

17
0)

A
C
h
P
F
C

In
cr
ea

se
(∼

30
0)

In
cr
ea

se
(∼

25
0–

30
0)

In
cr
ea

se
(∼

50
0–

62
5)

N
o
ef
fe
ct

In
cr
ea

se
(∼

23
0)

In
cr
ea

se
(∼

25
0)

In
cr
ea

se
(∼

27
5)

In
cr
ea

se
(∼

30
0)

In
cr
ea

se
(∼

25
0)

L
M
A n
or
m
al

N
o
ef
fe
ct

In
cr
ea

se
D
ec
re
as

e
D
ec
re
as

e
N
o
ef
fe
ct

N
o
ef
fe
ct

N
o
ef
fe
ct

In
cr
ea

se
N
o
ef
fe
ct

IE
G
s
F
cx

N
o
ef
fe
ct

In
cr
ea

se
(A

rc
)

N
o
ef
fe
ct

N
o
ef
fe
ct

N
o
ef
fe
ct

In
cr
ea

se
(A

rc
)

N
o
ef
fe
ct

In
cr
ea

se
(A

rc
,
c-
fo
s)

In
cr
ea

se
(A

rc
,

c-
fo
s)

IE
G
s
S
tr
i

N
o
ef
fe
ct

In
cr
ea

se
(A

rc
)

In
cr
ea

se
(c
-f
os
)

In
cr
ea

se
(A

rc
,

c-
fo
s)

In
cr
ea

se
(A

rc
)

In
cr
ea

se
(A

rc
,

c-
fo
s)

In
cr
ea

se
(A

rc
,
c-
fo
s)

In
cr
ea

se
(A

rc
,
c-
fo
s)

In
cr
ea

se
(A

rc
,

c-
fo
s)

N
O
R

Y
es

N
o

Y
es

Y
es

Y
es

N
/A

N
/A

N
/A

Y
es

R
L

or
A
S
S
T

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
/A

Y
es

F
ig
u
re
s
in

br
ac
ke

ts
re
fe
r
to

ap
pr

ox
im

at
e
pe

ak
le
ve

l
(%

of
co
rr
es
po

n
di
n
g
ba

se
li
n
e)
.D

A
T
,d

op
am

in
e
tr
an

sp
or
te
r;

A
D
H
D
,A

tt
en

ti
on

D
ef
ic
it
H
yp

er
ac
ti
ve

D
is
or
de

r;
A
S
S
T
,A

tt
en

ti
on

al
S
et
-S
h
if
ti
n
g
T
es
t;
D
ep

r,
D
ep

re
ss
iv
e
di
so
rd

er
;

L
M
A
,l
oc
om

ot
or

ac
ti
vi
ty
;
N
/A
,d

at
a
n
ot

av
ai
la
bl
e;

N
o
ef
fe
ct
,n

ot
si
gn

if
ic
an

tl
y
di
ff
er
en

t
fr
om

co
rr
es
po

nd
in
g
co
n
tr
ol

tr
ea

tm
en

t;
P
O
,b

y
m
ou

th
;
S
ch

iz
,S

ch
iz
op

h
re
n
ia
;S

tr
i,
st
ri
at
u
m
;F

cx
,f
ro
n
ta
l
co
rt
ex

;T
B
D
,T

o
be

de
te
rm

in
ed

.

416 Hjorth et al.

 at A
SPE

T
 Journals on A

ugust 17, 2020
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


aforementioned targets are believed highly relevant to the
functioning of cognition circuits and processes (e.g., Nikiforuk,
2015; Millan et al., 2016; Maurice and Goguadze, 2017; Uys
et al., 2017a).
Multiple Target Action of IRL752. Pharma drug de-

velopment typically remains strictly (single…) target-focused.
There is growing appreciation and optimism, however, that
a more comprehensive approach might eventually prove more
successful (Hutson et al., 2017). IRL752 was discovered using
a multivariate in vivo phenotypic pattern (in vivo systems
pharmacology) analysis, including neurochemical and behav-
ioral effects broadly, benchmarked against a wide range of
known, clinically characterized CNS agents (Waters et al.,
2017). Although from a single neuroreceptor target point of
view, IRL752 may be viewed as moderately potent, the
relative lack of selectivity and potency may in fact turn out
to be an advantage. First, needless to say, no single drug
target works in isolation but is integrated with multiple other
components in systems, networks, and circuits to adjust
(patho)physiologically disrupted function. Secondly, factors
like the sensitivity of, and tone at, the target, as well as
occupancy-response relation, vary greatly among brain areas,
transmitter circuits, and synapses, underscoring that “the
brain is no democracy” and thereby providing an opportunity
for regioselectivity in drug action. Thirdly, drug combination
treatments tomodulate the activity of more than one neuronal
target are in fact very common in the treatment of symptoms
associated with CNS disorders, whether they are of psychiat-
ric and/or other cognitive background (e.g., Mojtabai and
Olfson, 2010). Finally, together with the above, it may be
hypothesized that the joint contribution of moderate modula-
tory activities at two or more neurotargets in a network by
a single agent may result in superior therapeutic character-
istics compared with combination attempts using several
different potent and selective drugs (see, e.g., Csermely
et al., 2005; Tun et al., 2011). Indeed, approved CNS drugs
or (fixed-dose) combinations with intended polypharmacolog-
ical (“enriched”) target profiles are becoming increasingly
common in recent years (e.g., vortioxetine, lurasidone, brexpi-
prazole) in endeavors to both improve efficacy and circumvent
side-effect issues (Peters, 2013).
Summary and Conclusions. This paper describes for the

first time the novel, distinctive pharmacological action profile
of a new compound, IRL752. The behavioral characteristics of
IRL752 are consistent with a capacity to normalize impaired
catecholamine function while avoiding overactivation of CNS
systems and circuits involved. In vitro target affinity, func-
tional response, and accompanying drug exposure data sug-
gest that at least 5-HT7 receptor and a2(C)-adrenoceptor
antagonism are likely key contributors to the in vivo effects of
IRL752. Interestingly, in comparison with other agents with
clinically proven or purported procognitive properties, IRL752
displays similarities but also clearly distinguishing features
(Table 5). Its 1) cortically regioselective, facilitatory impact on
catecholamine neurotransmission, without significant feed-
back activation; 2) increases in ACh transmission and cogni-
tive function-associated IEG indices; and 3) demonstration
that IRL752 effectively reverses cognitive deficits in rodent
tests of recognition memory and of cognitive flexibility/prob-
lem solving are in line with clinical usefulness of the drug in
conditions wherein these aspects may be dysregulated, such
as in PD axial motor and cognition deficits.

In support, IRL752 improved postural dysfunction and axial
motor symptoms (UDPRS motor scores) in a recent phase IIa
study in patients with PD (Svenningsson et al., 2020).
Cognitive deficits in PD are strongly associated with such
motor impairments; pharmacologically boosting executive as
well as attentional functional strategies will likely counter the
motor shortcomings and prevent falls (e.g., (Taylor et al.,
2008). Notably, significant improvement in the patients who
were treated with IRL752 was also seen with respect to the
motivation/initiative domain in the UDPRS assessment,
a finding substantiated by greatly decreased scores for
apathy/indifference and caregiver distress in the neuropsy-
chiatric inventory. In conclusion, the preclinical profile of
IRL752 supports its potential usefulness in the treatment of
cognitive and axialmotor deficits in PD. Data fromphase I and
IIa clinical trials with IRL752 indicate that it is safe and well-
tolerated both in healthy volunteers and in patients with PD.
Further exploration of IRL752 efficacy with respect to im-
proved balance, reduced falls, and markers of improved
cognition will be carried out in planned phase IIb trials.
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