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outperform some of the conventional methods of classification
for image classification in many cases [1]. To achieve higher
accuracy, image classification with deep learning has been
trained with large number of images [8, 9]. In spite of the
promising results of applying deep learning technique for im-
age classification, image classifier trained with limited training
data set introduces challenges. Without having enough training
data, the accuracy of learning phase of the classification model
can suffer with the problem of underfitting, ultimately leading
to a degraded classification model [5]. Apart from the limited
availability of data sets for training, the wider context, number
and types of distinct objects within the images plays a crucial
role in image classification [2, 8, 9]. Often, the same image
can be classified into different classes based on the context and
objects. We encountered the issue of limited image datasets,
and identification of context in the use case of flood monitoring
as part of the EC Interreg project called SCORE1 . The project
involves nine EU cities, and 3 EU universities to explore the
use of IoT and big data technologies for solving smart cities
challenges in water, environment, and mobility themes.

As part of the SCORE project, our research focuses on
addressing challenges relevant to water theme, in particular,
flood monitoring. The level of blockage of gullies and drainage
is one of the many important parameters for local author-
ities and city councils to monitor in real-time. OT sensors
for detecting blocked gullies and drainages are notoriously
hard to build. Hence as a replacement, we implemented a
DCNN classifier for image classification with limited training
image data set collected from Google images to classify drain
blockage incidents. The main goal of this paper is to present
a scalable approach to classify the images by exploring the
context of images by applying image segmentation at data pre-
processing stages. We applied image segmentation to localise
the area of interest in the images before the images are utilised
for the training and validation phases. The experimental results
showed that the image classification using image segmentation
at data pre-processing stage has higher accuracy in compari-

1https://northsearegion.eu/score/
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Abstract—In recent years, deep learning has been increasingly 
used for several applications such as object analysis, feature 
extraction and image classification. T his p aper e xplores the 
use of deep learning in a flood m onitoring a pplication i n the 
context of an EC-funded project, Smart Cities and Open Data 
REuse (SCORE). IoT sensors for detecting blocked gullies and 
drainages are notoriously hard to build, hence we propose a novel 
technique to utilise deep learning for building an IoT-enabled 
smart camera to address this need. In our work, we apply deep 
leaning to classify drain blockage images to develop an effective 
image classification m odel f or d ifferent s everity o f blockages. 
Using this model, an image can be analysed and classified in 
number of classes depending upon the context of the image. In 
building such model, we explored the use of filtering in terms of 
segmentation as one of the approaches to increase the accuracy of 
classification by concentrating only into the area of interest within 
the image. Segmentation is applied in data pre-processing stage 
in our application before the training. We used crowdsourced 
publicly available images to train and test our model. Our model 
with segmentation showed an improvement in the classification 
accuracy.

Index Terms—Image Classification, Image Segmentation, Deep 
Learning, DCNN, IoT Sensor, Drain Blockage

I. INTRODUCTION

Image classification i s a  p art o f i mage a nalysis where
the images are labelled with a predefined c lass s et. Deep
Convolutional Neural Networks (DCNN) with many layers and
several nodes in each layer have been widely applied for image
classification [1-5]. The use of DCNN has been increasing in
recent years for image classification tasks in many applications
because of the unavailability of a large number of training
data sets [2]. DCNN has been used extensively for object
recognition in images with higher accuracy [6]. Deep learning-
based methods delivered higher accuracy performance in many
application areas as DCNN can extract characteristic features
to recognise objects and hence categorise images into different
classes. In deep learning, the number of training data sets play
a central role for image classification t asks [7].

With the wider availability of large training data sets and
implementation of GPUs, deep learning has been shown to



son of the classification accuracy of the image classification
without image segmentation.

The rest of the paper is organised with section 2 review-
ing image classification approaches. Section 3 describes the
concept of deep learning, image segmentation and image
classification whereas section 4 describes the experimental
design, data generation and result analysis. We conclude and
describe the future work in section 5.

II. LITERATURE REVIEW

A number of methods have been applied for image clas-
sification tasks such as k-nearest-neighbours, maximum like-
lihood minimum distance, and logistic regression [10]. Most
of these methods suffer from the “curse of dimensionality”
[11] as there occurs a number of dimensions within the
image data set. To deal with high dimensionality, methods
such as Transformation [11] and Band selection [12] have
been applied. In general, reduction of the dimension of the
image data set is performed at initial stage to improve the
classification performance. Reduction in dimensionality to fit
the input image data into small-scale feature extraction has
been explored using techniques such as principal component
analysis (PCA) [13], balanced local discriminant embedding
(BLDE) [14], pairwise constraint discriminant analysis and
nonnegative sparse divergence (PCDA-NSD) [15]. Also, ap-
proaches such as pixel-based, object-based analysis have also
been implemented for image classifications problem [16] over
many years.

In recent years, intelligent system approaches such as neural
network models have also been used to improve performance
on image classification tasks [1, 2, 14, 17]. Deep Belief Net-
work (DBN) has been used for spectral–spatial classification
of hyperspectral data [14] by applying a hybrid framework
with principal component analysis hierarchical learning-based
feature extraction, and logistic regression. The DBN model has
used single layer restricted Boltzmann machine and multilayer
deep network-based models to learn the shallow and deep
features of hyperspectral data, correspondingly. In the DBN
model, linear regression was applied to classify images based
on the extracted features. Residual learning framework was
used to the training of networks [18] to increase training
efficiency by explicitly fitting stacked layers to the desired
underlying mapping instead of direct mapping

The accuracy of image classification tasks depends on the
volume of data available for training and validation. Some
models [8, 9] have used large number of images to train
the classification model. While typical supervised models
need large volumes of training data set to learn their model
parameters. In the real world, specific problem-based image
classifiers have been trained with only a limited number of
sample images. Deep learning has been used with reasonably
higher accuracy for image classification where large image
data sets were not available for training [4, 19]. Simple
image classification tasks had been solved with relatively

higher accuracy with small datasets by augmenting with label-
preserving transformations.

Wide range of image classification approaches had been
applied in many applications. Those models were mostly been
implemented on the stored image classification. However,
in real-time such as monitoring flooding where the camera
acts as a sensor, the classification need to be applied on
the streaming images. Captured image in such cases can be
used as a sensor data which can be useful in many real-
time monitoring problems. Deep leaning is widely used image
classification approach for image classification because of it
has large number of nodes. Implementation of deep leaning
for image classification gives higher accuracy.

III. DEEP LEARNING AND IMAGE SEGMENTATION- OUR
APPROACH

A. Deep Convolutional Neural Network (DCNN)
Neural Network (NN) is mostly designed with relatively

fewer numbers of layers and nodes in each layer. Due to low
number of layers and nodes, NN often has lower accuracy on
image classification task. To overcome this limitation of NN,
Deep Convolutional Neural Network (DCNN) with multiple
layers of neurons have been used for image classification.
Each neuron in DCNN extracts a different level of non-linear
characteristic features from the image. DCNN was applied to
classify image data by using large volumes (1.2 million high-
resolution images) of training data in the ImageNet LSVRC-
2010 contest into 1000 different classes [9]. Not only with
large image data set, DCNN has also been applied with
smaller numbers (few thousands) of training image data for
classification [1]. DCNN was found to be a useful tool for
image classification tasks.

B. Contextual Image Analysis
To achieve higher accuracy, integration of additional in-

formation within an image needs to be analysed. Humans
implicitly use structural knowledge to analyse an image dur-
ing manual classification processes by considering contextual
information along with the information about the shape of
objects and spatial relations between the image regions [20].
Traditionally pixel-based classification methods have been
used for image analysis in many applications while the inte-
gration of the concept of object-based analysis into the image
classification process showed increment in the accuracy [16,
20]. Context analysis of an image varies with the application
and classification tasks. Objects, environment and focused
area of an image is crucial for feature extraction and hence
the classification task. The importance of context analysis of
images is illustrated in following image sets. Images Fig. 1
are the positive examples of the drainage blockages whereas
images in Fig. 2 are the negative examples of the drainage
blockages. From Fig. 1 and 2, it is observed that images of
the drainage blockage and no drain blockages are analogous.
To classify such images, context analysis is required to define
their actual classes.



Fig. 1. Positive examples of drainage blockage

Fig. 2. Negative examples of drainage blockage

In general, images are captured focusing on the major
area of concern at the centre. In other words, the objects
and environment information have lesser importance as we
move from the centre of an image. In fact, in supervised
image capturing, monitoring and gathering, this is highly
characteristic that occurred in most of the images. Considering
this property, centre-focused image analysis for training can
potentially be an effective approach for an image classification
model.

C. Image Segmentation

Segmentation of an image into a given number of non-
overlapping regions provides freedom to select the chosen area
of interest for the analysis. Segmentation helps in grouping
the target objects or even focusing on single region target
[16]. Segmenting an image into focused area of interest is
one way to integrate the context information. For the focused
region image analysis, degrees of freedom must be reduced
to fulfil the assumed requirements [11]. With the case study
on image classification of drain blockage, we analysed that
most of the images have additional objects within images apart
from drainage blockage features. With the limited low number
of training image data set, identifying the individual context
within the images is complex and may suffer poor performance
on achieving classification accuracy.

Mostly, the nature of photography or capturing image of
an event reflects that the centre of image has been focused
as the main event. Considering this, we applied segmentation
to locate central area of the image that reduce the impact of
objects at the edges of the image, to analyse the images. In
general, the representative characteristic features of an event
are highly focused to the central region. The segmentation
process with defined window size captures the focused area
of interest leaving other objects in the images at the edges.
In our model, pixel-wise segmentation has been used to crop
the image edges. We applied edge removal from each side on
images at data pre-processing stage by cropping 10% pixels

from all four sides of the image. Fig. 3.a is an example of
an image collected in its original shape whereas Fig. 3.b is
the image after segmentation. In the resulting image, after
segmentation, it is observed that there is no change in the main
focused context (Drainage blockage in this context) however
impact of the objects and environments at the image edges
have been reduced. Observing these two images it is clearly
visible that some of the extra objects or context are removed
or minimised applying segmentation.

Fig. 3. a: Image without segmentation b: Image after segmentation

IV. EXPERIMENTAL DESIGN

A. Data set

We used publicly available image as our data source for our
case study data, retrieved using Google Image Search. The
rationale for using this data source is to use images poten-
tially uploaded by members of the public implying flooding
and drain blockage events, as could be expected in realistic
scenarios. Images of drainage blockage has been downloaded
varying in types of drainage, colours, backgrounds, objects,
blockage levels. The initially downloaded images data set was
noisy containing irrelevant, blurred and out of context images.
The data set was cleaned manually by visual inspection. After
removal of noisy images from the downloaded data set, 800
images were prepared for the DCNN model. The images
were classified categorically into three classes: fully blocked,
partially blocked and no blockage as shown in Fig. 1. The
images were further grouped into training data, validation data
and test data in proportion 60%, 25% and 15% respectively.

B. Deep Learning Model

We propose a deep learning-based image classifier as shown
in Fig. 4 where unclassified image data are classified into
classified image. The unclassified data can be classified into
either in blockage class or partial blockage class or no
blockage. Building block of the image classifier is shown in
Fig. 5. Image segmentation is applied at data pre-processing
where images are cropped with 10% edge removal. At the
second stage DCNN parameters are defined such as type of
activation functions, number of classes, batch size, error rate,
number iterations and others. Model is trained and validated
with sample image data set after the models’ parameters are
defined. After training and validation, the model is tested with
test images. For the improvement in classification accuracy, the



model is trained and validated iteratively by adjusting model’s
parameter such as error rate, batch size, number of iterations.

Fig. 4. Block diagram of Image Classifier

Fig. 5. Building blocks of Image Classifier

C. Assumptions and Limitations

We apply following assumptions for the proposed image
classification model. We also list some of the potential
limitations of the model which we plan to explore further as
future work.

Assumptions

i. For model training and validation, classification of images
into different class levels was based on human interpretation
of the individual image.
ii. We assumed that the all the gathered images had been
captured as centrally focused image. iii. We have assumed
that images obtained from the public domain via Google
Image search are representative of what citizens would
provide to local authorities. At a later stage of the project,
we will adopt a similar approach to citizen provided data via
our project partners.

Limitations

i. The classifier can only classify drainage blockage images.
Also, it can classify images into only three class levels though
classifying images into a greater number of class levels gives
higher level of interpretation of image analysis. We believe
at this early stage of our project, these are the three primary
factors local authorities are most interested in.
ii. The classifier is limited to classify images only with jpeg
format. We will explore the use of other formats in future
work.

D. Experimentation and Results

We analyse the efficiency of the proposed deep learning
image classification with pre-processed segmented image.

TABLE I
SIMULATION SETUP PARAMETERS

Model VGG16
Class Mode Categorical
Loss categorical crossentropy
Optimizer optimizer rmsprop(lr = 2e-5)
Steps per epoch 100
Epochs 100
Batch size 10
Validation steps 100

TABLE II
RESULT SUMMARIES OF TRAINING, VALIDATION AND TEST OF THE

MODEL.

Parameters
Accuracy
without
Segmentation

Accuracy
with
Segment.

Loss
without
Segmentation

Loss
with
Segmentation

Training 0.55 0.76 0.9 0.4
Validation 0.45 0.7 1.1 0.85
Test 0.6 0.66

Simulations are run on an Intel(R) Xenon(R) CPU E5 -2620
v3 @ 2.40 GHz processor with 15.8 GB of RAM, 64-bit
Operating System, X64-based processor with Windows 10
Enterprise. We used library functions included in the Keras
core library with R programming language for the model simu-
lation. We used VGG16, consisting 16 convolutional layers, in
our classification model. Table 1 shows the simulations setup
parameter. These parameters are fixed after applying different
values such as batch sizes ranging from 5-15, steps per epochs
and validation steps ranging from 50-100 during training and
validation phases.

E. Results Analysis

The classifier was trained and validated for image data sets
without segmentation and with segmentation. Accuracy and
loss for training and validation of classification model have
been plotted for both the simulation tasks as shown in Fig. 6.a
and 6.b. From the plots, we observed that there are improve-
ments in the accuracy and loss on the proposed DCNN based
image classification applying image segmentation at data pre-
processing stage. The accuracy levels are increased by 21%
and 25% for training and validation of the model respectively
as listed in Table 2. There is a significant improvement in
the loss value from 0.9 (model without segmentation) to 0.4
(model with segmentation) at training since lower the value
of loss implies better is the classification model. Also, there
is an improvement on loss value for validation of the model.
These improvements are decisive on classifying images into
their corresponding classes.

V. CONCLUSIONS AND FUTURE WORKS

In our work as part of a flood monitoring use case, we
applied DCNN for image classification task that classifies
drainage images into either of three blockage classes based on
its’ severity: fully blocked, partially blocked or no blockage. A



Fig. 6. Accuracy and loss plot on training for model training and validation
with images without segmentation.

Fig. 7. Accuracy and loss plot on training for model training and validation
with images with segmentation.

finer analysis of the level of blockage will be explored further
– it was deemed that at this early stage of the project, the
three identified classes would serve as a sufficient starting
point, particularly as a proof of concept. We applied image
segmentation at data pre-processing phase that localised the
context of the images to improve the accuracy in image
classification. The localisation of the area of interest in the
image was applied to all images using segmentation. Pixel-
wise 10% edges from all sides were removed from all the
images at data pre-processing stage. These reduced image data
were used for the training and validation of model to focus
into central context of the images.

The experimental results indicated that the image classifica-
tion using image segmentation at data pre-processing stage has
higher accuracy in comparison of the classification accuracy

of the image classification without image segmentation. Our
model was trained with a low number of publicly-available
drain blockage mages. As part of future work, more images
with diversity in context, environment, types of objects within
the images will be applied. The context and identification
of types of objects within the image will help to make
more accurate classification of the images. The improved
classification model will be utilised in an IoT-enabled camera
and will act as a real-time monitoring sensor.
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