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ABSTRACT 

Shumoos Taha Hammadi HAMMADI 

Novel Medical Imaging Technologies for Processing Epithelium and 

Endothelium Layers in Corneal Confocal Images 

Developing Automated Segmentation and Quantification Algorithms for 

Processing Sub-basal Epithelium Nerves and Endothelial Cells for Early 

Diagnosis of Diabetic Neuropathy in Corneal Confocal Microscope Images 

Keywords: Medical Imaging, Diabetic Peripheral Neuropathy, Corneal Confocal 

Microscopy, Corneal Sub-Basal Epithelium, Automatic Nerve Segmentation, 

Anisotropic Diffusion Filtering, Corneal Endothelial Cells, Automatic Cell 

Segmentation, Fast Fourier Transform, Watershed Transformation 

Diabetic Peripheral Neuropathy (DPN) is one of the most common types 

of diabetes that can affect the cornea. An accurate analysis of the corneal 

epithelium nerve structures and the corneal endothelial cell can assist early 

diagnosis of this disease and other corneal diseases, which can lead to visual 

impairment and then to blindness. In this thesis, fully-automated segmentation 

and quantification algorithms for processing and analysing sub-basal epithelium 

nerves and endothelial cells are proposed for early diagnosis of diabetic 

neuropathy in Corneal Confocal Microscopy (CCM) images. Firstly, a fully 

automatic nerve segmentation system for corneal confocal microscope images 

is proposed. The performance of the proposed system is evaluated against 

manually traced images with an execution time of the prototype is 13 seconds. 

Secondly, an automatic corneal nerve registration system is proposed. The 

main aim of this system is to produce a new informative corneal image that 

contains structural and functional information. Thirdly, an automated real-time 

system, termed the Corneal Endothelium Analysis System (CEAS) is developed 

and applied for the segmentation of endothelial cells in images of human cornea 

obtained by In Vivo CCM. The performance of the proposed CEAS system was 

tested against manually traced images with an execution time of only 6 seconds 

per image.  

Finally, the results obtained from all the proposed approaches have been 

evaluated and validated by an expert advisory board from two institutes, they 

are the Division of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar and the 

Manchester Royal Eye Hospital, Centre for Endocrinology and Diabetes, UK. 
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Chapter 1 

Introduction 

The eyes are certainly the most sensitive organs that we possess and 

possibly the most surprising thing. The eyes allow us to view the world and 

distinguish objects through the optical window and besides that, the eyes are 

responsible for four-fifths of the whole of the information that the brain receives, 

which is probably the reason of why we depend on our eyesight more than any 

other sense. 

The eye is small with size about 24-25 mm in sagittal diameter and is a 

complicated organ. In addition, the system in which the eye functions is 

extremely complex. 

1.1 Basic Optic Anatomy and Physiology 

 

Human eye comprises fundamentally of six regions: the cornea, sclera, 

aqueous humor, iris, lens and vitreous humor. Other optic domains include the 

retina and choroid. The retina is the part that is light sensitive and where light 

energy is converted to neural signals. The choroid is an extremely vascularized 

structure in the eye that accounts for 85% of the total optic blood flow. The eye 

has a form quite close to a spherical shape. A human eye usually has a radius 

of 12 mm and length of the pupillary axis, which is measured by the distance 

between the cornea and the posterior part of the eye of between 23 and 25 mm. 

The anatomical structure of the human eye is shown in Figure 1.1. The 

following components are major components of the human eyes (Acharya, Ng 

and Suri, 2008): 
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a) Cornea 

The cornea is the transparent outer facing layer of the eye which is 

exposed to the environment. It has a water content of 78% and an elliptical 

shape on average 12mm in the horizontal axis and 11 mm in the vertical 

axis (Mapstone, 1970). The corneal thickness is not uniform and is about 

530 microns in the central region. The main functions of the cornea are to 

refract and transmit light. The cornea is avascular, which means that it 

lacks blood vessels inside it. The cornea needs an oxygen supply which is 

obtained from the atmosphere by absorption through the tear film. 

 

 

Figure 1.1: Anatomical structure of human eye (Acharya, Ng and Suri, 

2008).  
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b) The Aqueous Humor  

The anterior chamber between the cornea and pupil contains the fluid 

aqueous humor. The aqueous fluid is made up mainly of water which 

supplies nutrients to the lens and avascular cornea. The aqueous flow has 

hydrodynamic properties which generate an intraocular pressure (IOP) 

which reaches 15 mmHg for normal human eyes (Acharya, Ng and Suri, 

2008). 

c) The Iris 

The iris consists of pigmented fibrovascular tissues known as the stroma. 

The main function of the iris is to control the pupil size and adjust the 

amount of light entering the eye. It is also responsible for determining eye 

colour. The pupil diameter size depends on the lighting conditions. 

Relative to the iris, the eye structure is divided into anterior and posterior 

regions (Acharya, Ng and Suri, 2008). The region at the front of the iris is 

the anterior region, while the region at the back of the iris is the posterior 

region. 

d) The Lens 

The lens structure is biconvex with a central thickness of between 3.5 and 

5 mm which is dependent on age. The main lens function is to focus the 

light that comes into the eye onto the retina. The lens is avascular and 

consists of 65% water and 35% protein (Hill, R. M., 1965). The content of 

water inside the lens increases with age. 

e) The Vitreous Humor 

The vitreous humor comprises the largest volume of the human eye and 

fills up the space between the retina and the lens with a pure aqueous 
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solution that consists of 98.5% to 99.7% water (Acharya, Ng and Suri, 

2008). The eye takes its spherical structure from the vitreous humor. The 

vitreous works as a storage region for metabolites of the lens and retina. 

f) The Sclera 

The sclera is the white outer layer of the eye normally referred to as the 

white of the eye and wraps around five-sixths of the posterior eyeball. The 

sclera thickness is non-uniform. A few blood vessels passing through it 

provide the blood for the sclera. The choroid and retinal layers are beneath 

the sclera (Mapstone, 1968). 

 

1.2 The Normal Cornea Structure 

Human cornea is a transparent layer which covers the front surface of 

the eye. The Cornea transmits and helps focus light onto the retina. The lens 

and the cornea are the refracting components of the eye. As shown in Figure 

1.2, the cornea is formed of five layers, covering crucial internal structures of 

the human eye, including the iris, pupil, lens, and anterior chamber. The 

epithelium of (50 μm) thick is the outermost layer, then Bowman’s membrane 

(12 μm), the stroma (480–500 μm), Descemet’s membrane (8–10 μm), and 

finally the endothelium (5 μm), innermost (Nishida, 2005). Few years ago, 

another layer was detected in the cornea, called Dua’s layer, as described in 

(Dua et al., 2013). Each layer of the cornea has an important function. The 

epithelium is the outer layer and its primary function is to prevent the crossing of 

foreign materials, such as bacteria, dust and water into the eye and to other 

layers of the cornea. The epithelium surface is so smooth that it easily absorbs 

oxygen and nourishment from tears and distributes them to the rest of the 

cornea (Acharya, Ng and Suri, 2008). 
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The epithelium contains many tiny nerve endings, which make the 

cornea highly sensitive to pain when scratched or rubbed. A transparent sheet 

of tissue below the epithelium is known as Bowman’s layer. This layer is strong 

and composed of protein fibres called collagen. In injured state, Bowman’s layer 

may create a scar. If these scars are big enough and centrally located, vision 

loss may occur. Under the Bowman layer is the stroma layer, which makes up 

about 90% of the thickness of the cornea. It is mostly 78% water and 16% 

collagen and does not contain blood vessels. Beneath the stroma layer is 

Descemet’s membrane, this layer is a thin but strong sheet of tissue, which 

works as a protective barrier against injuries and infection (Acharya, Ng and 

Suri, 2008).  

 

Figure 1.2: The anatomy of the human eye and the cornea (a) Section of the 

frontal part of the human eye, (b) Six layers from the anterior to the posterior 

cornea, (c) In Vivo corneal confocal microscopy image of the corneal epithelium 

and endothelium layers. Adopted from (Navaratnam et al., 2015). 
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Descemet’s membrane includes collagen fibres which are considered 

different from those of the stroma layer and are supported by the endothelial 

cells layer that lies below it. In the injured state, Descemet’s membrane layer 

regenerates (Acharya, Ng and Suri, 2008). The endothelium layer is extremely 

thin and the deepest layer of the cornea. The cells of endothelial are necessary 

to keep the cornea transparency by preserving the balance of the liquid in the 

cornea. The role of the endothelium is to pump excess liquid that leaks from 

inside the eye into the stroma layer, then out of the cornea into the aqueous 

humor. Without this mechanism, the stroma will swell with water and become 

hazy. At birth, the cells of a normal corneal endothelium are uniformly sized with 

regular hexagonal shapes and a honeycomb appearance (McCarey, 

Edelhauser and Lynn, 2008). This regular appearance is influenced by 

pathologies and ageing causing cells to die, with no new cells replacing them, 

thereby resulting in permanent damage to the endothelium. Once endothelial 

cells are destroyed, they are lost forever, the surrounding cells extend to fill 

holes, hence increasing the average size of the endothelial cells and producing 

variations from the regular hexagonal shape throughout life. If too many cells 

are destroyed, blindness ensues, with corneal transplantation being the only 

available therapy (Vincent, 1992). 

1.3 Diabetes Effects on Ocular Health 

The diabetes is the main cause of permanent blindness in adults. Type 1 

diabetes accounts for approximately 10% of the autoimmune etiology that 

broadly affects children and young people, while Type 2 diabetes accounts for 

approximately 90% of cases, which are mainly linked with insulin resistance and 

obesity. The Diabetic Peripheral Neuropathy (DPN) is one of the most common 
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types of diabetes that can affect the ocular tissues, which results in around 

12,000 to 24,000 new occurrences of blindness every year (Skarbez et al. 

2010). For example, in 2015, the American Diabetes Association1 reported that, 

out of 30.3 million (9.4%) of the total US population, about 23.1 million people 

were diagnosed with diabetes and an estimated 7.2 million people were 

undiagnosed. Approximately, 79,535 death certificates were associated with 

this disease, which put it as the 7th leading cause of death in the United States 

in 2015. In the UK, most health experts reported that diabetes remains one of 

the biggest health problems facing the UK population, due to the large increase 

in the number of people diagnosed with diabetes, which has increased from 1.4 

million to 2.9 million, since 1996. By 2025, about 5 million people will have this 

disease, whether diagnosed or undiagnosed. Most of them are expected to be 

diagnosed with Type 2 diabetes, due to the ageing population problem and 

rapidly increasing numbers of obese and overweight people (DiabetesUK, 

2012). Hence, it is significant that ophthalmologists pay close attention to 

pathological changes in their diabetic patients, so all abnormal cases can be 

diagnosed and treated early (Skarbez et al., 2010). The wide ranges of diabetic 

complications that affect ocular tissues are reviewed briefly, as follows: 

a) Conjunctiva: Diabetics are at the highest risk of developing bacterial 

infections of the conjunctiva, especially acute infectious conjunctivitis. The 

infective conjunctiva is an infection that affects the front skin of one or both 

eyes. A number of significant symptoms can be noted in affected patients, 

such as the whites of one or both eyes appearing inflamed, and red or 

                                                           
1
 American Diabetes Association website: http://www.diabetes.org/diabetes-basics/statistics/  

http://www.diabetes.org/diabetes-basics/statistics/
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pink. According to many studies, up to 86% of diabetic patients have 

abnormal changes in the conjunctiva (Schønheyder, 2006). 

b) Dry Eye: One of the most common conditions in diabetic patients is the 

dry eye syndrome, which can result in reduced corneal sensitivity. This 

leads to the negative effect of not making enough reflex tears, so the eye 

becoming inflamed (red and swollen) (Najafi et al., 2013).  

c) Lids/Lashes: This disease is reported as yellowish collections of 

cholesterol, which is more common in diabetic patients. These collections 

of cholesterol do not cause any pain and can be easily treated under the 

skin on or around the lids (Negi and Vernon, 2003). 

d) Cornea: Neurotrophic Keratopathy is the degenerative disease of the 

corneal epithelium layer, which is responsible for several corneal 

complications, such as repeated corneal erosions, persistent epithelial 

defects and disabled corneal innervation. These corneal complications 

have been connected to decreased sensitivity of the cornea, tear secretion 

abnormalities and poor cohesion between epithelium cells and the 

basement membrane (Choo et al., 2010). 

e) LASIK: This refers to the most common laser eye surgery for the 

correction of myopia, hyperopia, and astigmatism. As a result of it 

increasing corneal defects, some concerns have been raised about 

whether Laser-Assisted in situ keratomileusis (LASIK) can be safely 

performed on diabetic patients. Several studies have reported an 

increased incidence of epithelial complications in diabetic patients caused 

by LASIK (Jabbur et al., 2004). 
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f) Contact Lenses: Several studies have shown that diabetic patients are at 

a higher risk of developing contact lens complications than non-diabetic 

patients, especially, patients who wear contact lenses for a long period. 

Moreover, glucose levels in diabetic patient’s tears are higher than in non-

diabetics, which can increase the opportunity for eye infections (O’Donnell 

and Efron, 2012). 

g) Iris: Neovascularization is the most serious consequence of diabetes that 

can be observed around the pupil region and the complete iris surface in 

advanced cases. Several clinical reports have pointed out that 

Neovascularization can be found in up to 7 % of diabetic eyes and 60% of 

eyes with proliferative retinopathy. In addition, the iris epithelium in diabetic 

patients is at higher risk of becoming depigmented. This release of 

pigment from the iris has a negative effect on the corneal endothelium of 

diabetic patients (Chen, Chew and Chan, 2015). 

h) Mucormycosis: Mucormycosis is an uncommon disease, but is very 

aggressive and is often considered an opportunistic disease that can 

progress rapidly. This fungal infection affects immunocompromised 

individuals and Type 1 diabetic patient. It commonly starts in the paranasal 

sinuses or palate and then spreads to the orbital contents. Some of the 

hallmarks of this infection are an ocular pain, loss of vision, and 

ophthalmoplegia. The treatment of this infection comprises an aggressive 

use of Amphotericin B and surgical debridement (Lee, Holland and 

Glasgow, 1996). 
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1.4 Corneal Imaging Techniques 

In many clinical cases, an accurate evaluation of corneal structures is 

required in order to help the ophthalmologists in monitoring and treating 

different corneal diseases early and efficiently. However, poor resolution of 

ophthalmic instruments (e.g. the slit-lamp) has always been a challenging 

problem for ophthalmic clinicians and researchers to get a precise evaluation of 

corneal structures and monitor the effects of treatments of the different layers of 

the cornea. To overcome the limitations of poor resolution, new corneal imaging 

techniques have been developed, such as In Vivo Confocal Microscopy and 

Optical Coherence Tomography. 

1.4.1  In Vivo Confocal Microscopy (IVCM) 

IVCM is one of the most sophisticated and non-invasive imaging 

technique that is used to provide high-resolution images of the cornea, the 

conjunctiva and the limbus (Reinhard and Larkin, 2013). In 1955, the first 

confocal microscope was invented by Minsky while he was studying brain 

parenchyma cells. More recently, combining IVCM with high-performance digital 

imaging provides high-resolution images of the different layers of the cornea 

that can be stored and manipulated to produce 2D-images, 3D-images or 

numerical data such as corneal thickness. Figure 1.3 shows an example of 

these images captured from different layers of the cornea using IVCM. These 

images or subsequently extracted data are used to study and monitor both 

physiological and pathological cornea conditions. In fact, numerous publications 

have demonstrated the usefulness of IVCM as an important aid tool in the 

diagnosis and treatment of corneal dystrophies, infectious keratitis and the 
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assessment of corneal changes after refractive surgery or corneal surgery 

(Tervo and Moilanen, 2003), (Jalbert et al., 2003b). Over the last few years, the 

most commonly used types of confocal microscopes have been:   

a) The Tandem Scanning Confocal microscope (TSCM). 

b) The ConfoScan 4 Slit-Scanning Confocal Microscope (ConfoScan 4-

SSCM). 

c) The Heidelberg Retina Tomograph Rostock Corneal Module laser 

scanning confocal microscope (HRT or HRT3).  

 

Figure 1.3: In Vivo confocal microscopy (IVCM) images (Heidelberg Retina 

Tomograph – Rostock Cornea Module (HRT-RCM), (400×400) µm) (a) 

Superficial epithelial cells, (b) Basal epithelial cells, (c) Sub-basal nerves with 

Bowman layer, (d) Anterior Stroma with hyperreflective keratocyte nuclei, (e) 

Stromal nerve, (f) Endothelium (Reinhard and Larkin, 2013). 
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1.4.2   Ocular Coherence Tomography (OCT) 

The OCT is a new, non-invasive imaging technique that uses light waves 

to capture cross-section images of the retina and the light-sensitive tissue at the 

back of the eye in a matter of seconds (Carlo et al. 2015).  Analysis of the 

anterior part of the eye structure is also an essential aspect of ophthalmology 

examinations where many clinical cases require an accurate evaluation not only 

of the spatial relations but also the dimensions of the structures that comprise 

this part of the eye (Reinhard and Larkin, 2013). In clinical practice, corneal 

imaging is usually achieved using the slit lamp, which cannot be considered an 

objective quantitative evaluation technique. To overcome these limitations, new 

imaging techniques have been developed, which include anterior segment 

OCT.  

The OCT was first used in analysing the posterior part of the eye, and 

then a number of modifications and improvements were made in order to 

capture high-resolution images of the anterior part of the eye, and the resulting 

technique is now called Anterior Segment Optical Coherence Tomography (AS-

OCT). Numerous AS-OCT applications have been proposed, especially in the 

field of corneal graft and refractive surgery due to the ability of the new AS-OCT 

devices to measure the entire corneal thickness and the thickness of each 

corneal layer from the epithelium layer to the endothelium layer. Figure 1.4 

shows two anterior segment images acquired using the OCT imaging technique 

(Zysk et al., 2007). 
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Figure 1.4: Spectral domain of the Anterior Segment Ocular Coherence 

Tomography (SD-OCT) images: (a) Normal cornea and (b) Avellino corneal 

dystrophy (Reinhard and Larkin, 2013). 

 

1.5 Problem Definition  

In order to build an efficient and robust system for segmenting sub-basal 

epithelium nerves and endothelium cells in human corneal confocal images, a 

number of issues need to be taken into account, as discussed below. 

The Corneal Confocal Microscopy (CCM) images usually suffer from 

different types of artefacts (e.g., blurring, noise, specular reflections, low 

contrast, non-uniform illumination, etc.) associated with the acquisition process. 

This is due to a several factors including:  

a) The saccadic eye movement during the scanning process which causes a 

motion, blurring and/or displacement effects of the nerve fibers. 
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b) The spherical-like shape of the cornea layers which can lead to a non-

uniform distribution of the lighting in different areas of the corneal layers, 

and different attenuation of light along the various paths of illumination. 

This non-uniform distribution of the lighting causes the CCM images to 

have darker areas in their peripheral regions in most cases, making the 

characteristics of the cornea’s nerves and cells unclear.  

c) Subject movement due to breathing and the cardiac pulse occurring during 

the acquisition process may cause some images to be out of sequence in 

terms of depth. 

d) The appearance of small unwanted structures (e.g., basal epithelial cells, 

nerve deformities, keratocytes, etc.), which are neither corneal sub-basal 

nerves nor corneal endothelial cells. These artefacts make the detection of 

the corneal sub-basal nerves and the correct boundaries of the corneal 

endothelial cells a challenging task. Some representative examples of 

CCM images with different types of noise and artefacts are shown in 

Figure 1.5. 

A major challenge for carrying out this research is the unavailability of 

large public benchmark datasets of confocal microscopy images of the cornea. 

Hence, collaborations with leading experts were formed to provide necessary 

data for this research. Two datasets have been provided in collaboration with an 

expert advisory board from the Division of Medicine, Weill Cornell Medicine-

Qatar, Doha, Qatar and the Manchester Royal Eye Hospital, Centre for 

Endocrinology and Diabetes, UK. In addition, one dataset has been provided by 

a volunteer at the University of Coimbra, Portugal. 



___________________________________________________Chapter 1: Introduction 

15 
 

 

Figure 1.5: Representative examples of CCM images with different types of  

noise and artifacts: (a) Corneal tissue deformation, (b) Illumination artifacts and 

blood vessel, (c) Blurring effect due to saccadic eye movement,(d) Unwanted 

structures, (e) Stromal cells, (f) Depth differences and unwanted bright 

structures, (g) and (h) Illumination artifacts (Otel, 2012). 

 

1.6 Aims and Objectives 

The main aim of this research is to developing new diagnostic tools for 

extracting clinical features from the cornea’s epithelium and endothelium layers. 

Abnormalities of both corneal sub-basal nerves and corneal endothelial cells 

may be associated with a number of corneal and systemic diseases. For 

instance, damage to the endothelial cells can significantly affect the corneal 

transparency by altering the hydration of the corneal stroma, which is 

associated with irreversible endothelial cell pathology requiring corneal 

transplantation. To date, quantitative analysis of corneal sub-basal nerve and 

endothelial cell abnormalities has been manually performed by 
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ophthalmologists using time-consuming and highly subjective semi-automatic 

tools, which require an operator interaction. Specific objectives are designing 

and implementing two fast and fully-automated diagnostic systems for these two 

corneal layers, and extracting meaningful clinical features, which are aimed at 

helping ophthalmologists in monitoring and treating different corneal diseases 

early and efficiently. Further objectives are addressing the problem of the 

discontinuous corneal nerves and developing an automatic corneal sub-basal 

nerve registration system to address the displacement problem and produce a 

more informative corneal image that contains structural and functional 

information. The main objectives of this research work are:    

1. Propose efficient and robust image enhancement algorithms to improve 

the quality of the CCM images. For corneal sub-basal nerves, the 

emphasis will be on keeping the image structures, while removing noise 

and unwanted objects. In contrast, using corneal endothelial cells the 

emphasis will be on correcting the non-uniform illumination and reducing 

the amount of noise. 

2. Development of a fully-automated system that can be used for tracing the 

sub-basal nerves in corneal images and extracting meaningful clinical 

features, including thickness, tortuosity, length and density of the nerve to 

aid in the early diagnosis of DPN and when planning LASIK or 

Photorefractive keratectomy (PRK).  

3. The objective in 2 involves several issues that need to be tackled 

efficiently, including (i) developing an efficient and fully-automated nerve 

connection algorithm to connect the discontinuous corneal sub-basal 

nerves, which result from low visibility of parts of nerves or noise 
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introduced into the corneal images. Employing this procedure can play a 

significant role in calculating helpful and meaningful clinical features. (ii) 

Development of an efficient and accurate nerve thickness algorithm, 

without any manual intervention. 

4. Development of a fully-automated and real-time system for the 

segmentation and computation of endothelial cells in images of the human 

cornea obtained by In Vivo CCM. In this task, a number of useful clinical 

parameters will be extracted and calculated, including Mean Cell Density 

(ECD), Polymegathism, Pleomorphism, Mean Cell Area (MCA) and Mean 

Cell Perimeter (MCP). These clinical parameters could play a significant 

role in the early diagnosis of corneal pathology and in determining the 

health status of corneas for transplantation. 

5. Investigations into the design of an efficient and practical corneal nerve 

image registration system to produce a more informative corneal nerve 

image than the original images using a set of sequenced CCM images. 

This task also involves producing a colour coded corneal image map that 

can be used to give ophthalmologists an efficient and clear representation 

of the extracted clinical features for each nerve and layer in the corneal 

image.   

6. Evaluating the performance of the proposed systems and the possibility of 

utilizing them in real-world clinical setting to enable rapid diagnosis and for 

patient follow-up. In this task, the effectiveness and robustness of the 

proposed systems will be evaluated against manually traced benchmark 

images formulated by ophthalmologists for both corneal sub-basal nerves 

and corneal endothelial cells. 
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1.7 Contributions  

The main results and contributions made in this PhD research can be 

summarized as follows:   

1. Development of an objective, real-time and fully-automated system for 

tracing the sub-basal nerves in corneal images and extracting meaningful 

clinical features for the early diagnosis of diabetic neuropathy. In this 

system, an efficient image enhancement algorithm based on applying the 

Coherence filter followed by Gaussian filtering to enhance the visibility of 

the nerves and remove noise. Furthermore, a number of useful and 

meaningful clinical features are extracted (e.g., nerve tortuosity, nerve 

thickness, nerve length, etc.) which may be used for early diagnosis of 

diabetic polyneuropathy and when planning LASIK or PRK. 

2. A new nerve connection algorithm is proposed for connecting 

discontinuous nerves without any manual intervention, which can play a 

significant role in calculating helpful and meaningful clinical features, such 

as nerve tortuosity and nerve length that mainly depend on the whole 

structure of the nerve. In addition, an efficient and accurate nerve 

thickness algorithm based on distance transform, without any manual 

intervention, is also proposed.  

3. The performance of the proposed corneal sub-basal nerves system has 

been evaluated against manually traced ground-truth images from two 

databases. The first database consists of 498 corneal sub-basal nerve 

images (238 are normal and 260 are abnormal) captured using Heidelberg 

Retinal Tomograph equipped with a Cornea Rostock Module (HRT-CRM: 

Heidelberg Engineering, Heidelberg, Germany). While the second 
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database consists of 919 images taken from healthy subjects and diabetic 

patients with and without neuropathy using a Heidelberg Retina 

Tomograph equipped with Rostock Cornea Module (HRT-III). The results 

obtained demonstrate that the proposed system can be readily used as a 

useful clinical tool to support the expertise of ophthalmologists and save 

the clinician time in a busy clinical setting.  

4. An automatic corneal sub-basal nerve registration system is proposed to 

produce a colour coded corneal image map by overlaying a sequence of 

CCM images that may differ in their displacement, scaling, and rotation to 

each other. This system produces a new more informative corneal image 

containing structural and functional information that can be used to give 

ophthalmologists an efficient and clear representation of the extracted 

clinical features for each nerve and layer in the corneal image. In addition, 

the corneal image map can improve the nerve visibility and help with 

acquiring more precise clinical feature faster instead of manually searching 

through a sequence of CCM images to extract these features from each 

image individually.  

5. The performance of the proposed corneal sub-basal nerve registration 

system has been assessed on a database of 30 subjects (18 controls and 

12 diabetic patients) with a sequence of CCM images that varies between 

3 and 4 images per subject. We have managed to demonstrate the 

efficiency of the generated corneal image map in providing a better 

structural and functional information with less execution time compared to 

the original images by calculating four useful clinical features (e.g., nerve 

tortuosity, nerve thickness, nerve length and nerve density). 
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6. A totally automatic, robust and real-time system is proposed, termed the 

Corneal Endothelium Analysis System (CEAS) for the segmentation and 

computation of the different morphological parameters of endothelial cells 

in human cornea obtained by In Vivo corneal confocal microscopy. In this 

system, an efficient region-based segmentation approach based on the 

Voronoi Tessellation approach is employed to draw the boundaries of the 

corneal endothelial cells and ensure that a wider range of corneal 

endothelial parameters can be derived and analyzed (e.g., endothelial cell 

density, endothelial cell area, endothelial cell perimeter, polymegathism 

and pleomorphism).  

7. The performance of the proposed CEAS system has been evaluated 

against manually traced ground-truth images from two databases (each 

one consisting of 40 images). The images in these databases are acquired 

using a laser CCM (Heidelberg Retinal Tomograph III Rostock Cornea 

Module HRT III RCM; Heidelberg Engineering GmbH; Heidelberg; 

Germany), had very low quality compared to those in the literature. The 

overall measurement results have demonstrated the efficiency of the 

proposed CEAS system and the possibility of utilizing it in a real-world 

clinical setting to enable rapid diagnosis and for patient follow-up, with an 

execution time of only 6 seconds per image. 

 

1.8 Thesis Organization 

This PhD Thesis is organized into six chapters including this chapter. An 

overview of these chapters is presented below. The chapters' organization and 

the dependence among these chapters are illustrated in Figure 1.6: 
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 Chapter 2 presents literature review of previous investigations into cornea 

epithelium nerve analysis techniques; cornea nerve registration 

techniques; and cornea endothelium cells analysis techniques. It also 

details the motivations for this PhD research based on previous related 

work. 

 Chapter 3 introduces a robust, fast and fully-automated nerve 

segmentation and nerve morphometric parameters quantification system 

for confocal microscope images of the epithelium. This system is 

considered as a tool for early diagnosis of diabetic neuropathy. In this 

work, a number of features are extracted, including thickness, tortuosity, 

length and density of the nerve, which may be used for the early diagnosis 

of diabetic polyneuropathy 

 Chapter 4 introduces an automatic corneal sub-basal nerve registration 

system using FFT and phase correlation techniques for an accurate DPN 

diagnosis. This system is aimed at producing a new informative corneal 

image that contains structural and functional information of the corneal 

nerves. 

 Chapter 5 presents a fully-automated, robust and efficient real-time 

system for the segmentation and computation of morphological 

parameters associated with endothelial cells in human cornea obtained by 

In Vivo confocal microscopy. In this system, meaningful clinical parameters 

to improve diagnostic value are extracted which shows the possibility of 

utilizing it in real-time for early diagnosis of patients and for follow-up. 
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 Chapter 6 presents the overall conclusions, achievements and some 

limitations of the research. Possible future directions of this research are 

also outlined In this work. 

 

Figure 1.6: Chapters' organization and the dependence among dissertation 

chapters.
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Chapter 2 

Literature Review 

 

2.1 Introduction  

Over the last few years, researchers have demonstrated an increased 

interest in the field of automatic segmentation of corneal confocal images. 

However, the research related to corneal confocal images is limited and most of 

the systems proposed are incapable of detecting the corneal epithelium nerves 

or endothelial cells without the aid of manual (interactive) inputs such as the 

provision of seed points. Most of the methods presented are based on images 

from a specular microscope, which is excellent for imaging the central corneal. 

A specular microscope provides high contrast between different endothelial 

tissues and creates good, high contrast images with trivial light dispersal. In 

addition, small datasets of corneal images have been used in the assessment 

of most of these presented methods. In this work the literature review is 

organized as follows: corneal sub-basal epithelium analysis is reviewed in 

Section 2.2. Corneal nerve registration techniques are presented in Section 2.3. 

The review of corneal endothelium cell analysis is provided in Section 2.4. The 

knowledge gaps are presented in Section 2.5. Section 2.6 is a short summary.  

2.2 Corneal Sub-Basal Epithelium Nerve Analysis  

The work proposed in (Ferreira, Morgado and Silva, 2010) is a phase 

symmetry-based system for the segmentation of corneal nerves of images 

acquired by corneal confocal microscopy. Firstly, the contrast of the nerves is 
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increased and the noise is reduced, using contrast equalization, a phase 

symmetry-based approach and histogram processing. This is followed by a 

region growing, a nerve reconstruction technique to join the disconnected 

nerves. Small, isolated segments are discarded. Finally, two morphometric 

parameters are measured nerve tortuosity and the nerve length. The method 

was tested on a small dataset consisting of 15 images and achieved 87.1% ± 

8.1% correctly segmented nerves. The authors in (Otel et al., 2013) used the 

same algorithm as in (Ferreira, Morgado and Silva, 2010) but with a different 

dataset to extract a set of morphometric parameters consisting of tortuosity, 

density, length, width and branching measure. These were used to identify 

diabetic peripheral neuropathy and measure its severity. However, the authors 

found that the proposed nerve segmentation method did not give excellent 

results in extracting the clinical features. Therefore, manual segmentation with 

the aid of SPSS program was used to compute each morphometric parameter. 

(Ruggeri, Scarpa and Grisan, 2006) proposed a corneal nerve tracing 

and recognition system. The system starts by normalizing the contrast and 

luminosity of a corneal image and then applies an averaging filter to reduce its 

noise. A tracking procedure is then applied starting from a set of automatically 

defined seed points. In the final stage, fuzzy c-mean clustering is applied to 

classify the pixels as “nerve” or “non-nerve” pixels. The system performance 

was tested on 12 images and the execution time was 4-5 minutes per image. 

No further details on how they measured execution time were given. The results 

showed that the performance of the system could be affected by the presence 

of cells in images. Epithelium cells could be incorrectly identified as segments of 

nerves. (Poletti and Ruggeri, 2013) presented an algorithm for corneal nerve 
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recognition based on an automatically identified set of seed points lying all over 

the image. The nerves are traced by connecting the seed points using their 

minimum cost paths. This system was tested using a dataset consisting of 30 

epithelium corneal images. The algorithm achieved an average sensitivity of 

about 0.85, a false detection rate of 0.05 and an execution time of 25 seconds 

per image. No further details about how the execution time was measured are 

available.  

(Ferreira, Morgado and Silva, 2012) developed an automatic 

segmentation and morphometric analysis system for sub-basal corneal nerves 

images obtained by using corneal confocal microscopy. The system starts by 

enhancing the image contrast and reducing the noise using contrast 

equalization and a histogram procedure, respectively. To identify the nerve 

structures, a phase symmetry-based algorithm using a wavelet transform filter is 

used. Then, a nerve reconstruction process is implemented using manually 

selected sets of seed points, followed by a sequence of morphological 

operations to discard small segments. The system failed to recognize 5.3% of 

the nerves correctly. (Scarpa, Grisan and Ruggeri, 2008a) presented an 

algorithm for detecting corneal nerves in CCM images. Firstly, the algorithm 

starts by enhancing the luminosity and contrast of the corneal images by 

employing an equalization technique. This is followed by an automatic 

procedure to identify a set of seed points all over the input image to be used as 

starting points to detect each nerve in the image. The algorithm was tested on a 

dataset consisting of 90 images of control and patient subjects. It correctly 

recognized 80.4% and 83.8% of nerve length, compared with the manually 

traced nerves length, in control and patient subjects, respectively. (Scarpa et 
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al., 2011) presented an automatic algorithm to calculate and classify the 

tortuosity of corneal nerves using a dataset containing 30 corneal sub-basal 

nerve images. The proposed algorithm is based on the tracing and recognition 

system for corneal nerves in (Scarpa, Grisan and Ruggeri, 2008a).  Nerve 

tortuosity was calculated using an algorithm based on the number of twists in 

the curvature sign and on the amplitude. The results obtained were compared 

against the manual evaluation performed by an expert. Only 2 classification 

errors in 30 images were made by the proposed algorithm. An automatic 

analysis and classification system for detecting nerves in confocal microscopy 

corneal images based on a multi-scale dual model detection algorithm was 

presented in (Dabbah et al., 2011). Feature vectors were generated from this 

dual-model detection to be used in the classification stage, which is based on 

the Random Forest (RF) and Neural Networks (NN) to classify the pixels as 

nerve or non-nerve pixels. The performance of the proposed system was 

evaluated using a database consisting of 521 CCM images, which is a subset of 

a database used in the work presented in this PhD Thesis. The highest 

sensitivity and specificity using the proposed system were achieved at an EER 

of 15.44%. The work reported in (Guimar et al., 2014) presents an automatic 

system to trace sub-basal plexus nerves in images which are acquired by CCM. 

First, a top-hat Morphological operation is used to enhance the image’s 

contrast. Next, a Log-Gabor filter is applied to enhance the corneal nerve 

structure. This is followed by hysteresis thresholding to obtain candidate nerve 

segments that are input to a Support Vector Machine (SVM) to distinguish 

between nerve and non-nerve segments. The system performance was tested 

on 246 images and achieved an average sensitivity of 0.88±0.06. 
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(Dabbah et al., 2009) developed two techniques for nerve detection. The 

first technique was based on a linear operator, which was devised originally for 

asbestos fibres. This technique exploits the line-like structure of the nerve. The 

second technique is based on Gabor wavelet filtering to detect nerve fibres in 

the corneal image. Then a thresholding operation is applied on both methods to 

obtain binary images followed by thinning to provide a skeleton image with a 

tolerance of about ±3.1µm in nerve location. The two proposed techniques were 

tested on only 12 CCM images, which cannot be considered enough to give a 

clear indication of the performance of the proposed techniques. A supervised 

learning algorithm to classify CCM images based on manually traced tortuosity 

of the nerves was introduced in (Annunziata et al., 2014). The method was 

applied to 100 corneal nerve images and tortuosity was classified into four 

classes (normal, mild, high and severe) by three ophthalmologists. Curvature 

and number of inflection points are used in the feature vector for the proposed 

supervised-learning system. In this system, a training phase is needed and the 

performances of the proposed system were tested on unseen CCM images by 

employing 20 fold cross-validation procedure. 

2.3 Corneal Nerve Registration Techniques 

It is worth mentioning, that over the last few years, only a very limited 

number of practical medical image registration techniques of corneal confocal 

images have been proposed: (Elbita et al., 2014) proposed an automatic 

system to produce a 3D visualization from a sequence of 2D corneal images 

taken from different layers. A comparison study between the use of speeded-up 

robust features (SURF) and scale invariant feature transform (SIFT) based 
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technique was done to evaluate their performance in overlaying a sequence of 

CCM images that differ in their displacement and illumination conditions. 

(Scarpa, Fiorin and Ruggeri, 2007) proposed an image registration algorithm 

based on normalized correlation to create a 3D model of the cornea using a 

sequence of CCM images from epithelium to endothelium. A method of 

registration based on normalized correlation is used on each image to take 

account of the normal movements of the eye during the acquisition which 

causes shifts in the sequence of images to take place. A stack of 2D images is 

reconstructed allowing for shifts directions along x, y, and z. The data missing is 

reconstructed using lines from adjacent images. The registration algorithm is 

affected by large displacements along the z-direction and the quality of CCM 

images to be registered. (Ito et al., 2008) proposed a medical image registration 

method using Phase-Only Correlation (POC) to overlay two dental radiograph 

images. The method searches for corresponding points between two dental 

images using POC and corrects non-linear distortion based on a Thin-Plate 

Spline (TPS) technique. Experimental evaluation of the proposed algorithm 

indicates efficient performance even when the radiograph is distorted. More 

proposed medical image registration techniques can be found in (Oliveira and 

Tavares, 2014; Tang and Chen, 2012). 

2.4 Corneal Endothelium Cells Analysis  

The work described in (Foracchia and Ruggeri, 2000) proposed a 

corneal endothelial cells segmentation approach based on a neural network 

architecture whose weights parameters (numerical filters) were specifically 

prepared for a border detection problem and obtained from a Boundary Contour 
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System (BCS). The “expert correction” approach was proposed to recover 

missing boundaries and tentative splitting or merging of cell bodies. This 

algorithm also used endothelial images collected from 3 different ophthalmic 

instruments with no information given about these instruments. In (Ruggeri, 

Grisan and Jaroszewski, 2005) a fully automated algorithm is presented for 

estimating endothelial cell density based on extracting the spatial frequencies 

present in digital endothelial images using a 2D-Discrete Fourier Transform 

(DFT) approach. The frequency information obtained from a circular band in the 

2D-DFT of the endothelial images contains information related to the endothelial 

cell density. The performance was evaluated on 100 corneal endothelial images 

obtained by following the same procedures usually employed at the Berlin 

Cornea Bank. The endothelial images of these corneas were acquired using an 

inverse phase contrast microscope. The mean difference between automated 

and manual densities was 14 (cells/mm2), with a standard deviation of 119 

(cells/mm2) and the running time was (1-2) seconds per image. An approach to 

derive the density of endothelial cells without determining the cell boundaries 

was proposed in (Grisan et al., 2005) and assumed an approximately regular 

tessellation of hexagonal shapes. The approach calculated the inverse 

transpose of a matrix (aka basis) producing this cellular lattice, which is used to 

estimate the cell density. Due to the different sizes and spatial orientations of 

endothelial cells throughout the image, the basis matrix could differ significantly 

from one region to another and a local estimation is performed to reduce the 

effects of this variability. The performance of this approach was evaluated on a 

set of 21 corneal endothelial images captured using an inverse phase-contrast 

microscope in the Berlin corneal bank. The mean difference between the 
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manual and automated endothelial cell densities was -0.1% (6.5% for absolute 

differences).  

(Foracchia and Ruggeri, 2007) have presented a new automatic 

detection and analysis approach based on a set of single cell boundary models, 

which statistically describe individual endothelial cells in terms of a priori shape 

information and a-posteriori image representation. Each cell was individually 

determined (by Maximum Posteriori estimation) in an image given a starting 

point and a Simulated Annealing (SA) as an optimization algorithm. While a cell 

field is estimated, further information is introduced and the overall model 

identification is improved by using the interaction between cell models. The 

results show an improvement in the detection of cell contours of specular 

microscope images. (Hiroyasu et al., 2013) proposed a corneal endothelial cell 

segmentation system based on constructing a tree-structural image-processing 

filter, which can be applied to images of regions with different statistics. This 

system produces two types of nodes (e.g., one type represents well-known 

image-processing filters and the second represents conditional branches); their 

combination is optimized using genetic programming (GP). Experiments were 

undertaken on only two corneal endothelial images captured using a phase-

contrast microscope.  

(Scarpa and Ruggeri, 2015) proposed a segmentation system identifying 

endothelial cell boundaries based on a genetic algorithm technique. The 

operation of the genetic algorithm is mainly dependent on combining 

information about the model regularity of endothelial cell appearance with the 

intensity of the actual pixels in the corneal image. Experiments on 15 corneal 

endothelial images captured with a specular endothelial microscope were 
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achieved by comparing with ground truth acquired from manually drawn 

endothelial cell boundaries. The average difference between the manual and 

automated approach was 4%, and the maximum difference was lower than 7%.  

(Poletti and Ruggeri, 2014) have also presented an analysis method 

based on a supervised classification system for endothelial cell segmentation. 

This method was used to extract the cell boundary polygon in terms of its three 

elements: vertices, sides and body, employing a multi-scale approach with 2D 

matched filters. In particular, three kernels were prepared to extract the three 

endothelial cell components’ signatures. These components’ signatures were 

used as features to train Support Vector Machine (SVM) classifier, to provide 

the final endothelial cell segmentation. The performance of this method was 

evaluated on a set of 20 images acquired by In Vivo specular microscopy and 

the running time was 5 to 10 seconds per image. Two approaches to analyze 

and quantify corneal endothelial cells captured by In Vivo white light slit-

scanning confocal microscopy were presented by (Selig et al., 2015). The first 

approach depends on a spatial frequency spectrum analysis approach to 

evaluate the Endothelial Cell Density (ECD). In the second approach, 

endothelial cells are automatically segmented by employing a stochastic 

watershed approach after randomly placing the seeds over the whole image. 

Due to noise in the input image, which causes over-segmentation, a smoothing 

filter with a Gaussian kernel and H-minima transform was applied before 

applying the stochastic watershed approach to estimate endothelial cell density, 

polymegathism and pleomorphism. However, in some cases, an operator 

interaction is required to correct the final segmented results, which can take 

approximately 30 seconds and altogether 4 minutes are required to estimate the 
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cell density, limiting real-time application in a clinic. The performance of the two 

algorithms was evaluated on a set of 52 corneal endothelial images captured 

from 23 patients using a white-light slit-scanning confocal microscope and 

compared with the NAVIS software. 

(Sharif et al., 2015) developed a hybrid model for analyzing confocal 

endothelial images based on a combination of Active Contour Model (ACM) of 

the Snake (S) model and the Particle Swarm Optimization (S-PSO) approach. 

Firstly, a pre-processing procedure is employed using DFT combined with a 

Band-pass Butterworth filter to enhance the quality and reduce the noise level 

of the input image. Then, boundaries of the corneal endothelial cells are traced 

using the (S-PSO) approach. Results from 11 abnormal confocal endothelial 

images were compared with manual and two other approaches based on 

morphological operations. The mean differences between manual and 

automated cell densities were 5%, 7% and 13%, respectively. 

2.5 Current Challenges and Knowledge Gaps  

Through these surveys of the previous research on cornea epithelium 

nerve analysis techniques, cornea nerve registration techniques and cornea 

endothelium cells analysis techniques it is clear that there is a significant need 

for an improved methodology to quantify corneal nerve and cell morphology. 

Firstly, most of the methods presented are based on images from a specular 

microscope, which is excellent for imaging the central corneal. A specular 

microscope provides high contrast between the different cornea tissues and 

creates good, high contrast images with trivial light dispersal. Despite increasing 

use of In Vivo corneal confocal microscopy for both clinical and research 



_______________________________________________Chapter 2: Literature Review 

33 
 

purposes, little research has been undertaken to develop a fast and fully-

automated segmentation algorithm for quantifying corneal endothelial images 

acquired with In Vivo corneal confocal microscopy. 

In this state, this makes it impossible to compare our results with other 

studies. Secondly, most of the existing methods are based on defining a set of 

seed points all over the image, whether manually or automatically. Thirdly, 

relatively small datasets of corneal confocal microscopy images have been 

employed in the assessment of most of these presented methods, which are 

insufficient to reliably reveal the real world performance of the proposed 

approaches. Moreover, the processing time for tracing all the nerves or 

determine each cell in a single image can take more than one minute in some 

cases. In this PhD Thesis to overcome these deficiencies, for clinical diagnostic 

use for epithelium and endothelium cornea layers, an accurate, fast and fully 

automatic corneal analysis system is proposed. 

2.6 Summary  

In this work, a brief literature review of previous research related to 

cornea epithelium nerve and endothelium cell images is presented. A number of 

limitations have been highlighted, as discussed in the previous section. In this 

PhD Thesis, three databases are used to assess the efficiency of the proposed 

systems. The first consists of a total of 498 nerve images from 20 subjects (Otel 

et al., 2013) and the number of images per subject vary between 12 and 38. In 

this dataset, 12 subjects had diabetes and 8 had no diabetes. The second 

database (Chen et al., 2015a) consists of a total of 919 nerve images where 

445 images are from 84 control subjects and the remaining 350 images are 
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from 63 diabetic patients without neuropathy, and 124 images are from 25 

patients with neuropathy. The third database, a total of 80 images of corneal 

endothelial cells was acquired using a laser CCM  (Tavakoli and Malik, 2011). 

These images were divided into two databases, each containing 40 images. 

There is no previous work on this database. 
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Chapter 3 

Cornea Sub-Basal Epithelium Analysis  

   

3.1 Introduction  

The cornea consists of five layers: the Epithelium, Bowman, the Stroma, 

Decement’s membrane and the Endothelium layer, as shown in (Chapter 1, 

Figure 1.2) (Patel et al., 2002). It contains sensory and autonomic nerves 

located at the interface between the Bowman’s layer and the basal epithelium. 

Corneal Confocal Microscopy (CCM) is a rapid non-invasive In Vivo clinical 

technique for capturing images of the different corneal layers (Jalbert et al., 

2003). Morphological alterations in the epithelium, stroma and endothelium 

provide insights into a variety of corneal diseases (Bitirgen et al., 2013; Bitirgen 

et al., 2015)  and assessment of  the effects of wearing contact lenses (Patel et 

al., 2002), LASIK or PRK (Moilanen et al., 2003), fungal keratitis (Kurbanyan et 

al., 2012), corneal transplantation (Niederer et al., 2007) or conditions such as 

keratoconus (Patel and McGhee, 2006; Simo Mannion, Tromans and 

O’Donnell, 2005). CCM has also been used in the assessment of peripheral 

neuropathies (Chen et al., 2015; Alam et al., 2015). The development of 

automated imaging algorithms for the processing of CCM images is a 

necessary accompaniment to such work. Diabetes is the main cause of 

neuropathy complications and in the present work patients with a known history 

of cancer, chemotherapy, alcoholism, celiac disease or a deficiency of vitamin 

B12 or folate, abnormality in ANA or immunoglobulins were excluded to remove 

other causes of peripheral neuropathy from the input data. Diabetes can result 
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in nerve disorders and nerve damage that affect various parts of the human 

body, such as the digestive tract and the cardiovascular system (Dehghani et 

al., 2014; Pacaud et al., 2015). Quantifying corneal nerve morphology has been 

shown to have promise as an imaging biomarker for early diagnosis of sub-

clinical diabetic neuropathy (Quattrini et al., 2007; Azmi et al., 2015) and to 

have value in predicting those who develop clinical neuropathy (Lovblom et al., 

2015; Pritchard et al., 2015) and response to therapy (Tavakoli et al., 2013). 

Presently, most analysis methods of the corneal nerves are based on 

wearisome and are very time consuming manual tracing programs. As a result, 

the information obtained on the clinical parameters quantification is subjective 

and can have limited reproducibility (Petropoulos et al., 2013). A fully automatic 

and real-time system for tracing sub-basal nerves and extracting clinically 

meaningful parameters is required. Such a system would reliably and efficiently 

assess nerve pathology in diabetic patients and provide an objective means for 

diagnostic and staging purposes (Ferreira, Morgado and Silva, 2010; Dabbah et 

al., 2011; Petropoulos et al., 2014). However, in order to build an efficient and 

robust system for segmenting the sub-basal nerves in corneal images, a 

number of issues need to be taken into account, including the visual contrast of 

nerves, the discontinuities in some nerve images, and the inconsistent 

intensities of corneal sub-basal images, which can all play a significant role in 

decreasing segmentation performance. 

In this work, a robust, fully automatic segmentation and morphometric 

parameter quantification system for CCM images of human corneal sub-basal 

nerves is proposed. The segmentation part consists of three main steps. Firstly, 

a pre-processing step to enhance the visibility of the nerves and reduce noise 
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by applying anisotropic diffusion filtering (Coherence filter) and a Gaussian filter. 

Secondly, unwanted features such as epithelial cells and other small structures, 

which are not nerves, are removed from the input image by applying a number 

of morphological operations. Finally, an edge detection process is applied to 

detect all the nerves in the input image. In the quantification of morphometric 

parameters, a number of useful clinical features are extracted, including nerve 

tortuosity, nerve thickness nerve length, nerve density and other clinical 

features of the nerve to aid in the early diagnosis of DPN. The main contribution 

of this work is developing an objective and fully automatic system that can be 

used for tracing the sub-basal nerves in corneal images and extracting 

meaningful clinical features for early diagnosis of diabetic neuropathy. 

Moreover, an efficient algorithm is proposed for connecting discontinuous 

nerves without any manual intervention, which can play a significant role in 

calculating helpful and meaningful clinical features, such as nerve tortuosity and 

nerve length that mainly depend on the nerve structure. Finally, an efficient and 

accurate nerve thickness algorithm, without any manual intervention, is also 

proposed. 

This chapter is organized as follows: Section 3.2 includes descriptions of 

the proposed methodology of corneal sub-basal nerve segmentation and 

quantification system with the materials used. The experimental results are 

presented in Section 3.3. Finally, a summary is stated in the last section. 
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3.2 The Proposed Methodology  

The proposed automatic nerve evaluation system is divided into two 

main stages: the nerve segmentation stage and the morphometric parameters 

quantification stage. The segmentation stage consists of three main steps: a 

pre-processing step to enhance the images; a morphological operations step to 

remove unwanted objects and an edge detection step to detect the nerves. In 

the morphometric parameter quantification stage, clinically useful nerve features 

(e.g., thickness, tortuosity, length, density, etc.) are extracted and presented in 

a quantitative format. A block diagram of the proposed system is shown in 

Figure 3.1. 

 

 

Figure 3.1: Overview of the automatic proposed corneal nerve segmentation 

and quantification system. 
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3.2.1  Data Used 

Two databases were used to assess the efficiency of the proposed 

corneal nerve system. The first consists of a total of 498 images from 20 

subjects (Otel et al., 2013) and the number of images per subject varies 

between 12 and 38 with 12 subjects had diabetes and 8 had no diabetes, and 

mean ages of (58 ± 10) years and (54 ± 7) years, respectively. Diabetic patients 

were classified into 3 groups: 4 with No neuropathy (mean age 53 ± 11 years), 

5 with Mild Neuropathy (mean age 58 ± 9 years) and 3 with Moderate 

neuropathy (mean age 60 ± 9 years). Images (samples are shown in Figure 3.2) 

were acquired using a Heidelberg Retinal Tomograph equipped with a Cornea 

Rostock Module (HRT-CRM: Heidelberg Engineering, Heidelberg, Germany). 

The images were saved in JPEG compressed format with a size of (384×384) 

pixels covering a (400×400) μm2 frame size at an optical magnification of 63X. 

The second database (Chen et al., 2015a) consists of a total of 919 images 

where 445 images are from 84 control subjects and the remaining 350 images 

are from 63 diabetic patients without neuropathy, and 124 images are from 25 

patients with neuropathy. The CCM images were captured using a Heidelberg 

Retina Tomograph equipped with Rostock Cornea Module (HRT-III). The 

images have a size of (384×384) pixels with a pixel size of 1.0417μm and 8-bit 

grey levels and were saved in BMP format. 
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Figure 3.2:  Images from the dataset used. The first two images from the top 

are from healthy control subjects, while the bottom two images are from diabetic 

patients. 

3.2.2  Pre-processing Stage 

The pre-processing stage aims at addressing a number of issues related 

to enhancing and improving the quality of the corneal images. Movements of 

the eye during the image acquisition process can cause a motion blurring effect 

and those CCM images of adjacent layers to be displaced laterally with respect 

to each other. In addition, the spherical shape of the cornea layer leads to 

unequal distribution of lighting cornea areas during the acquisition process. 

Image acquisition process can also lead to the emergence of some observed 

artefacts.  
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In order to address all the above problems, coherence filtering 

(anisotropic diffusion filtering) and Gaussian filtering have been used to 

enhance edges in the corneal image and reduce noise while preserving nerve 

structure. In this stage, a tensor form was used to adjust the diffusion to the 

underlying corneal image structure and reduce the noise along the edges of the 

nerves, rather than using a scalar diffusion constant. In general, the tensor can 

be built in many ways. Either Coherence-Enhancing Diffusion (CED) for 

enhancing line-like textures in the image or Edge-Enhancing Diffusion (EED) to 

reduce the noise while enhancing edges is used (Mendrik et al., 2009; Weickert, 

1998). In this work, a Hybrid Diffusion filter with a Continuous Switch (HDCS) 

has been used, combining the CED and EED algorithms (Mendrik et al., 2009). 

The HDCS is an important approach for nerve enhancement, because the 

corneal image contains tubular and planar image structures. Therefore, if the 

structure of the image is tubular, the HDCS turns into CED and if it is planar, the 

HDCS turns into EED. In addition, the standard discretization scheme, non-

negative discretization scheme and the optimized discretization scheme have 

been used as diffusion schemes. 

3.2.2.1 Diffusion Filtering 

Dirk-Jan Kroon used anisotropic diffusion filtering (Kroon, Slump and 

Maal, 2010) as an iterative filtering approach for edge-preserving smoothing in 

medical images, which can also be used to enhance the edges in a corneal 

image, reduce noise and preserve the nerve structure. The structure of the local 

image required in diffusion filtering is described using a structure tensor 𝑱(𝜵𝑰), 
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(also referred to as a "second-moment matrix") given by Eq.3.1. More details 

can be found in (You et al., 1996). 

𝑱(𝛁𝑰) = 𝑲𝒋 ∗ (𝛁𝑰 ∙ 𝛁𝑰𝑻)                                                 (𝟑. 𝟏) 

Here, 𝜵 is the del or nabla operator, 𝜵𝑰 is the image gradient and 𝑲𝒋 

denotes a Gaussian kernel and * is the convolution operator. The local 

orientation of the image is obtained from the eigen decomposition of the 

structure tensor: 

𝑱(𝛁𝑰) = [𝑽𝟏  𝑽𝟐 ] ∙ [
𝝁𝟏   𝟎
𝟎    𝝁𝟐

] ∙ [
𝑽𝟏   

𝑻

𝑽𝟐   
𝑻 ]                                   (𝟑. 𝟐) 

where 𝑽𝟏, 𝑽𝟐 are eigenvectors that give the orientation of the local image with 

𝑽𝟏 = [𝒗𝟏𝟏  𝒗𝟏𝟐]   
𝑻 , etc., and the eigenvalues, with  𝝁𝟏 ≥ 𝝁𝟐 can be used to 

describe the average contrast in these directions. This structure tensor is used 

to define the diffusion tensor D, which can be defined as follows (Weickert and 

Scharr, 2002): 

𝝏𝒖

𝝏𝒕
 = 𝛁 ∙ (𝑫𝛁𝒖)                                                           (𝟑. 𝟑) 

where 𝒖(𝒖 = 𝒖(𝒕, 𝒙, 𝒚)) is the image, 𝒕 the diffusion time and 𝒙, 𝒚 are the pixel 

coordinates and 𝜵𝒖 is the gradient of the image 𝒖. In general, the diffusion 

tensor D has the same eigenvectors set as given by the structure tensor: 

𝑫 = [
𝑫𝟏𝟏    𝑫𝟏𝟐

𝑫𝟏𝟐     𝑫𝟐𝟐
]    𝒘𝒊𝒕𝒉  𝑫𝒊𝒋 = ∑ 𝝀𝒏 𝒗𝒏 𝒊 

𝒏=𝟏..𝟐

 𝒗𝒏 𝒋                             (𝟑. 𝟒) 

In Eq.3.2 and Eq.3.4, It has been noticed that the symmetry 

between 𝛌𝟏, 𝛌𝟐, which are the eigenvalues of the diffusion tensor and the 

structure tensor. Due to the nature of the corneal image, which consists 

of planar and tubular structures, the HDCS is used in this work. 
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Depending on the local corneal image structure, the HDCS switches 

between CED and EED, the former if the local structure is tubular, or 

the latter if the local structure is planar. 

3.2.2.2 Hybrid Diffusion With Continuous Switch (HDCS) 

In general, medical images have complex structures with varying level of 

intensities, shapes and sizes. If the EED is applied to a corneal confocal image, 

it filters the noise and enhances the edges and curves of the image, but blurs 

small structures. On the other hand, if the CED is applied, it enhances line-like 

structures such as nerves and preserves small structures (Mendrik et al., 2009). 

Therefore, a new filter combining the advantages of both EED and CED could 

lead to better results. As mentioned before, a structure tensor is used to 

construct the diffusion tensors for the EED and CED.  

(Frangakis and Hegerl, 2001) have proposed a discrete switch form to 

integrate EED and CED based on the difference (𝝁𝟏- 𝝁𝟐) of the structure tensor 

eigenvalues. However, the proposed filter cannot be applied properly in some 

situations. On the other hand, (Mendrik et al., 2009) have proposed a Hybrid 

Diffusion with Continuous Switch (HDCS) by continuously combining the 

intermediate geometries of the EED and CED. The eigenvalues of the proposed 

hybrid diffusion tensor (𝝀𝒉𝒊
) are adjusted to be a linear combination of the 

eigenvalues of the EED (𝝀𝒆𝒊
) and CED (𝝀𝒄𝒊

), which are given as follows: 

(𝝀𝒉𝒊
) = (𝟏 − 𝜺) ∙ (𝝀𝒄𝒊

) + 𝜺 ∙ (𝝀𝒆𝒊
)                                                    (𝟑. 𝟓) 

where (𝜺) refers to the EED fraction which switches between using the 

eigenvalues of the EED eigenvalue (𝜺 → 𝟏) or the CED eigenvalue (𝜺 →

𝟎) diffusion tensor. In this work, Hybrid Diffusion with Continuous Switch 
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(HDCS) is proposed to enhance the structure of the corneal sub-basal nerves 

and reduce the unwanted noise.  Therefore, the CED should be applied first, to 

preserve small structures and followed by EED, to reduce the noise isotropically 

(Mendrik et al., 2009). 

 

Figure 3.3: Notations for (a) the standard discretization scheme and (b) the 

non-negative discretization scheme.  

3.2.2.3 Diffusion Schemes 

The diffusion tensor equation (Eq.3.3) can be solved numerically using 

finite differences methods, using central differences instead of the spatial 

differences, and a forward difference approximation to discretize ∂u/∂t 
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(Frangakis and Hegerl, 2001), as shown in Eq.3.6. The result is the basic 

structure of an explicit scheme, which can be used to compute the values at a 

new time level from the previous level as shown in Eq.3.7: 

𝒖𝒊,𝒋
𝒌+𝟏 − 𝒖𝒊,𝒋

𝒌

𝓣
= 𝑨𝒊,𝒋

𝒌 ∗ 𝒖𝒊,𝒋
𝒌                                                    (𝟑. 𝟔) 

 

𝒖𝒊,𝒋
𝒌+𝟏 = (𝑰 + 𝓣𝑨𝒊,𝒋

𝒌 ) ∗ 𝒖𝒊,𝒋
𝒌                                                 (𝟑. 𝟕) 

Here, 𝓣 refers to the time step size and 𝒖𝒊,𝒋
𝒌  refers to the approximation of 

𝒖(𝒙, 𝒕) in pixel (𝒊, 𝒋) at time 𝒌𝓣. The notation 𝑨𝒊,𝒋
𝒌 ∗ 𝒖𝒊,𝒋

𝒌  is a discretization of the 

diffusion tensor expression. In this work, three schemes have been 

investigated. These are the standard discretization scheme (Fritz, 2006), the 

non-negative discretization scheme (Weickert, 1998) and the optimized scheme 

(Kroon, Slump and Maal, 2010). Figure 3.3 (a) and (b) show the stencil 

representations of the standard discretization and the non-negative 

discretization for 𝑨𝒊,𝒋
𝒌 , assuming that the pixels have length 1 in both directions. 

Here a, b and c are the output of the diffusion tensor D. The last scheme is the 

optimized scheme for rotational invariant structures proposed by Dirk-Jan et al, 

for which more details to optimize the image derivatives in a numerical way can 

be found in (Kroon, Slump and Maal, 2010). In this work, the coherence filter 

has been applied over four iterations, three in the pre-processing stage and one 

at the beginning of the edge detection stage. Each has been executed using a 

different diffusion scheme trying to enhance the structure of the corneal nerve 

without losing important information. In the pre-processing stage, the 

parameters have been set empirically, as follows: Diffusion Time = 2, Diffusion 

Time Step size = 0.5, σ = 8, D = HDCS, with the diffusion scheme set to 
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standard discretization in the first iteration and set to non-negative discretization 

in the second and third iterations. In fact, all the parameter values in this step 

were chosen after an intensive empirical study investigating their influence on 

corneal images of different degrees of resolution. For example, the temporal 

step was set to be equal to 2, given that for lower values than 2, the produced 

image still has some noise, which results in detecting unwanted segments (e.g. 

small cells). Whereas for higher values than 2, a highly smoothed image will be 

produced with a large number of discontinues nerves. An example of a filtered 

image is shown in Figure 3.4 (b). The output of the coherence filter is smoothed 

further using a 2D-Gaussian filter, to reduce false artefacts, obtain a better 

corneal image for the edge detection stage and enhance the corneal image 

quality, with the result shown in Figure 3.4(c). The Gaussian filter (Haddad and 

Akansu, 1991) modifies the input signal through convolution with a 2D-

Gaussian function defined as follows:  

    𝑮(𝒙, 𝒚) =
𝟏

𝟐𝝅𝝈𝟐
𝒆

−
𝒙𝟐+𝒚𝟐

𝟐𝝈𝟐                                           (𝟑. 𝟖) 

where x and y are the distances from the origin along the horizontal and vertical 

axes respectively, and σ (set to 2) is the standard deviation of the Gaussian 

distribution. 

3.2.3  Morphological Operations Stage 

The main purpose of this stage is to describe the nerve structure more 

accurately by removing imperfections (e.g. various types of noise that can affect 

the nerve’s structure) and make the nerve more visible. In this stage, the 

opening and erosion operations are used.  Morphological operations are also 

http://en.wikipedia.org/wiki/Standard_deviation
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used in other places in the proposed system to eliminate unwanted areas (small 

segments) without affecting the overall shape of the nerve. Generally, the 

morphological operations require two inputs, the input image that is to be 

processed and a structuring element (De, Chanda and Chattopadhyay, 2006). 

Dilation and erosion operations are the basic operations used in most 

morphological operations and are defined as follows:  

𝒇 ⊕ 𝑩 = 𝐦𝐚𝐱
𝒖,𝒗

(𝒇(𝒙−𝒖,𝒚−𝒗) + 𝑩(𝒖,𝒗))                                          (𝟑. 𝟗) 

𝒇 𝚯 𝑩 = 𝐦𝐢𝐧
𝒖,𝒗

(𝒇(𝒙+𝒖,𝒚+𝒗) − 𝑩(𝒖,𝒗))                                         (𝟑. 𝟏𝟎) 

where 𝒇 is a greyscale image, B is a structuring element. 𝒇 ⊕ 𝑩 and 𝒇 𝚯 𝑩 

represent a dilation and erosion, respectively. The opening and closing 

operations are defined in terms of the dilation and erosion operations, in 

Eq.3.11 and Eq.3.12, respectively:  

𝒇𝝄𝑩 = (𝒇 𝚯 𝑩) ⊕ 𝑩                                                     (𝟑. 𝟏𝟏) 

𝒇 • 𝑩 = (𝒇 ⊕ 𝑩)𝚯 𝑩                                                     (𝟑. 𝟏𝟐) 

The values of the parameters used in this stage were selected 

empirically after a number of experiments were carried out using corneal sub-

basal images with different levels of noise and illumination, taken into account 

enhancing the structure of the corneal nerve without losing important 

information in the whole image rather than a specific region of interest (ROI). 

The morphological opening operation is carried out on the image output from 

the Gaussian filter, using a disk-shaped structure element of 4 pixels radius, 

followed by a background subtraction operation to separate out foreground 
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objects from the background and detect the corneal nerves correctly. Then, an 

image contrast enhancement procedure is applied to enhance nerves visibility 

and to enhance the illumination uniformity of the corneal image by stretching the 

overall contrast of the image between two predefined lower and upper cutoffs 

which are empirically set to be 0.55, and 0.999, respectively. Finally, a 

morphological erosion operation using a structure element of 1-pixel is applied 

to refine the shapes of the corneal nerves, as shown in Figure 3.4 (d). Objects 

of 1-pixel size are discarded. 
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Figure 3.4: Corneal nerve segmentation system outputs: (a) Original corneal 

image, (b) Coherence filter output, (c) Gaussian filter output, (d) Morphological 

operations stage output, (e) Segmented image from the edge detection stage, 

(f) Automatically traced corneal sub-basal nerves, (g) Manually traced corneal 

sub-basal nerves. 
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3.2.4  Edge Detection Stage 

The edge detection process is used here to preserve useful structural 

information about nerve boundaries and to drastically reduce unwanted areas. 

The main implemented approaches in edge detection stage are shown in Figure 

3.5. Firstly, the coherence filter is applied again for further enhancement and 

removal of noise introduced by the morphological stage, which can affect the 

accuracy of the nerve detection in the subsequent stages. In this step, the 

parameters of the coherence filter have been set empirically as follows: 

Diffusion Time =1, Diffusion Time Step size = 0.1, σ = 8, D = HDCS, and the 

diffusion scheme = Optimized Derivative Kernels Scheme.  The corneal nerves 

are then detected by applying a Canny edge detector (Canny, 1986); more 

details in Appendix A. Further refinement is required to preserve the accurate 

thickness of the detected nerves, to remove some noisy background pixels, and 

to connect discontinuities in nerves in the segmented image. A morphological 

dilation operation is applied firstly using two line-shaped structural elements, 

with lengths of 3 and angles of 90º and 0º, respectively. Secondly, a 

morphological erosion operation is applied twice using structure element of one 

pixel size, to refine the shapes of the detected nerves. This is followed by a 

candidates’ selection procedure based on the properties of the connected 

objects in the refined image where only objects that have a total area of more 

than 150 pixels are retained (Figure 3.4 (e)). Then, a nerve connection 

procedure is applied to connect the discontinuous nerves. The gaps in nerve 

structures and branches appear in segmented nerves as a result of low visibility 

of parts of the nerves, or noise introduced into the corneal images, for example. 
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In the present study, a new technique has been proposed to link the 

discontinuous nerves correctly, which is summarized as follows: 

1. Take the skeleton form of the final segmented image and determine the 

endpoints of each nerve segment in the segmented image. 

2. Determine a possible maximum gap size between the endpoint of each 

disconnected nerve and neighbouring nerve. Then a binary circular region 

of radius = (maximum gap size)/2 is placed at the endpoint of each nerve 

segment. If the endpoints of two nerve segments are close to each other, a 

straight line is drawn connecting these two segments within the area 

covered by the circular structure elements, as shown in Figure 3.6 (b).  

3. Finally, by thinning the resultant image, the overlapped circular structure 

elements at the endpoints of each segment will leave behind a line of 

pixels linking the two endpoints of the nerve. While, the isolated endpoints 

are restored to their original structure, as shown in Figure 3.6 (c). 

This step has a significant effect on calculating the tortuosity of nerves, 

because nerves’ discontinuities affect the measurements of nerve length, and 

hence the calculated tortuosity of the nerve. The values of the parameters used 

in the system were selected empirically after a number of experiments were 

carried out using corneal sub-basal images with different levels of noise and 

illumination. 
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 Figure 3.5: The main implemented approaches in the edge detection stage. 

 

Figure 3.6: Nerves’ connection procedure: (a) Two segmented images with 

disconnected nerves circled in red, (b) The binary circular structure element 

(white circles) drawn at the endpoints, and (c) Output image with connected 

nerves. 
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3.2.5   Morphometric Parameters Quantification Stage 

The morphometric parameters quantification stage extracts a set of 

features from the automatically traced corneal sub-basal nerves in an easy and 

objective way. These clinical features are measured and extracted automatically 

so the proposed system can serve as a clinically helpful diagnostic tool for early 

detection and follow up of DPN from CCM images. In this work, the set of 

morphologically extracted features related to the cornea’s state of health which 

is investigated include, nerve thickness, length, density and tortuosity. 

Additional features, such as nerve perimeter, area, and image intensity are also 

calculated for internal use.  

3.2.5.1 Nerve Length  

The nerve length in (μm) is calculated for each nerve segment by taking 

the skeleton form of the nerve and then finding the branch points in order to 

break up the length of nerve segment (S) into (b) branches as follows: 

     

    𝑺 = 𝐬𝟏 +  𝐬𝟐 + ⋯ +  𝐬𝐛                                                       (𝟑. 𝟏𝟑) 

Finally, the nerve length is calculated by summing the distance 

between consecutive pixels in the nerve segment, as follows: 

𝑵𝒆𝒓𝒗𝒆𝒍𝒆𝒏𝒈𝒕𝒉 = ∑ √(𝒙𝒊−𝟏 − 𝒙𝒊)𝟐 + (𝒚𝒊−𝟏 − 𝒚𝒊)𝟐

𝑵−𝟏

𝒊=𝟏

                         (𝟑. 𝟏𝟒) 

where N is the number of constituent pixels which is obtained from the nerve 

skeleton segment and (𝒙𝒊, 𝒚𝒊) are the pixels coordinate in the nerve segment. 
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3.2.5.2 Nerve Density 

Corneal nerve density in (pixels/μm2) is computed by dividing the sum of 

the nerve pixels by the image area as follows: 

𝑵𝒆𝒓𝒗𝒆𝒅𝒆𝒏𝒔𝒊𝒕𝒚 =  
∑ 𝑵𝒆𝒓𝒗𝒆 𝒑𝒊𝒙𝒆𝒍𝒔

𝑰𝒎𝒂𝒈𝒆𝑨𝒓𝒆𝒂 (𝝁𝒎𝟐)
                                        (𝟑. 𝟏𝟓) 

3.2.5.3 Tortuosity Coefficient 

Tortuosity Coefficient (TC) is used to gain information about the average 

curvature changes of the nerves. In this work, the average TC is calculated for 

the whole image and for each corneal nerve as well. Firstly, the length of each 

nerve segment (S) is calculated, as in (Section 3.2.5.1). Then, the TC index for 

nerve segment (S) is then calculated as follows:  

𝑻𝑪(𝑺) = ∑  
𝒔𝒍𝒆𝒏𝒈𝒕𝒉(𝒏)

𝒔𝐬𝐭𝐫𝐚𝐢𝐠𝐡𝐭
⁄ (𝒏) 

   𝒃

𝒏=𝟏

                                      (𝟑. 𝟏𝟔) 

where 𝒔𝒍𝒆𝒏𝒈𝒕𝒉 is the branch length and is calculated by Eq.3.14. 𝒔𝒔𝒕𝒓𝒂𝒊𝒈𝒉𝒕 

refers to the straight distance between the endpoints and is calculated 

as follows:  

𝒔𝐬𝐭𝐫𝐚𝐢𝐠𝐡𝐭 = √(𝒙𝑵 − 𝒙𝟏)𝟐 + (𝒚𝑵 − 𝒚𝟏)𝟐                                         (𝟑. 𝟏𝟕) 

where N is the number of constituent pixels obtained from the nerve 

skeleton branch, and (x, y) are pixels coordinate in the nerve branch. 

Finally, the average tortuosity of the whole image is obtained by 

computing the average tortuosity scores derived from each nerve. 
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3.2.5.4 Nerve Thickness 

Nerve thickness in (μm) is a measure of the average thickness of each 

corneal sub-basal nerve plexus, as shown in Figure 3.7. In this work, a new 

algorithm for calculating nerve thickness is proposed. The main steps of the 

proposed algorithm after labelling each nerve are as follows: 

1. The distance transform is applied to the binary segmented image to 

calculate the Euclidean distance between each pixel in a nerve to the 

closest background pixel. In other words, for each nerve pixel, the distance 

from that particular pixel to the closest boundary pixel of the nerve is 

calculated. 

2. Regarding distance values produced by the distance transform as heights 

in a 2D surface, the highest nerve pixels will be located along a ridge in the 

middle of the nerve segment. The distance values, associated with the 

half-way line in between the nerve segment are collected with some 

tolerance due to floating point arithmetic.  

3. Finally, the average of all collected distances determines the half-width of 

the nerve segment. Hence, the full thickness can be calculated by 

multiplying the result obtained by 2. 
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Figure 3.7: The thickness algorithm output: (a) Labelling of corneal nerves 1, 2 

and 3 in green, blue and red, respectively, (b) Image map for the corneal nerves 

with their average thickness values indicated. 

3.3 Experimental Results 

The performance of the corneal sub-basal nerve segmentation system 

was evaluated initially on the first database containing 498 images where 238 

images were taken from 8 healthy control subjects and the rest were taken from 

12 diabetic patients with associated ground-truth as indicated previously in 

(Section 3.2.1). The evaluation is based on the calculation of the four 

quantitative performance measures: Structural SIMilarity Index (SSIM) (Wang et 

al., 2004), Probabilistic Rand Index (PRI) (Kaur, Agrawal and Vig, 2012), 

Variation of Information (VoI) (Meil, 2007), and Global Consistency Error (GCE) 

(Martin et al., 2001).These metrics are widely used in literature for evaluating 

the performance of segmentation systems and are defined as follows: 
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1. The Structural SIMilarity Index is an image quality assessment algorithm 

which measures the structural similarity index between the segmented 

image and a ground-truth image. The measurement compares three 

components: luminance, contrast and structure between the segmented 

image (X) and the ground-truth image (Y) within a local window as follows: 

𝑺𝑺𝑰𝑴(𝒙, 𝒚) =
(𝟐𝝁𝒙𝝁𝒚

+ 𝑪𝟏)(𝟐𝝈𝒙𝒚
+ 𝑪𝟐)

(𝝁𝒙
𝟐 + 𝝁𝒚

𝟐 + 𝑪𝟏)(𝝈𝒙
𝟐 + 𝝈𝒚

𝟐 + 𝑪𝟐)
                                (𝟑. 𝟏𝟖) 

Here, (𝝁𝒙 and 𝝁𝒚) and (𝝈𝒙
𝟐 and 𝝈𝒚

𝟐) are the mean intensities and the 

standard deviations of x and y, respectively. 𝝈𝒙𝒚 is a covariance measure 

for x and y. C1=(k1L)2, C2=(k2L)2 are small constants used to maintain 

stability when either (𝝁𝒙
𝟐 + 𝝁𝒚

𝟐) or (𝝈𝒙
𝟐 + 𝝈𝒚

𝟐)  is very close to zero; L 

represents the dynamic range of the pixel values (255 for 8-bit grayscale 

images) and k1, k2 < 1. In this work, k1 and k2 are set to the default values 

0.04 and L is set at 100. The local measurements of 𝝁𝒙, 𝝁𝒚 and 𝝈𝒙𝒚 are 

found within a local (8×8) square window, which moves pixel by pixel over 

the whole image and at each step the local measurements and SSIM are 

computed within the local window. In this work, the overall quality measure 

of the entire image is obtained by calculating the mean of SSIM as follows: 

𝑴𝑺𝑺𝑰𝑴(𝑿, 𝒀) =  
𝟏

𝑴
 ∑ 𝑺𝑺𝑰𝑴(𝒙𝒊, 𝒚𝒊)

𝑴

𝒊=𝟏

                                       (𝟑. 𝟏𝟗) 

     where 𝒙𝒊 and 𝒚𝒊 are the image contents at the i-th local window, M is the 

number of local windows in the image and the MSSIM value ranges 

between 0 and 1; a higher value indicates greater similarity. Moreover, the 

SSIM index map can be obtained to provide a measurement of the local 



______________________________Chapter 3: Cornea Sub-Basal Epithelium Analysis 

58 
 

image quality over space, where a brighter SSIM index map indicates a 

better quality of segmentation, as shown in Figure 3.8. 

 

 

Figure 3.8: (a) A segmented image, (b) The binary form of the ground-truth 

image, (c) The SSIM index map. 

 

2. The Probabilistic Rand Index calculates the number of the fraction of 

pairs of pixels between the segmented and the ground-truth images whose 

labels are harmonious, through averaging across a set of ground truth 

images to account for scale variation in human perception. The PRI value 

ranges between 0 and 1, and a higher value indicates greater similarity. 

3. The Variation of Information metric is a non-negative metric that 

measures the distance between automatic and manual segmentation in 

terms of the information difference between them. The VoI metric depends 

on entropy and mutual information to calculate the distance between two 

clustering. The VoI between segmented image (S) and the ground-truth 

image (S') is given by Eq.3.20, where a lower VoI value points to greater 

similarity. 
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𝑽𝒐𝑰 (𝑺, 𝑺′) = 𝑯(𝑺) + 𝑯(𝑺′) − 𝟐𝑰 (𝑺, 𝑺′)                                 (𝟑. 𝟐𝟎) 

      Here 𝑽𝒐𝑰 ranges between 0 and ∞, H and I represent the entropy and the 

mutual information, respectively. In this work, the mutual information of (𝑺) 

and (𝑺′) can be calculated as follows: 

𝑰 (𝑺, 𝑺′) =  ∑  

𝒌

𝒌=𝟏

∑ 𝑷(𝒌, 𝒌′)𝒍𝒐𝒈
𝑷(𝒌, 𝒌′)

𝑷(𝒌)𝑷(𝒌′)

𝒌′

𝒌′=𝟏

                                    (𝟑. 𝟐𝟏) 

where 𝑷(𝒌, 𝒌′) is the joint probability distribution function of (𝑺) and (𝑺′) , 

and 𝑷(𝒌) and 𝑷(𝒌′) are the marginal probability distribution functions of 

(𝑺) and (𝑺′), respectively. 

4. The Global Consistency Error measures the extent to which the 

segmented image can be viewed as a refinement of the ground-truth 

image. Segmentations are considered to be consistent, if the segment is a 

set of pixels and a pixel is in an area of refinement, if the segment (S) is a 

valid subset of segment (S'). In this case, the local error is equal to zero; 

otherwise, if there is no relationship between the two segments, the two 

segments overlap in an inconsistent manner. The local refinement error 

between two segments is calculated as follows: 

 

𝑬(𝑺𝟏, 𝑺𝟐, 𝒑𝒊) =
|𝑹(𝑺𝟏, 𝒑𝒊)\𝑹(𝑺𝟐, 𝒑𝒊)|

|𝑹(𝑺𝟏, 𝒑𝒊)|
                                          (𝟑. 𝟐𝟐) 

where \ denotes set difference, S1 and S2 are two segments. For a given 

pixel (pi), consider the segments that contain pi in S1 and S2. These sets of 

pixels are represented by 𝑹(𝑺𝟏, 𝒑𝒊) and 𝑹(𝑺𝟐, 𝒑𝒊), respectively. The value of 

𝑬(𝑺𝟏, 𝑺𝟐, 𝒑𝒊) is zero when 𝑺𝟏 is a refinement of 𝑺𝟐, but not vice versa. The 
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GCE between segmented image (S) and the ground-truth image (S') is 

given by Eq.3.23, and ranges between 0 and 1, a lower value being better. 

𝑮𝑪𝑬(𝑺, 𝑺′) =
𝟏

𝒏
𝒎𝒊𝒏 {∑ 𝑬(𝑺, 𝑺′, 𝒑𝒊), ∑ 𝑬(𝑺′, 𝑺, 𝒑𝒊)

𝒊𝒊

}                  (𝟑. 𝟐𝟑) 

The results obtained from the control subjects and the patient subjects 

are shown in Figure 3.9 and Figure 3.10, respectively. In these two figures, the 

overall average of each one of the four quantitative metrics is calculated for 

each subject in the dataset. The results obtained have demonstrated the 

robustness and effectiveness of the proposed nerve segmentation system, and 

the potentiality of using it as a fully automatic nerve tracing system to measure 

the morphological parameters for clinical diagnostic purposes, as a result of the 

high similarity rate obtained between the segmented images and reference 

images. In addition, the results obtained have demonstrated the ability of the 

proposed system to detect and trace the corneal nerves, effectively in real-time, 

with an execution time of about 7 seconds per image using a PC with Windows 

8.1 operating system, a 1.80 GHz Core i5-3337U CPU and 6 GB of RAM. The 

system code was written in MATLAB R2010a. At each stage of the proposed 

system, parameter values were selected after intensive experiments on a 

number of corneal sub-basal images with various degrees of degradation and 

illumination. 
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Figure 3.9: Descriptive statistics of the segmentation system performance of 

the control group of the first database, where a higher value of SSIM and PRI is 

better and a lower value of VoI and GCE is better. 

 

Figure 3.10: Descriptive statistics of the segmentation system performance of 

the patient group of the first database, where a higher value of SSIM and PRI is 

better and a lower value of VoI and GCE is better.  
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The overall performance of the proposed system was compared 

theoretically with other established automatic nerve detection systems (Dabbah 

et al., 2010; Dabbah et al., 2011), due to the unavailability of the datasets used 

in these works. These systems are mainly based on using single and multi-

scale dual-models to detect nerve fibers. As shown in Figure 3.11, the output of 

the nerve detection system in (Dabbah et al., 2010) can result into a number of 

discontinuous nerve fibers that can significantly affect the calculation of the 

clinical features and this issue was tackled efficiently by the proposed system 

here as described in (Section 3.2.4). Although, an efficient performance has 

been demonstrated in (Dabbah et al., 2011), a training phase is required to train 

the adopted classifiers, which are used to classify the pixel to the fiber or non-

fiber classes. However, promising results are provided by the proposed system 

for real-time requirements without any need for a training phase.  

As mentioned before, the dataset was divided into four groups according 

to the severity of DPN. Therefore, clinical features, such as average nerve 

tortuosity, standard deviation of nerve tortuosity, average nerve thickness, 

length and density are computed for each subject in the database after 

determining the average for the whole image. This is followed by computing the 

overall average for each group, as summarized in Table 3.1. The extracted 

clinical features, obtained with the proposed system, are shown in Figure 3.12. 

There is a systematic decrease in nerve length and density and increase in 

nerve thickness and tortuosity associated with an increase in the severity of 

DPN, as shown in Table 3.1. However, the overall average nerve tortuosity did 

not give a useful estimation of the image tortuosity. This is because some 

images were classified by the ophthalmic clinicians as highly tortuous, because 
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they contained just one or two nerves with several branches. Therefore, the 

average image tortuosity is low for these images, even though some images for 

each subject had relatively larger average values. 

 

Figure 3.11: The output of the single scale dual-model detector: The images in 

the top row are the original images, while the bottom row is their response 

(Dabbah et al., 2011). 

By applying an empirical threshold to these averages, the image that 

provides an average tortuosity higher than the pre-defined threshold is counted. 

The average of the counted image is then combined with the overall average 

tortuosity for each subject by applying this procedure, it has been found that the 

overall average tortuosity provides meaningful information relating to the DPN 

severity, as shown in Figure 3.13 (a) and solves the problem mentioned above. 
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The most important clinical features are presented graphically in Figure 3.13. In 

this work, the clinical features obtained by the proposed automatic system, 

except for nerve thickness, were also compared against the ground truth 

manually traced by an experienced ophthalmologist. The main goal of this 

evaluation was to demonstrate the usefulness of the computed clinical features 

in differentiating control subjects from patients with diabetes and further 

differentiating diabetic patients in relations to the severity of neuropathy. The 

automated analysis of the proposed system presents equivalent results to the 

manual analysis, but the former is clearly quicker, more reliable and therefore 

clinically applicable. In this study, the execution time of the prototype was 13 

seconds, starting from inputting the image until all the clinical features of each 

corneal image nerve are obtained. 

 

Figure 3.12: A readable text file format showing clinical features extracted from 

the first database.  
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Table 3.1: Summary of the descriptive clinical features of manually and 

automatically traced nerves extracted from the first database. 

Groups 

Morphometric Parameters 

Manually Traced Nerves   

Ave. Tort. STD Tort. 
Ave. Length 

(mm) 

Ave. Density 

(Pixel/mm2) 

Control 8.27 7.18 60.92 0.0262 

Absent 20.11 19.04 60.58 0.0222 

Mild 37.52 36.41  58.49 0.0188 

Moderate 40.45 39.30 57.08 0.0158 

Groups 

 

Automatically Traced Nerves   

Ave. 

Tort. 

STD 

Tort. 

Ave. Length 

(mm) 

Ave. Density 

(Pixel/mm2) 

Ave. Thick 

(μm) 

Control 6.70 5.60 61.22 0.0316 2.83 

Absent 13. 9 12.79 60.34 0.0243 2.83 

Mild 29.32 28.36 56.87 0.0182 2.85 

Moderate 51.76 50.64 56.63  0.0164 2.88 

 

To further evaluate and test the reliability and efficiency of the proposed 

system in extracting useful clinical features (e.g. nerve tortuosity, nerve 

thickness, nerve length and nerve density) and their relationship to DPN in a 

database of a total of 919 images taken from 172 individuals. The individuals 

were classified into controls, no neuropathy and neuropathy (See Section 

3.2.1). The extracted clinical features using the proposed automated system are 

shown in Figure 3.14. There was an increase in the average nerve tortuosity 

and thickness and decreases in the average nerve length and density with 

increasing severity of DPN. The Graphical User Interface (GUI) of the proposed 

cornea sub-basal nerve system is shown in Appendix B. 
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Figure 3.13: Representative box-plots with (median, inter-quartile range, 

outliers, and extreme cases of each parameter) illustrating the extracted clinical 

features from the first database: (a) Average Nerve Tortuosity, (b) Average 

Nerve thickness, and (c) Average Nerve Length, (d) Average Nerve Density. 
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Figure 3.14: Representative box-plots with (median, inter-quartile range, 

outliers, and extreme cases of each parameter) illustrating the extracted clinical 

features from the second database: (a) Average Nerve Tortuosity, (b) Average 

Nerve Thickness (c) Average Nerve Length, and (d) Average Nerve Density. 
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3.4 Summary 

In this work, a fully automatic, efficient real-time corneal sub-basal nerve 

segmentation and morphological parameter quantification system is proposed. 

Anisotropic diffusion and Gaussian filters were used to enhance the visibility of 

the nerve and to reduce the noise in the corneal image that can be caused by 

the acquisition process. In addition, an efficient technique is proposed to 

connect the discontinuous nerves. The results obtained have demonstrated the 

reliability and efficiency of the proposed segmentation system and the potential 

to use it as a real-time and a fully automatic nerve tracing system in patients 

with DPN as an early diagnostic and for follow-up. In the second stage, a 

number of useful clinical features, such as nerve length, density, thickness, and 

tortuosity as well as nerve perimeter, area and the image intensity were 

calculated for internal used. In this part, a new algorithm has been proposed to 

calculate the average nerve thickness. The results have demonstrated the 

effects of DPN on the corneal sub-basal nerves, in terms of increased average 

nerve tortuosity and thickness coupled with decreased average nerve length 

and density. Our results have demonstrated the effects of DPN on the corneal 

sub-basal nerves, in terms of increased average nerve tortuosity and thickness 

coupled with decreased average nerve length and density. For example, from 

Table 3.1 one can see that the average nerve tortuosity and thickness have 

increased from 6.70 and 2.83 respectively for the control group, to 51.76 and 

2.88 in the moderate group. On the other hand, the average nerve length and 

density have decreased from 60.92 and 0.0262 respectively for the control 

group, to 57.08 and 0.0158 for the moderate group. 
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Chapter 4 

Corneal Epithelium Registration System 

 

4.1 Introduction  

Recently, numerous clinical reports have pointed out that diabetes is a 

significant chronic health problem for which there is no currently an effective 

therapy (Malik et al., 2003). In advanced cases, it is considered the main cause 

for foot ulceration, damage to the peripheral nerves and lower limb amputation. 

For example, in 2004, approximately 71,000 non-traumatic lower-limb 

amputations were conducted in the U.S. (Pritchard et al., 2011). Moreover, DPN 

is one of the most long-term complications of diabetes and affects up to about 

50% of patients (Boulton, 2005). Consequently, an accurate diagnostic and 

quantification of DPN are needed to define at-risk patients and for early 

diagnosis and application of new therapies. The eye is the only part of the 

human body in which nerves can be checked directly and non-invasively, 

therefore, a number of helpful clinical features can be extracted from images of 

these structures for early and accurate diagnostic of DPN. Particularly, rich 

nerve plexuses can be observed at the sub-basal corneal epithelial layer and in 

the retina using CCM and optical coherence tomography, respectively 

(Pritchard et al., 2011). 

In this study, a sequence of corneal images captured using CCM are 

used. In particular, those images contain the elongated and narrow corneal 

nerve fibers, which are captured from a specific corneal depth, a range of about 

10 μm inside the sub-basal epithelium layer. Recently, the analysis of corneal 
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nerves structures has received increasing interest because these nerves have 

been shown to produce quite important information about corneal damage 

various causes such as, surgical interventions on the cornea (e.g. LASIK and 

PRK) (Moilanen, 2003), wearing contact lens for a long time, corneal 

transplantation and fungal keratitis (Niederer et al., 2007; Scarpa, Grisan and 

Ruggeri, 2008b). More recently, a significant link has been demonstrated 

between a number of clinical features extracted from these structures (e.g., 

nerve tortuosity, nerve thickness, nerve length, etc.) and the severity of diabetic 

neuropathy (Scarpa et al., 2011). However, accurate estimation and 

quantification of these clinical features require a number of informative corneal 

images that have structural and functional information.  

Image registration is an essential task in image analysis in which 

important information is obtained by integrating two or more images of the same 

object taken from different sensors, different viewpoints and/or at different times 

to produce a new informative image (Zitová and Flusser, 2003). Registration 

algorithms can be divided into four classes: correlation algorithms, FFT-based 

algorithms, feature-based algorithms and graph-theoretic algorithms (Srinivasa 

Reddy and Chatterji, 1996). Medical image registration has played a significant 

role in the data fusion of anatomical images captured using different imaging 

modalities, such as Computerized Tomography (CT), Magnetic Resonance 

Image (MRI), Single Photon Emission Computed Tomography (SPECT), 

Positron Emission Tomography (PET), or Magnetic Resonance Spectroscopy 

(MRS) which has increasingly improved the processes of clinical diagnosis, 

guiding treatment, and controlling disease progression (Oliveira and Tavares, 

2014). In this work, an automatic corneal sub-basal nerve registration system is 
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proposed. The main aim of the proposed system is to produce a new 

informative corneal image that contains structural and functional information, 

which can help ophthalmologists to accurately extract meaningful clinical 

features using an improved visibility of corneal sub-basal nerves structures 

instead of using discontinuous nerves. In addition, a colour coded corneal 

image map is produced by overlaying a sequence of CCM images that differ in 

their displacement, scaling, and rotation to each other. The proposed method is 

based on combining the advantages of Fast Fourier Transform (FFT) and phase 

correlation techniques. The proposed registration algorithm searches for the 

best common features between sequenced CCM images in the frequency 

domain to produce the informative image map. In this image map, each colour 

represents the severity level of a specific clinical feature that can be used to 

give the ophthalmologist a clear representation of the extracted clinical features 

from each nerve in the image map. Moreover, the successful implementation of 

the proposed system and the availability of the required databases open the 

door for other interesting ideas; for instance, it can be used to give 

ophthalmologists a summarized and objective description about a diabetic 

patient’s health status using a sequence of CCM images that have been 

captured from different imaging devices and/or at different times. 

This chapter is organized as follows: Section 4.2 provides an overview of 

the proposed approaches for registering two images. Section 4.3 includes 

descriptions of the proposed methodology of corneal sub-basal nerve 

registration system and produce colour coded corneal nerve image map. 

Experimental results are presented in Section 4.4. Finally, a summary is stated 

in the last section. 
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4.2 The Proposed Methodology  

In this section, the theoretical approach for registering two images that 

differ by rotation, translation and scale to each other based on the FFT 

properties (e.g. translation, rotation, and scaling), is explained. Image 

registration is an essential image processing operation, given the task to 

overlay two or more images and produce a more informative image than the 

originals (Madhuri, 2014). In this work, FFT is applied to the sequence of 

corneal sub-basal nerves images so rotation and scaling can be detected using 

a phase correlation technique. This is followed by applying the transformation 

module for the magnitude spectrum to one of the input images, and then the 

output image with the second image are used to recover the translation 

information using phase correlation technique in the log-polar space.  

Phase correlation technique is well-known registration method that 

depends on the Fourier shift property to estimate the translation offset between 

two images (Yan and Liu, 2008). Given two images h1(x, y) and h2(x, y) that 

differ by a simple translational shift x0 in horizontal and y0 in the vertical 

directions, their corresponding Fourier transforms H1(u, v) and H2(u, v) are 

related as follows:  

𝑯𝟐 (𝒖, 𝒗) =   𝒆−𝒋𝟐𝝅(𝒖𝒙𝟎 + 𝒗𝒚𝟎 ) ∗ 𝑯𝟏 (𝒖, 𝒗)                                               (𝟒. 𝟏)                          

Then, the normalized cross-power spectrum R between H1 and H2 is 

computed using the phase correlation technique as follows:  

𝑹 =
𝑯𝟐 (𝒖, 𝒗)𝑯 𝟏

∗ (𝒖, 𝒗)

|𝑯𝟐 (𝒖, 𝒗)𝑯 𝟏
∗ (𝒖, 𝒗)|

=  𝒆−𝒋𝟐𝝅(𝒖𝒙𝟎 + 𝒗𝒚𝟎 )                                        (𝟒. 𝟐) 



_____________________________Chapter 4: Corneal Epithelium Registration System 

73 
 

where H* is the complex conjugate of H. The Fourier shift theorem ensures that 

the cross-power spectrum phase is equivalent to the difference between the two 

images. The translation offsets (x0, y0) can be acquired by detecting the location 

of the peak in the Inverse-FFT of R.  

The FFT based phase correlation registration algorithm to detect 

translation, rotation and scale differences is described in detail in (Srinivasa 

Reddy and Chatterji, 1996). If 𝒇𝒔 (𝒙, 𝒚) is a translated, rotated and scaled replica 

of the reference image 𝒇𝒓 (𝒙, 𝒚), with translation offsets(𝒙𝟎, 𝒚𝟎), rotation angle 

𝜽𝟎 and scale factor k, then, 

𝒇𝒔 (𝒙, 𝒚) =  𝒇𝒓 [𝒌 (𝒙 𝒄𝒐𝒔 𝜽𝟎 − 𝒚 𝒔𝒊𝒏 𝜽𝟎) − 𝒙𝟎, 𝒌 (𝒙 𝒔𝒊𝒏 𝜽𝟎 − 𝒚 𝒄𝒐𝒔 𝜽𝟎) − 𝒚𝟎]  (𝟒. 𝟑)  

Their corresponding Fourier transforms Fs and Fr and magnitudes are 

defined using the Fourier shift theorem as follows:  

𝑭𝒔 (𝒖, 𝒗) =
𝟏

𝒌𝟐  𝒆−𝒋𝟐𝝅((𝒖𝒙𝟎 𝒌⁄ )+(𝒗𝒚𝟎 𝒌⁄ )) ∗ 𝑭𝒓 (
𝒖 𝒄𝒐𝒔 𝜽𝟎−𝒗 𝒔𝒊𝒏 𝜽𝟎

𝒌
 ,   

𝒖 𝒔𝒊𝒏 𝜽𝟎−𝒗 𝒄𝒐𝒔 𝜽𝟎
𝒌

)             (𝟒. 𝟒)      

|𝑭𝒔 (𝒖, 𝒗)| =  
𝟏

𝒌𝟐  |𝑭𝒓 (
𝒖 𝒄𝒐𝒔 𝜽𝟎−𝒗 𝒔𝒊𝒏 𝜽𝟎

𝒌
 ,   

𝒖 𝒔𝒊𝒏 𝜽𝟎−𝒗 𝒄𝒐𝒔 𝜽𝟎
𝒌

)|                                     (𝟒. 𝟓)                        

Let Ms and Mr  denote the magnitude spectra of  𝑭𝒔 and 𝑭𝒓 , respectively, 

they are defined as follows:  

𝑴𝒔 (𝒖, 𝒗) =  
𝟏

𝒌𝟐
 𝑴𝒓 (

𝒖 𝒄𝒐𝒔 𝜽𝟎−𝒗 𝒔𝒊𝒏 𝜽𝟎
𝒌

 ,   
𝒖 𝒔𝒊𝒏 𝜽𝟎−𝒗 𝒄𝒐𝒔 𝜽𝟎

𝒌
)                                  (𝟒. 𝟔)  

if Gs and Gr are the transforms of Ms and Mr, expressed in polar coordinates, i.e. 

{
𝝆 =  (𝒖𝟐 + 𝒗𝟐)𝟏 𝟐⁄

  
𝜽 =  𝒕𝒂𝒏−𝟏(𝒖 𝒗)⁄

                                                                       (𝟒. 𝟕) 

Then: 
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𝑮𝒔(𝝆, 𝜽) =
𝟏

𝒌𝟐
 𝑮𝒓 (𝝆 𝒌⁄ , 𝜽 + 𝜽𝟎)                                                (𝟒. 𝟖)                                                     

𝑮𝒔(𝒍𝒐𝒈 𝝆 , 𝜽) =
𝟏

𝒌𝟐
 𝑮𝒓 (𝒍𝒐𝒈 𝝆 −  𝒍𝒐𝒈 𝒌 , 𝜽 + 𝜽𝟎)                   (𝟒. 𝟗)                          

Next, the scaling factor 𝒌 and rotation angle 𝜽𝟎 are acquired using the 

phase correlation technique. Once, the scaling and rotation parameters are 

acquired, the 𝒇𝒓 (𝒙, 𝒚) image is scaled and rotated using the obtained 

parameters. Finally, the phase correlation technique is applied again to find out 

the translation offsets (x0, y0). Once, all parameters (x0, y0, 𝜽𝟎, k) have been 

obtained, the 2D image registration process between the two images has been 

completed.   

4.3 Corneal Nerve Registration System 

The main steps of the proposed automatic corneal sub-basal nerve 

registration system to produce a new informative corneal image map that 

contains both structural and functional information are illustrated in Figure 4.1. 

The generated corneal image map can play a significant role by improving the 

nerve visibility and acquiring more precise clinical features with less processing 

time instead of searching manually through a sequence of CCM images to 

extract these features from each image individually. Firstly, a sequence of 

corneal nerve images (f1, f2 ,…, fn) are used that may differ in their 

displacement (viewpoint) because they are captured using different sensors 

and/or at different times. Moreover, they can be captured with non-uniform 

distribution of the lighting in different areas of the corneal layer due to the 

spherical shape of the cornea and may have some observed artefacts as a 

result of eye movement during the acquisition process. Secondly, an automatic 

image registration algorithm is employed to align this sequence of corneal 
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images where the first image is aligned with the second image and the 

generated registered image will be aligned with the next corneal image in the 

sequence and so on. After that, a fully automatic nerve segmentation algorithm 

(as explained in Chapter 3) is applied to the generated image map from the 

previous step. This is followed by producing a colour coded map of the corneal 

nerve image that represents the magnitude of a specific clinical feature.  

 

Figure 4.1: The main steps of the proposed corneal sub-basal nerve 

registration system to generate a colour coded corneal nerve image map. 

4.3.1 Image Registration 

The proposed registration algorithm searches for an optimal match using 

information in the frequency domain in order to align a sequence of corneal sub-

basal images that differ in their displacement, scaling, and rotation. The major 

steps of the implemented image registration algorithm to align two corneal 

images f1(x, y) and f2(x, y) can be summarized as follows: 

1. Apply the 2D-FFT to the input images f1(x, y) and f2(x, y) to obtain the 

Fourier magnitude spectra F1(u, v) and F2(u, v), as described in Eq.4.4. 
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2. The Fourier magnitude spectra of the input images are multiplied with a 

high-pass emphasis filter to make an image appear sharper and 

emphasize fine details in the image. A simple high-pass filter is used as 

follows: 

𝑯(𝒙, 𝒚) = (𝟏. 𝟎 − (𝒄𝒐𝒔(𝝅𝒙) 𝒄𝒐𝒔(𝝅𝒚)) ∗ (𝟐. 𝟎 − (𝒄𝒐𝒔(𝝅𝒙) 𝒄𝒐𝒔(𝝅𝒚))      (𝟒. 𝟏𝟎)             

 

    where (−𝟎. 𝟓 ≤ (𝒙, 𝒚) ≤  𝟎. 𝟓). 

3. The Fourier log-magnitude spectra is used for mapping from the Cartesian 

coordinates to log-polar coordinates rather than the Fourier magnitude 

spectra, as described in Eq.4.9. This conversion is known as a Mellin 

transform conversion. 

4. In log-polar coordinates, the cross power spectrum (cross-correlation 

between two signals) is computed by applying the phase correlation 

technique to both images, as described in Eq.4.2. Followed by detecting 

the location of the peak of Inverse-FFT of the cross-power spectrum to 

obtain the scaling factor and rotation angle. 

5. A transformed image is acquired from f1(x, y) using acquired scaling and 

rotation information as affine transformation parameters. In this work, the 

transformation is implemented using “nearest” interpolation of the f1(x, y) 

image. Finally, the phase correlation technique is applied again to compute 

the cross power spectrum phase from the transformed image and f2(x, y) 

to find out the translation offsets (x0, y0). A block diagram of the proposed 

system is shown in Figure 4.2. 

6. Once, all parameters (x0, y0, 𝜽𝟎, k) have been obtained, image registration 

is performed and the generated image map is used as a reference image 



_____________________________Chapter 4: Corneal Epithelium Registration System 

77 
 

with the next image in the sequence of CCM images, as shown in Figure 

4.3.  

 

Figure 4.2: Overview of the automatic Fourier and phase correlation based 

image registration algorithm. 

 

4.3.2  Image Segmentation 

The nerve tracing task is performed using a fully automatic corneal sub-

basal nerve segmentation system, as described in Chapter 3. This system 

consists of two main stages: nerve segmentation and a morphometric 

parameters quantification stage. Nerve segmentation stage consists of three 

steps: pre-processing, morphological operations and edge detection. In the 

morphometric parameters quantification stage, a number of clinically useful 
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features are calculated including density, length, thickness, tortuosity of the 

nerve that can be used for the early diagnosis and follow up of DPN using CCM 

images. 

 
 

 

Figure 4.3: Applying image registration algorithm on three sequenced CCM 

images where the last column represents the output. 

  

As mentioned in Chapter 3, the performance of the cornea sub-basal 

nerve segmentation system has been tested and evaluated against manually 

traced ground-truth images in a database consisting of 498 corneal sub-basal 

nerve images (238 are normal and 260 are abnormal) (Otel et al., 2013). In 

addition, the efficiency of the proposed cornea sub-basal nerve segmentation 

system in extracting useful and meaningful clinical features has also been 

evaluated using a database of a total of 919 images taken from 172 healthy 
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subjects and diabetic patients with and without neuropathy (Chen et al., 2015b). 

Some examples of applying cornea sub-basal nerve segmentation system on 

the corneal image map generated from the proposed corneal sub-basal nerve 

registration system are shown in Figure 4.4. 

 

Figure 4.4: Corneal nerve segmentation system outputs: Top row is the original 

corneal images and bottom row is binary segmented images. 

4.3.3  Corneal Image Map 

The final output of the proposed corneal sub-basal nerve registration 

system produces a colour coded corneal nerve image map that can be used to 

give ophthalmologists an efficient and clear representation of the extracted 

clinical features from each nerve in the image with less running time required as 
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will be explained later. As shown in Figure 4.5, a specific colour can refer to the 

severity level of a specific clinical feature (e.g., nerve tortuosity). This colour 

coded corneal nerve image map could be used to help ophthalmologists in 

efficiently monitoring the patient’s treatment planning and diagnosis by giving a 

summarized and objective description about the health status of each nerve 

throughout a sequence of CCM images. 

 

Figure 4.5: The colour coded corneal nerve image map of the nerve tortuosity: 

Top row represents the control group, while bottom row represents the patient's 

group. 
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4.4 Experimental Results 

Due to unavailability of a database that contains a large sequence of 

CCM images, the performance of the proposed system is evaluated and tested 

on a database of 30 subjects (18 controls and 12 diabetic patients) with a 

sequence of CCM images that varies between 3 and 4 images per subject (Otel 

et al., 2013). These sequenced CCM images are collected as a subset of the 

first database described in (Chapter 3, Section 3.2.1). In this database, the 

CCM images were captured using a Heidelberg Retinal Tomograph equipped 

with a Cornea Rostock Module (HRT-CRM: Heidelberg Engineering, 

Heidelberg, Germany). The images are stored in JPEG format with a size of 

(384×384) pixels covering (400×400) μm2 of the cornea at an optical 

magnification of 63X. In this work, all the clinical features of the corneal sub-

basal nerve are extracted from the generated image map, including nerve 

tortuosity, nerve thickness, nerve length, and nerve density. Then, the 

ophthalmologist will be able to present the severity of each clinical feature as a 

colour coded map, where the red coloured nerves refer to the highest level of 

that clinical feature while the green coloured nerves refer to the lowest or 

normal level of this parameter, as shown previously in Figure 4.5. The severity 

of each clinical feature is determined using a pre-defined threshold, which is 

determined empirically. This pre-defined threshold can be adjusted manually by 

the ophthalmologist, to ensure that the performance of the proposed system 

can meet the requirements of the clinical domain and provides meaningful 

information relating to the DPN severity.  

The results obtained have demonstrated that the reliability and efficiency 

of the proposed corneal sub-basal nerve registration system in generating the 
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colour coded corneal image map in real-time, where the execution time for the 

complete process is about 10 seconds. The execution time without image 

registration is about 7 seconds, which means for three CCM images it takes 

about 21 seconds. This means the execution time has been reduced by more 

than half to analyse a more informative CCM image. The running time was 

measured by implementing the proposed system on a PC with the Windows 8.1 

OS, 6 GB of RAM and a 1.80 GHz Core i5-3337U CPU. The system code was 

written in MATLAB R2010a. In addition, useful clinical features (e.g. nerve 

tortuosity, nerve thickness, nerve length and nerve density) are extracted from 

the generated map for each group in the database. The clinical features using 

the proposed automated system are shown in Figure 4.6. From this figure, one 

can see that both nerve tortuosity and thickness are higher in the diabetic 

patient's group than in the controls group. It is also found that the nerve length 

and density are lower in the diabetic patient's group than in the controls group. 

As summarized in Table 4.1, the overall average of each parameter of these 

clinical features (e.g., Average Nerve Tortuosity (ANT), Average Nerve 

Thickness (ANTh), Average Nerve Length (ANL) and Average Nerve Density 

(AND)) before and after applying the proposed corneal sub-basal nerve 

registration system is computed for each group in the database after deriving 

the average for the whole image. From this Table, one can see that better 

meaningful clinical features are obtained using the generated image map. For 

instance, an average difference value of each parameter of the extracted 

clinical features between the controls and patients groups has increased from 

0.75, 0.01, 1.3 and 0.002 to 3.31, 0.24, 16.3 and 0.014 for ANT, ANTh, ANL 

and AND respectively before and after applying the proposed corneal sub-basal 
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nerve registration system, respectively. The obtained results have further 

strengthened the proposed hypothesis that using the generated image map as 

a more informative corneal image can provide better structural and functional 

information about the corneal sub-basal nerves. 

 

 

Figure 4.6: Representative box-plots with (median, inter-quartile range, outliers, 

and extreme cases of each parameter) illustrating the extracted clinical features 

from the controls and patients group: (a) ANT (b) ANTh, (c) ANL and (d) AND. 
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Table 4.1: The descriptive summary of the clinical features before and after 

applying the proposed corneal sub-basal nerve registration system.  

Groups Before Image Registration After Image Registration 

ANT 
ANTh 

(μm) 

ANL 

(mm) 

AND 

(Pixel/mm2) 
ANT 

ANTh 

(μm) 

ANL 

(mm) 

AND 

(Pixel/mm2) 

Controls 5.68 2.80 60.5 0.0221 4.30 2.68 146.5 0.0311 

Patients 6.43 2.81 59.2 0.0201 7.61 2.92 130.2 0.0170 

 

4.5 Summary 

In this work, an automatic corneal sub-basal nerve registration system is 

proposed using FFT based phase correlation technique. The main part of the 

proposed system is the image registration method that is based on finding the 

best common features between a number of sequenced CCM images in order 

to produce a more informative corneal image than the original images. Then, a 

colour coded corneal image map is generated from the latest registered corneal 

image, which can be used to help ophthalmologists produce faster and more 

meaningful information relating to the DPN severity. In this work, the efficiency 

of using the generated corneal image map has been investigated by calculating 

four useful clinical features, which are nerve tortuosity, nerve thickness, nerve 

length and nerve density in order to distinguish between the health of different 

patient groups. The results obtained have demonstrated the reliability and 

efficiency of the proposed corneal sub-basal nerve registration system in 

generating a more informative and colour coded corneal image map with 

shorter execution time compared to the original images. 
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Chapter 5 

Cornea Endothelium Analysis 

 

5.1 Introduction  

In Vivo CCM is a fast non-invasive clinical technique for acquiring images 

and quantifying morphological changes in the cornea to provide insights into a 

range of endothelial pathologies and infections (Zheng et al., 2016). Corneal 

transparency is primarily dependent on corneal stromal hydration, which is 

maintained by an active transport mechanism in the corneal endothelium 

(Foracchia and Ruggeri, 2007). The corneal endothelium is a connected single-

layer of hexagonal uniformly sized cells on the posterior surface of the human 

cornea (Scarpa and Ruggeri, 2015). Several factors can damage this regular 

tessellation and cause cell loss, including aging, intraocular surgery, 

inflammation or other ocular or systemic pathologies (Hatipoglu et al., 2014). 

Damage to the endothelial cells can lead to altered hydration of the corneal 

stroma and visual loss, which may be associated with irreversible endothelial 

cell pathology requiring corneal transplantation (Keratoplasty) (Navaratnam et 

al., 2015). The corneal endothelial loss is compensated by an enlargement and 

migration of neighbouring cells due to a lack of regenerative capacity of the 

corneal endothelium. This results in a decrease in cell density, increase in the 

variation of the cell surface area and deformation of the hexagonal pattern of 

endothelial cells, which can cause disruption of endothelial layer function as a 

fluid barrier (McCarey, Edelhauser and Lynn, 2008).  
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In vitro quantitative analysis of the corneal endothelium is currently 

undertaken at eye hospitals to assess the functional capacity of the corneal 

endothelium, and hence the quality of the cornea prior to transplantation 

(Ruggeri, Grisan and Jaroszewski, 2005). A minimum Endothelial Cell Density 

(ECD) of 400 to 600 (cells/mm2) is an indicator of corneal endothelial health and 

most donor corneas should have an ECD of at least 2000 (cells/mm2) to be 

authorized for keratoplasty (Hatipoglu et al., 2014; Gain et al., 2002). The 

corneal endothelium should also ideally have 100% Hexagonality, with 60% 

being accepted as an indicator of a healthy corneal endothelium (McCarey, 

Edelhauser and Lynn, 2008). The most commonly used features to quantify 

endothelial cell health are: Endothelial Cell Density (ECD) (cell/mm2), 

polymegathism (Coefficient of Variation in cell size), pleomorphism (Percentage 

of Hexagonality Coefficient), Mean Cell Area (MCA) (µm2) and Mean Cell 

Perimeter (MCP). However, these features are not frequently used in the clinical 

setting due to the considerably errors of cell boundary detection (Doughty and 

Aakre, 2008). Recently, even healthy control subjects have been shown to have 

significant differences in ECD and pleomorphism in central and peripheral areas 

of the cornea (Zheng et al., 2016). To date, the quantitative analysis of the 

corneal endothelium has been manually performed by visual inspection of 

images by ophthalmologists. ECD is derived by experts counting all the 

endothelial cells inside a selected Region of Interest (ROI) aided using a digital 

image tool that allows them to place a mark on each endothelial cell (Ruggeri, 

Grisan and Jaroszewski, 2005). This manual procedure is tedious, time-

consuming, highly subjective, and error-prone, and does not allow the 

geometric analysis of endothelial cell shape (Foracchia and Ruggeri, 2007). 
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This limits the quantification of the additional morphometric features to clinical 

research and does not allow adoption for routine clinical use. Currently, an 

ophthalmologist needs at least 4 minutes to simply calculate only the cell 

density. Furthermore, morphometric parameters other than cell density (e.g., 

polymegathism and pleomorphism) have not been practical in clinical setting up 

to date (Selig et al., 2015). However, the additional morphometric features can 

be easily measured if the endothelial cell boundaries are correctly identified 

(Scarpa and Ruggeri, 2015). An objective and fully-automated segmentation 

and quantification system enabling rapid quantitative analysis of the corneal 

endothelium would facilitate translation to the clinical setting. In other words, to 

enable and make the estimation of the clinical morphometric parameters 

practical in clinical settings, a computerized system that can accurately and 

automatically detects the endothelial cell boundaries in the field of view would 

be needed. Whilst several prototype systems have been proposed to 

automatically detect endothelial cell boundaries, the quality of the captured 

images (e.g., images are often blurred and noisy) can result in significant issues 

in the detection of cell boundaries requiring operator interaction to guide the 

detection process and hence reducing the speed of analysis.  

In this research, a totally automatic, robust and real-time system is 

proposed, termed the Corneal Endothelium Analysis System (CEAS) for the 

segmentation and computation of the different morphological parameters of 

endothelial cells in the human cornea obtained by In Vivo corneal confocal 

microscopy. First, an FFT-Band-pass filter is applied to reduce noise and 

enhance the image quality to make the cells more visible. Secondly, a 

watershed transform and a Voronoi tessellation are applied to detect all the 
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endothelial cells in the image, which facilitates the robust and accurate 

extraction of the endothelial cell contour. This chapter is organized as follows: 

Section 5.2 includes descriptions of the proposed methodology of corneal cells 

segmentation and quantification system with the data used. The experimental 

results are presented in Section 5.3. Finally, a summary is stated in the last 

section. 

5.2 The Proposed Methodology 

The proposed CEAS system is a completely fully-automated system 

which requires no user intervention to accurately detect cell contours. Unlike 

other supervised segmentation approaches (Katafuchi and Yoshimura, 2017; 

Fabijańska, 2017), which require long time to train the neural network to detect 

the cell contours, no training procedure is required for the proposed CEAS 

system. It also quantifies the additional morphometric features (e.g., 

Polymegathism, Pleomorphism, etc.), which is an inherent limitation in many the 

built-in tools. For example, the built-in software included in the HRT Rostock 

Cornea Module (Heidelberg Engineering GmbH; Heidelberg; Germany) can 

only measure cell density. As depicted in Figure 5.1, the proposed CEAS 

system consists of two essential stages: a cell segmentation stage and a 

morphometric parameter quantification stage. The former stage can be further 

divided into two steps: a pre-processing step to enhance image quality and a 

cell contour detection step to accurately detect cell boundaries. In the latter 

stage, a number of useful clinical parameters are calculated, including: Mean 

Cell Density (ECD), Polymegathism, Pleomorphism, Mean Cell Area (MCA) and 

Mean Cell Perimeter (MCP). These additional morphologic parameters may 
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play a significant role in early diagnosis of corneal pathology and in determining 

health status of corneas for transplantation. 

 

Figure 5.1: An illustration of the process for the automated corneal cell 

segmentation and quantification system (CEAS). 

5.2.1  Data Used 

In this work, a total of 80 images of corneal endothelial cells were 

acquired using a laser CCM (Heidelberg Retinal Tomograph III Rostock Cornea 

Module HRT III RCM; Heidelberg Engineering GmbH; Heidelberg; Germany) 

according to an established protocol (Tavakoli and Malik, 2011). The images 

were taken from the central cornea using the section mode and saved in BMP 

format with 8-bit grey levels and size (384×384) pixels (400×400) μm2, 

corresponding to a square pixel of size 1.0417μm. It is important to note that the 

images used in this work were extremely challenging with the very low quality 

compared to those in literature, due to the non-uniform illumination and 

presence of different types of noise and artifacts caused by high amounts of 
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distortion. Examples of original and unprocessed images of the endothelial cell 

layer with different types of noise and artifacts are shown in Figure 5.2. These 

images were divided into two databases, each containing 40 images.  

 

Figure 5.2: Examples of original corneal endothelial cell images with different 

types of noise and artifacts: (a) Darker areas in the peripheral regions, (b) Non-

uniform illumination with blurring effect due to saccadic eye movement, and (c) 

Darker areas with unwanted bright objects. 

5.2.2   Pre-processing Step 

The images acquired using CCM usually suffer from several types of 

artefacts (e.g., blurring, noise, specular reflections, low contrast and non-

uniform illumination) that make detection of the correct contour of the cells a 

challenging task (Figure 5.2). The main reasons for the poor quality images in 

the acquisition process (Sharif et al., 2014) include: (i) saccadic eye movement 

during image acquisition resulting in blurred images, (ii) differences in the 

pressure applied between the CCM Tomocap and cornea, (iii) the spherical 

shape of the cornea leads to non-regular distribution of the lighting in different 

corneal areas. 
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The pre-processing stage aims at addressing these problems. A FFT 

based band-pass filter is applied for noise reduction to enhance image quality 

and make cell borders more visible, especially when there is a significant 

difference in pixel intensity between the inner cell bodies and intercellular space 

(J.W. Cooley and J.W. Tukey, 1965; Gonzalez and Woods, 2002). Firstly, an 

input image is transformed into a 2D representation of FFT's frequencies, and 

then a simple band-pass filter is applied to suppress the frequency coefficients 

below and above a low and high threshold, respectively. The band-pass filter 

can be obtained by multiplying the filter functions of a low-pass and of a high-

pass in the frequency domain, where the low-pass filter has a higher cut-off 

frequency than that of the high-pass filter. In this work, band-pass high and low 

cut-off frequencies are set empirically to be 20 and 3, respectively. These cut-

off frequencies are attenuating all frequencies smaller than the low frequency 

and higher than the high frequency, while the frequencies in between remain in 

the resulting output image. Thus, the noise and slow variations in illumination 

are eliminated (Smith, 1999; Haque and Uddin, 2011). This is followed by 

applying the Inverse Fast Fourier Transform (IFFT) to transfer the image back 

into the spatial domain. In this work, the FFT-Band-pass filter is applied six 

times, and each time it has observed that cell boundaries are significantly 

enhanced, especially in the dark regions at the corner of the images. The output 

of this step is shown in Figure 5.3 (b). Next, an image binarization process is 

applied using a mean value threshold, which is automatically determined using 

a grey level histogram of the input image. In this process, all pixels in an 

endothelial image having intensity values less than the pre-defined threshold, 

are set to 0 (black pixels), while the rest are set to 1 (white pixels). As shown in 
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Figure 5.3 (c), the binarized image consists of circular cell markers which are 

sometimes linked with each other. In this work, these linked markers are 

separated by applying the watershed approach on top of the Euclidian distance 

map which is computed from the binarized image, explained in the next sub-

section. 

5.2.3 Cell Contour Detection Step 

In this stage, an efficient segmentation algorithm based on watershed 

transformation and Voronoi Tessellation approach is employed to efficiently and 

automatically detect the endothelial cell boundaries. The watershed 

transformation approach is applied to the pre-processed image after calculating 

its Euclidean distance map to automatically separate merged markers obtained 

from the pre-processed image. The Euclidean distance map has each original 

black pixel replaced by the value of its distance to the nearest edge pixel to 

generate a clearer grey level image. Therefore, the centre of each cell is 

represented by the highest value, as it represents the farthest point from cell 

borders. This generated Euclidean distance map is then reinterpreted as a 

topographic map with its pixel values representing altitude which can be easily 

identified, with mountains, valleys and water catchment regions using the 

watershed approach, as water flows downhill in any direction from mountains 

(peaks and ridges) to valleys (lowest points) (Beucher and Lantuejoul, 1979; 

Beucher and Meyer, 1993). Here, the main aim of the watershed approach is to 

find the frontiers between the water catchment regions, and then the linked 

rosary markers in the binarized image are separated using these frontiers 
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Figure 5.3 (d). In this study, the watershed approach works best with smooth 

convex objects with less overlapping between them (Meyer, 2012).  

 

Figure 5.3: Corneal cell segmentation system outputs: (a) Original corneal 

image, (b) Applying FFT-Band-pass filtering, (c) Binarized image, (d) Applying 

watershed approach, (e) Applying Voronoi tessellation, (f) Labeling of 

endothelial cells (g) Final endothelial cells segmentation result, and (h) 

Automatically traced endothelial cells boundaries. 
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The Voronoi Tessellation approach is the second step of the proposed 

segmentation algorithm, which is applied to the output of the watershed 

approach in order to produce the final polygonal borders map using the 

coordinates of the cell centres as an input. Several studies demonstrated the 

efficiency of the Voronoi Tessellation approach for morphometric cell analysis 

including corneal endothelium, as in (Kim et al., 2006)(Brookes, 2017). Suppose 

that an image with a set of circular markers M = {m1,..., mn }, a Voronoi 

Tessellation approach divides this image into n cells, one for each circular 

marker in M where each point p lies in the cell corresponding to a circular 

marker mi if dist(mi, p) < dist(mj, p) for i distinct2 from j. The borders of 

endothelial cells are found by drawing lines of equidistant points between each 

two nearest circular markers' centres. In other words, these polygons produced 

from drawing lines around every center marker represent the borders of 

endothelial cells. In the image produced, the pixel value inside each endothelial 

cell is set to zero, while the pixel values on the borders of the cells are equal to 

the distance between the two nearest marked centres, as shown in Figure 5.3 

(e-f). 

 

5.2.4   Morphometric Parameters Quantification Stage 

At this stage, a number of clinically useful features are extracted from the 

segmented endothelial cell images in an automated and objective manner to 

accurately describe the health of the corneal endothelial cells based on 

quantifying MCD (cell/mm2), polymegathism, pleomorphism, MCA (µm2) and 

MCP (µm). These extracted morphological features obtained with the proposed 

CEAS system are reported as a readable text file (Figure 5.4). Due to the poor 

                                                           
2
 The distance between points is calculated using the Euclidean distance. 
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quality of the captured images (e.g., some regions are high reflectivity or they 

are extremely dark and blurred), accurate cell segmentation and estimation of 

the morphological features in these regions is very challenging, as shown in 

Figure 5.5 (a). To address this issue and make the analysis more applicable 

clinically, the proposed system allows an ophthalmologist to choose and crop 

the clearest ROI in the segmented image. The morphological features are then 

calculated automatically only for the cropped region, by including cells that 

intersect only with two adjacent borders of the frame, and excluding those 

intersecting with other borders. However, if the whole image is used, all the 

outermost cells are excluded from the statistical calculation to avoid any 

inaccurately segmented cells on the edge of the input image.  

a) Mean Cell Density (MCD) is calculated as the number of endothelial cells 

(𝑪𝒏𝒖𝒎𝒃𝒆𝒓) in the cropped ROI (or whole image) divided by the total size (𝑨) 

of the cropped ROI (or whole image), as follows: 

𝑴𝑪𝑫 =
 𝑪𝒏𝒖𝒎𝒃𝒆𝒓

 𝑨
                                                                      (𝟓. 𝟏) 

b) Polymegathism (Coefficient of Variation (CV)) is used to describe the 

variation in the area of the endothelial cells. An increase in the standard 

deviation (𝑺𝑫) of the MCA leads to an inaccurate estimation for the MCD. 

Hence, an increase in polymegathism leads to a decrease in the accuracy 

of the estimated MCA (McCarey, Edelhauser and Lynn, 2008). 

Polymegathism is calculated as follows: 

𝑷𝒐𝒍𝒚𝒎𝒆𝒈𝒂𝒕𝒉𝒊𝒔𝒎 =  
𝑺𝑫𝒄𝒆𝒍𝒍 𝒂𝒓𝒆𝒂

𝑴𝑪𝑨
∗ 𝟏𝟎𝟎                                           (𝟓. 𝟐)                             

Here, 𝑺𝑫𝒄𝒆𝒍𝒍 𝒂𝒓𝒆𝒂 is the standard deviation of cell area divided by the MCA. 
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c) Pleomorphism (Hexagonality Coefficient (HC)) is calculated as the 

number of cells with an approximately hexagonal shape (Six-sided) 

Chexagonal divided by the total number of cells in the cropped ROI (or whole 

image) Cimage, as follows: 

𝑷𝒍𝒆𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎 =  
𝑪𝒉𝒆𝒙𝒂𝒈𝒐𝒏𝒂𝒍

𝑪𝒊𝒎𝒂𝒈𝒆
∗ 𝟏𝟎𝟎                                        (𝟓. 𝟑) 

The endothelial segmented cells image is shown in Figure 5.6 (a). In 

Figure 5.6 (b) they are shown color coded with all cells with the same number of 

neighbors filled with the same color. Cells with six sides (roughly hexagonal in 

shape) are shown in sky blue. 

 

Figure 5.4: A readable text file format showing morphological features 

associated with the health state of the corneal endothelium. 
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Figure 5.5: (a) Original corneal endothelial image and (b) Endothelial cell 

segmentation results with red color indicating the cells that have been ignored. 

 

  

Figure 5.6: (a) Final endothelial cells segmentation result and (b) Using the 

color of a cell to indicate its number of neighbors using the color code given on 

the right. The most common color is sky blue corresponding to six neighbors. 
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5.3 Experimental Results 

A total of 80 images of corneal endothelial cells were acquired using a 

laser In Vivo CCM to assess the performance of the proposed CEAS system. 

These images were divided into two databases, named Database_1 and 

Database_2, each one consisting of 40 images. However, due to the lack of 

availability of a dataset containing manual measurements for all the 

morphologic parameters obtained from these images, a manual version from 

each database was obtained by a cornea imaging expert from the University of 

Manchester using two different programs. In this work, using only Database_1, 

the performance of the proposed CEAS system was evaluated against an 

automated system based on KH algorithm (Habrat et al., 2015; Piorkowski et 

al., 2017). This algorithm is already included in the BestFit3 system. The KH 

algorithm starts by reducing the effects of the noise and non-uniform 

illumination in endothelial images using a binary filter of size (5×5) pixels. This 

is followed by applying the binarization process using four morphological 

operators of size (9×9) pixels; two of them were rotated by 45◦ and the 

remaining two by 90◦. As a result, four different binary images were obtained by 

convolving the original image with these four filters. Finally, these four images 

were fused together to produce the final output after removing all the objects 

smaller than 40 pixels, which probably correspond to cell nuclei. For a fair 

comparison, the same parameters of the KH algorithm described in (Piorkowski 

et al., 2017) are used in this study. Initially, the performance of the proposed 

CEAS system was evaluated on Database_1, where an open-source GNU 

                                                           
3
 home.agh.edu.pl/~pioro/bestfit  

http://home.agh.edu.pl/~pioro/bestfit
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Image Manipulation Program (GIMP)4 was used to manually trace cell contours 

and create a binary image from selected ROIs with a manual estimation of the 

morphometric parameters, as shown in Figure 5.7. Using Database_1, two 

experiments were conducted to assess the accuracy of the proposed CEAS 

system. In the first experiment, the performance of the proposed segmentation 

algorithms were evaluated against the ground-truth reference images (binary 

images) generated using GIMP software Figure 5.7 (c). The evaluation 

procedure is based on the computation of the seven quantitative performance 

measures: Probabilistic Rand Index (PRI) (Kaur, Agrawal and Vig, 2012), 

Structural SIMilarity (SSIM) Index (Wang et al., 2004), Variation of Information 

(VoI) (Meilă, 2007), Global Consistency Error (GCE) (Martin et al., 2001), 

Gradient Magnitude Similarity Deviation (GMSD) (Xue et al., 2014), Mean 

Square Error (MSE),  and Normalized Absolute Error (NAE) (Mallikarjuna, Satya 

Prasad and Venkata Subramanyam, 2016). Four of these measures (PRI, 

SSIM, VoI, and GCE) have been explained in chapter 3. These full-reference 

quantitative metrics are widely employed in literature for assessing the 

efficiency and accuracy of segmentation systems and are defined as follows: 

1. The GMSD is an image quality assessment method which computes the 

Local Quality Map (LQM) by locally comparing the gradient magnitude 

maps of segmented image X and ground-truth image Y. This is followed by 

applying the standard deviation of LQM as the pooling strategy to produce 

the final quality score, as follows: 

𝑮𝑴𝑺𝑫 =  √
𝟏

𝑵
 ∑ (𝑮𝑴𝑺(𝒊) − 𝑮𝑴𝑺𝑴(𝒊))𝟐

𝑵

𝒊=𝟏
                           (𝟓. 𝟒) 

                                                           
4
 https://www.gimp.org/ . 

https://www.gimp.org/
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where, N is the total number of pixels in the image, GMSM represents the 

mean of the GMS map, which is computed in a pixel-wise manner using 

the gradient magnitude images 𝒎𝒙 and 𝒎𝒚, as follows: 

𝑮𝑴𝑺(𝒊) =  
𝟐𝒎𝒙(𝒊) ∗ 𝒎𝒚(𝒊) + 𝒄

𝒎𝒙
𝟐(𝒊) + 𝒎𝒚

𝟐(𝒊) + 𝒄
                                                (𝟓. 𝟓) 

Here, c is a small constant that provides numerical stability. The GMSD value 

represents a distortion index, thus a lower GMSD value indicates higher 

quality. 

2. The MSE is one of the most widely used image quality measurement 

metric, defined as the sum over all squared value pixel differences divided 

by the size of the image, where a lower value of MSE indicates a higher 

similarity. The MSE between the segmented image X and the ground-truth 

image Y of equal size (M×N) pixel is defined as follows: 

 

𝑴𝑺𝑬 =
𝑰

𝑴𝑵
∑ ∑(𝑿(𝒎, 𝒏) − 𝒀(𝒎, 𝒏))𝟐

𝑵

𝒏=𝟏

𝑴

𝒎=𝟏

                                  (𝟓. 𝟔) 

3. The NAE between the segmented image X and the ground-truth image Y 

both of size (M×N) pixel is given in Eq.5.7, where a lower NAE points to a 

higher similarity. 

𝑵𝑨𝑬 =  ∑ ∑|(𝑿(𝒎, 𝒏) − 𝒀(𝒎, 𝒏))| 

𝑵

𝒏=𝟏

𝑴

𝒎=𝟏

∑ ∑|𝑿(𝒎, 𝒏)|   

𝑵

𝒏=𝟏

𝑴

𝒎=𝟏

⁄            (𝟓. 𝟕) 

The overall average of the seven quantitative metrics is computed for 40 

images in this database, as shown in Figure 5.8. Although the KH algorithm has 

achieved a better result in terms of GMSD measure compared to the proposed 

CEAS system, it obtained inferior results on the other six quantitative measures. 
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Figure 5.9 shows a comparison between manual and automated segmentation 

output images obtained from both the proposed CEAS and KH algorithm. A 

better result was obtained using the proposed CEAS system. The KH algorithm 

suffers from over-segmentation, due to low quality input image and the 

presence of noise. Significantly, the results obtained demonstrate the efficiency 

and reliability of the proposed CEAS system and the potential for using it as a 

fully-automatic system to accurately trace cell contours and measure the 

morphometric parameters for clinical diagnostic purposes. This is made the 

possibility of using it as a diagnostic tool because of the high similarity rates 

obtained between the automatically segmented images and the manually traced 

images. 

 
 

Figure 5.7: GIMP program outputs: (a) Original image, (b) A representative 

example of manually traced cells contours, (c) Generated binary image used as 

a ground-truth manual segmentation inside the ROI. 
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Figure 5.8: Performance comparison of the CEAS segmentation system and 

the KH algorithm on Database_1, where a higher value of PRI and SSIM is 

better and a lower value of GMSD, VoI MSE, NAE and GCE are better. 

 

Figure 5.9: A comparison example of an image taken from the Database_1: (a) 

Original image, (b) A manually traced cell contours, (c) The output of the 

proposed CEAS system, and (d) The output of the KH algorithm. 
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Here, it is important to note that most of the segmentation approaches 

and commercially available image software systems (e.g., GIMP) are edge-

based segmentation approaches, whereas in this study an alternative region-

based segmentation approach based on the Voronoi Tessellation is employed 

to accurately extract size and shape data of the endothelial cells. In this work, 

using the Voronoi Tessellation, as a region-based segmentation approach 

ensures that a wider range of corneal endothelial parameters can be derived 

and analyzed than edge-based segmentation approaches, by dividing the 

surface of the endothelial image into different regions (Voronoi cells) based on 

the distance to the cell markers' centres. In addition, the Voronoi Tessellation 

approach produces straight-borders of cells of optimum size and shape 

compared to the edge-based segmentation approaches, which produce cell 

shapes composed of non-uniform curves. This enhances the reliability of the 

proposed CEAS system in calculating polymegathism and pleomorphism data 

of the endothelial cells (Reem, 2011). Finally, as reported by (Reem, 2011), the 

Voronoi Tessellation approach provides a high degree of geometric stability with 

respect to small changes in the position of the cell markers' centres, with only a 

small change in the corresponding Voronoi cells. 

In the second experiment, a clinical evaluation procedure was performed 

to assess the robustness and effectiveness of the CEAS system in term of 

extracting useful morphometric parameters. This clinical-based evaluation 

procedure has been done by ophthalmologists from Division of Medicine, Weill 

Cornell Medicine-Qatar, Doha, Qatar and the Manchester Royal Eye Hospital, 

Centre for Endocrinology and Diabetes, UK. Automatic estimations of five 

morphometric parameters (e.g., MCD, MCA, MCP, Polymegathism, and 
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Pleomorphism) were compared with reference values, which were calculated by 

simply applying the definition of these parameters on 40 binary images 

generated using GIMP software, as shown in Figure 5.7 (c).  

The proposed CEAS system and KH algorithm were applied to every 

corneal endothelial image, and then the same ROI with the largest area of 

clearly visible cells was selected. Next, automatic estimations of morphometric 

parameters were computed for the ROI from both images and directly 

compared with the reference values. The overall average, standard deviation, 

maximum and minimum of each parameter for both manual and automated 

images, along with the difference and the percentage difference between them 

are reported in Table 5.1. From this table, it can be seen that the proposed 

CEAS system has achieved noticeably a higher agreement with reference 

values compared to the KH algorithm. The average difference between manual 

and automatic estimations computed by the KH algorithm was less than 3.5%, 

11%, 9.5%, 6.5%, and 11% for MCD, MCA, MCP, polymegathism, and 

pleomorphism, respectively. In contrast, no significant differences were found 

between manual and automatic estimations of morphometric parameters 

computed by the proposed CEAS system. The average differences between 

manual and automatic estimations were less than 2%, 3.5%, 1%, 1.5%, and 

8.5% for MCD, MCA, MCP, polymegathism, and pleomorphism, respectively, 

with no morphometric parameter with a relative difference (>10%) between the 

manual and automatic estimations.   

Pearson correlation tests were used to confirm clinical validity and 

usefulness of the proposed CEAS system as an effective tool to provide an 

accurate and automatic estimation of the endothelial cell parameters. There 
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were statistically significant correlations between the automated and manual 

estimations of morphometric parameters with Pearson’s correlation r and p 

coefficient of: (r = 0.91, p < 0.0001) for MCD, (r = 0.91, p < 0.0001) for MCA, (r 

= 0.82, p < 0.0001) for MCP, (r = 0.85, p < 0.0001) for polymegathism, and (r = 

0.74, p < 0.0001) for pleomorphism, as shown in Figure 5.10. Bland–Altman 

plots of differences versus means for all the morphometric parameters were 

generated to assess agreement between the automated analysis and manual 

analysis (Figure 5.11). 

Table 5.1: Performance comparison made between the manual and automated 

estimations of five morphometric parameters using the CEAS system and KH 

algorithm on 40 corneal images of Database_1. The differences between the 

manual and automatic estimates are listed and also as a percentage. 

 Manual Auto. CEAS System Auto. KH algorithm 

MCD (cells/mm
2
) MCD (cells/mm

2
) Diff Diff % MCD (cells/mm

2
) Diff Diff % 

Average 3103.52 3047.25 56.27 1.83 2997.89 105.6 3.46 
STD 389.54 308 81.54 23.35 299.32 90.22 26.19 
Max 3760 3640 120 3.24 3574 186 5.07 
Min 2243 2482 -239 -10.1 2298 -55 -2.42 

 MCA (µm
2
) MCA (µm

2
) Diff Diff % MCA (µm

2
) Diff Diff % 

Average 292.3 282.43 9.87 3.43 263 29.3 10.55 
STD 41.77 34.57 7.2 18.87 33.78 7.99 21.15 
Max 395 386 9 2.3 373 22 5.72 
Min 229 220 9 4 200 29 13.52 

 MCP (µm) MCP (µm) Diff Diff % MCP (µm) Diff Diff % 

Average 61.5 61 0.5 0.78 56 5.5 9.36 
STD 4.61 3.52 1.09 26.8 2.98 1.63 42.95 
Max 74 70 4 5.56 65 9 12.94 
Min 55 54 1 1.83 48 7 13.59 

 Polymegathism % Polymegathism % Diff Diff % Polymegathism %  Diff Diff % 

Average 46.5 45.95 0.55 1.02 43.7 2.80 6.20 
STD 5.96 4.68 1.28 24.09 3.71 2.25 46.53 
Max 61 59 2 3.33 53 8 14.84 
Min 36 37 -1 -2.74 31 5 14.92 

 Pleomorphism % Pleomorphism % Diff Diff % Pleomorphism % Diff Diff % 

Average 37.45 34.5 2.95 8.21 33.7 3.75 10.54 
STD 5.84 4.83 1.01 18.84 4.47    1.5 26.57 
Max 50 47 3 6.2 44 6 12.76 
Min 24 25 -1 -4.1 22 2 8.69 
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The proposed CEAS system produces an accurate estimation for 

detecting endothelial cells with more than 95% of the data presented between 

2SD agreement lines, and cell densities ranging from 2400 to 3700 (cell/mm2), 

cell area ranging from 230 to 400 (µm2), cell perimeter ranging from 50 to 75 

(µm), polymegathism ranging from 35 to 40%, and pleomorphism ranging from 

25 to 50%. Figure 5.12 shows a comparison between manual and automated 

segmentation output images, where the incorrectly detected cell boundaries are 

marked in red color. 
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Figure 5.10: Correlation plots for each pair of manual and automatic 

morphometric parameters from Database_1, showing significant correlations. 

The solid lines are the linear regression lines: (a) Cell density, (b) Cell area, (c) 

Cell perimeter, (d) Polymegathism, and (e) Pleomorphism. 
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Figure 5.11: Bland-Altman plots showing difference versus average for each 

pair of manual and automatic estimations of: (a) Cell density, (b) Cell area, (c) 

Cell perimeter, (d) Polymegathism, and (e) Pleomorphism from Database_1. 

Solid lines (mean differences), dashed lines (95% limits of agreement). 
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Figure 5.12: Comparison between manual and automated segmentation 

outputs:  (a) Original image, (b) Manually traced cells, (c) Automatically 

segmented cells. 

 

Further evaluation was performed on an independent database, named 

Database_2 in which a manual database containing 40 images (11 from control 

subjects, 16 from obese subjects and 13 from patients with diabetes) was 

constructed to efficiently validate the performance of the proposed corneal cell 

segmentation and quantification system. The cell densities were manually 

counted by experts from (Division of Medicine, Weill Cornell Medicine-Qatar, 

Doha, Qatar and the Manchester Royal Eye Hospital, Centre for Endocrinology 

and Diabetes, UK) using a semi-automatic system (cell count feature) offered 

by the HRT Rostock Cornea Module (Heidelberg Engineering GmbH; 

Heidelberg; Germany). In the manual measurements, the user selects the 

clearest ROI from the original corneal endothelial image and then crops it. After 

magnifying the cropped region to make it easier to view, the user picks the cells 

using the count function and the MCD is calculated according to the number of 

cells within the given ROI. A snapshot of this semi-automatic system is shown 

in Figure 5.13.  
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These manual cell densities were compared with automatically computed 

cell densities using the CEAS system for the same ROI. The results 

demonstrate the ability of the proposed CEAS system to detect corneal 

endothelial cells effectively in clinical real-time, with an execution time of about 

6 seconds per image using a PC with a Windows 8.1 operating system, a 1.80 

GHz Core i5-3337U CPU and 6 GB of RAM. The system code was written in 

MATLAB R2015a. The main reason for differences between the manual and 

automated cell densities is the loss of image quality at the borders of the 

images, and there may be some cells in the cropped ROI, which are over 

selected in the manual image or are not picked at all Figure 5.14. 

 

Figure 5.13: An illustration of the semi-automatic corneal endothelium system 

used in the HRT Rostock Cornea Module (Heidelberg Engineering GmbH; 

Heidelberg; Germany) for cell density estimation. 
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Figure 5.14: (a) Original image, (b) Manually over picked cells as shown in the 

red circle, (c) Automatically segmented cells.  

As shown in Table 5.2, there was no significant difference in manual 

compared with automated endothelial cell density and the average difference 

was less than 2%.There was a highly significant correlation between automated 

and manual densities (r = 0.9, p < 0.0001), as shown in Figure 5.15. The 

proposed segmented endothelial cell detection algorithm provides a precise 

estimation for detecting endothelial cells with cell densities ranging from 2000 to 

5000 (cells/mm2) and the Bland-Altman method shows that 95% of data are 

presented between 2SD agreement lines. Based on the agreement plot the 

difference between the two methods is larger when the density is higher (Figure 

5.16).  

The results obtained demonstrate the effectiveness and robustness of the 

proposed CEAS system, and its suitability to be used as a fully automatic cell 

segmentation system to provide useful clinical information for early diagnosis 

and monitoring of the corneal endothelium over time and in relation to the effect 

of therapies, by achieving a high similarity between the cell density obtained 

automatically and the cell density obtained manually. The GUI of the proposed 

CEAS system is shown in Appendix C. 
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Table 5.2: Performance comparison between the manual and automated cell 

density estimates using Database_2. 

 Manual MCD 
(cells/mm2) 

Auto. MCD 
(cells/mm2) 

Diff Diff % 

Average 3390.18 3343.65 46.53 1.38 

STD 715 415 300 53.01 

Max 4960 4247 713 15.49 

Min 1941 2473 -532 -24.1 

 

 

Figure 5.15: Correlation plot of automated and manual cell densities with a 

significant correlation on Database_2. 

 



_____________________________________Chapter 5: Cornea Endothelium Analysis 

113 
 

 

Figure 5.16: Bland-Altman plot showing mean difference and limits of 

agreement between manual and automated cell densities on Database_2. 

 

5.4 Summary 

In this study, a real-time and fully-automated endothelial cell 

segmentation and morphological parameter quantification system is proposed, 

named the Corneal Endothelium Analysis System (CEAS) which requires no 

user intervention. In the CEAS system, band-pass filter was applied for noise 

reduction to enhance image quality and endothelial cell boundaries were 

detected using the watershed approach and Voronoi tessellations enabling 

quantification of endothelial cell density and additionally cell area, cell 

perimeter, polymegathism and pleomorphism. In this work, an alternative 

region-based segmentation approach, namely the Voronoi Tessellation 

approach is employed to accurately extract meaningful information from the 

endothelial cells (e.g., size and shape data), and enable the proposed CEAS 
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system to produce a wider range of corneal endothelial parameters. Unlike 

other edge-based segmentation approaches, the Voronoi Tessellation approach 

has the ability to produce straight-borders of cells with an optimum size and 

shape. Furthermore, it ensures a high degree of geometric stability with respect 

to small changes in the position of the cell markers' centres.  

The performance of the proposed CEAS system was evaluated and 

tested against manually traced ground-truth images of two databases; each one 

contains a total of 40 images. The results obtained demonstrate the 

effectiveness and robustness of the proposed CEAS system, and its suitability 

to be used as a fully automatic cell segmentation system to provide useful and 

helpful clinical information for early diagnostic purposes and monitoring the 

corneal endothelium health status, by achieving a high similarity between 

automatically and manually clinical features.   
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Chapter 6 

Conclusions and Future Work 

 

In this PhD research, robust and fully-automated systems for segmenting 

corneal sub-basal nerves and corneal endothelial cells in human CCM images 

have been proposed. After reviewing and analyzing the current state-of-the-art 

works on tracing the epithelium nerves and detecting endothelial cells 

boundaries, a number of efficient and robust algorithms have been proposed. 

This includes proposing practical algorithms to improve the quality of the CCM 

images, novel and fully-automated tracing algorithms for the epithelium nerves 

and endothelial cells as well as extracting useful morphometric parameters of 

these two corneal layers. This chapter briefly summarizes the research work 

presented in chapters 3, 4 and 5, draws conclusions and emphasizes the main 

contributions made by the research presented in this thesis. Then, some of the 

suggestions and recommendations to be addressed in future work are outlined 

in order to further enhance the performance and increase the reliability of the 

proposed systems in analysing the CCM images, and the intention of further 

extending the functionality and efficiency of the proposed algorithms. 

6.1 Conclusions   

The main motivation to the research presented in this thesis originated 

from a number of requests that were made by medical practitioners working in 

the areas of Ophthalmology and diagnosis of peripheral neuropathy and other 

pathological changes in human corneas. Therefore, the main aim of this PhD 

research was to develop a system for the automatic processing and analysis of 
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CCM images of the various layers of the cornea. This aim has been achieved 

by developing effective and efficient systems for segmenting sub-basal 

epithelium nerves and endothelial cells in human corneal confocal microscopy 

images were proposed to help ophthalmologists in monitoring and treating the 

different corneal diseases early and efficiently. Setting off from the aims and 

objectives stated in chapter one, this research has addressed the following: 

1. The quality of the CCM images has been improved significantly by 

enhancing these images and reducing the effect of non-uniform 

illumination. For corneal sub-basal nerves images, the visibility of the 

corneal sub-basal nerve has been improved and the amount of the noise 

in the corneal image has been reduced using anisotropic diffusion filtering, 

specifically a Coherence filter followed by Gaussian filtering. Here, it is 

worth mentioning that the output of the Coherence filter is affected by the 

value set to the Diffusion Time parameter. Although this pre-processing 

procedure has significantly enhanced the structure of the corneal nerve 

without losing important information, the produced image still has some 

false artefacts due to non-uniform illumination in corneal images and the 

presence of unwanted segments (e.g. small cells). In this work, this issue 

has been addressed by applying an efficient post-processing procedure 

mainly based on morphological operations to accurately describe nerve 

structure by removing imperfections without affecting the overall shape of 

the nerve. In contrast, the quality of the endothelial cell images has been 

improved and the amount of the noise has been reduced using an band-

pass filter. In this work, the band-pass filter has attenuated very low and 

very high frequencies by employing two cut-off frequencies, and retained 
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middle range frequency band. Thus, band-pass filtering has enhanced the 

visibility of the cell borders and reduced the amount of the noise at the 

same time by suppressing low frequencies and attenuating high 

frequencies, respectively. 

2. The second and third objectives were to develop a fully automatic, 

efficient, real-time corneal sub-basal epithelium nerve segmentation and 

morphological parameter quantification system. In this segmentation 

stage, an efficient nerve connection procedure was proposed in order to 

connect the discontinuous nerves, caused by the low visibility of parts of 

the nerves or noise introduced into the corneal images. Although in some 

cases, corneal nerves have been incorrectly connected with each other 

due to the detection of more than one endpoint inside the circular region, 

this procedure has significantly improved the accuracy of extracting helpful 

and meaningful clinical features that mainly depend on the whole structure 

of the nerve in their calculations, such as nerve tortuosity and nerve 

length. In the morphometric parameters quantification stage, a number of 

useful clinical features, such as nerve tortuosity, thickness, length, density 

as well as nerve perimeter, nerve area and the image intensity were also 

calculated for internal use. In this part, a new algorithm based on applying 

the distance transform on the binary segmented image to efficiently and 

accurately compute the nerve thickness parameter, without any manual 

intervention, is also proposed. The performance of the proposed system 

was evaluated using two databases of CCM images taken from different 

groups of subjects (e.g., healthy subjects and diabetic patients). The 

results obtained have demonstrated the reliability and efficiency of the 
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proposed segmentation system and the potential to use it as a real-time 

and a fully automatic nerve tracing system in patients with DPN as an 

early diagnostic and for follow-up. The limitation of the proposed corneal 

nerve segmentation system is that its performance has been evaluated 

using CCM images taken from just the healthy and diabetic patients with 

and without neuropathy. Therefore, the efficiency of the proposed corneal 

nerve segmentation system in extracting usefulness clinical features 

should also be validated on a database contains CCM images with other 

corneal disease, such as acute ischemic stroke. Recently, a number of 

studies have shown that patients with acute ischemic stroke also had a 

reduction in corneal nerve fibres, as found in (Khan et al. 2017). 

Furthermore, the proposed nerve segmentation algorithm has the potential 

to be successfully used in the detection and analysis of the retinal blood 

vessels. However, investigations carried out within the research context of 

this PhD research have shown that CCM images are extremely different 

and very lower quality compared to retinal images, which are captured 

under more controlled environmental conditions, using high-resolution 

cameras. 

3. The author has also proposed an automatic corneal sub-basal nerve 

registration system using an FFT based phase correlation technique. In 

this system, the best common features between a number of sequenced 

CCM images in the frequency domain were found using the proposed 

image registration method to produce a more informative corneal image 

than the original images. This is followed by generating a colour coded 

corneal image map from the latest registered corneal image. In this 
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coloured map, the severity level of a specific clinical feature is represented 

by a specific colour code that can be used to give the ophthalmologist a 

clear representation of the extracted clinical features from each nerve in 

the image map. Furthermore, it can also help them to produce faster and 

more meaningful information relating to the DPN severity. The main 

limitation was the lack of an available large-scale database that contains a 

higher number of CCM image sequences to validate the performance of 

the proposed corneal nerve image registration system. However, we 

believe that our findings confirm and validate the usefulness of the 

generated corneal image map as a more informative corneal image that 

contains better structural and functional information compared to the 

original images. We have also managed to significantly reduce the time 

required for an ophthalmologist to accurate compute useful clinical 

features where the execution time starting from the image registration 

stage to generating the colour coded map is about 10 seconds, as 

demonstrated in Chapter 4.  

4. Regarding the fifth objective, a real-time and fully-automated corneal 

endothelium cells segmentation and morphological parameter 

quantification system named the Corneal Endothelium Analysis System 

(CEAS) which requires no user intervention has been proposed. In this 

PhD Thesis, the watershed approach and Voronoi tessellations are 

applied to efficiently detect endothelial cell boundaries and enable the 

quantification of some helpful and meaningful morphometric parameters, 

including endothelial cell density, endothelial cell area, endothelial cell 

perimeter, polymegathism and pleomorphism. The watershed approach 
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applied in the present study is different from that applied in the literature. 

For example, to compute the stochastic watershed, the seeded watershed 

was applied 100 times to the input image with seeds randomly placed over 

the image, as in the study presented in (Selig et al. 2015). In contrast, 

such a procedure is not required in the current study, making the CEAS 

system simpler to implement. Furthermore, one of the most novel aspects 

of the proposed system is employing a region-based segmentation 

approach based on the Voronoi Tessellation approach to accurately 

extract size and shape data of the endothelial cells. Unlike other previous 

researches carried out in this area, which are mainly based on edge-

based segmentation approaches. In this work, using the Voronoi 

Tessellation ensures that a wider range of corneal endothelial parameters 

can be derived and analyzed than edge-based segmentation approaches, 

as described in Chapter 5. Furthermore, straight-borders of cells of 

optimum size and shape are produced by employing the Voronoi 

Tessellation approach compared to cell shapes composed of non-uniform 

curves that can be produced using the edge-based segmentation 

approaches. The performance of the proposed CEAS system was 

evaluated and tested by extracting clinical features from two databases 

(each one consisting of 40 images), and comparing with ‘ground-truth’ 

derived by manually detecting the cell contours aided by two difference 

programs on the same ROI with an average difference of less than 2%, 

4%, 1%, 1.5%, 8% for MCD, MCA, MCP, polymegathism, and 

pleomorphism, respectively. The findings suggest that the proposed CEAS 

system could also be useful for ophthalmologists in a real-world clinical 
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setting to enable rapid diagnosis and patient follow-up. However, the 

current research has tended to focus only on evaluating the reliability of 

the proposed CEAS system in automatically detecting endothelial cells 

boundaries rather than testing its capability for providing meaningful 

information relating to the different groups (e.g., healthy subjects and 

diabetic patients), due to the lack of available database that contains 

subjects with aged-matched. The age factor is a very important factor as it 

directly affects the cell density. Recently, a number of studies have 

demonstrated that there exist a statistically significant decrease in MCD 

and pleomorphism with age, whereas there is a significant increase in 

MCA with increasing age (Hatipoglu et al. 2014). Therefore, the author 

believes that the efficiency of the proposed CEAS system in extracting 

useful clinical feature should also be validated on a database that contains 

subjects with some medical conditions, such as Type 1 diabetes and 

subjects with Type 2 diabetes and retinopathy.  

5. Finally, to conclude, the proposed work in this PhD research is tackling the 

real challenges of confocal corneal epithelium and endothelium images 

and it is done in collaboration with an expert advisory board from the 

following institutes: 

 Division of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.  

 Manchester Royal Eye Hospital, Centre for Endocrinology and 

Diabetes, UK.  

 Centre for Endocrinology and Diabetes, UK.  
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6.2 Future Work 

Although a number of novel contributions in segmenting sub-basal 

epithelium nerves and endothelium cells in human corneal confocal microscopy 

images have been proposed in this thesis it is possible to consider further 

suggestions to be carried out in particular aspects. In this section, several 

possible directions for future research are discussed as follows: 

1. The results derived in the study presented in Chapter 3, are dependent on 

the successful connection of endpoints with neighbouring endpoints or 

branching nerves. As a future enhancement will be needed by deploying 

larger circular regions to search for neighbouring endpoints/nerve regions 

and use decision-making support (e.g., minimum Euclidean Distance) to 

tackle situations where more than one endpoint are being detected inside 

the circular region.  

2. In the study presented in Chapter 3, the extracted clinical parameters were 

compared individually in all subjects to establish the efficiency of the 

imaging modules developed in this work. However, successful diagnosis 

requires building general profiles for every subject by combining their 

available clinical information. Hence, a future research direction should 

include developing an automated machine learning-based system for 

diagnosing and differentiating control subjects from diabetic patients with 

and without neuropathy. To do so, build a learning module from the 

databases used in this research and feed them with the 4 additional 

parameters extracted from every subject (e.g., average nerve tortuosity, 

average nerve thickness, average nerve length and average nerve 

density) will be needed to create a more comprehensive morphological 
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phenotype in every subject, which we anticipate could lead to a more 

reliable diagnosis and stratification of severity of DPN.  

3. The performance of the proposed nerve segmentation algorithm presented 

in Chapter 3 is only limited to detect the nerve structures within the CCM 

images; it might be interesting to investigate its potential for detecting 

nerves in other parts of the human body using different types of medical 

images that contain blood vessels/nerves of similar structures. In this 

regard, an initial test to the performance of the proposed nerve 

segmentation algorithm to efficiently detect the retinal nerve fibres within 

the Indocyanine Green Chorioangiography (ICG) images was conducted 

and the results obtained are shown in Figure 6.1.  

4. The performance of proposed corneal epithelium registration system 

presented in Chapter 4, should be tested using a larger database that 

contains a higher number of CCM image sequences to demonstrate the 

efficiency of the generated image map in providing useful clinical features, 

such as the nerve tortuosity, nerve thickness, nerve length, etc. 

Furthermore, the image registration approach proposed in this study could 

be applied to other medical and biological systems that mainly based on 

an alignment of a sequence of different type of corneal images. For 

instance, it has been found recently that detecting Acanthamoeba cysts 

and calculating the depth of each detected cyst in a sequence of confocal 

microscopy images can help ophthalmologists in the early diagnosis and 

treatment of the Acanthamoeba keratitis, as demonstrated in (Alzubaidi 

2017). 
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5. The results obtained using the proposed CEAS system are promising and 

encouraging to develop an automated machine learning system for the 

early diagnosis of endothelial cell abnormalities. To achieve this goal, a 

larger database needs to be employed in order to construct a learning-

based module and feed it with the 5 morphometric parameters extracted 

from each subject to produce a more comprehensive morphological 

feature vector for each subject, which we expect could lead to a more 

reliable diagnosis and confirm our findings. 

 

Figure 6.1: An initial evaluation of the proposed nerve segmentation algorithm 

using retinal ICG images: (a) Original retinal image and (b) Automatically traced 

retinal blood vessels. 
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Appendices 

Appendix A: Canny Edge Detection 

The motivation behind the optimization of the Canny edge detector was 

to achieve the following desirable properties: minimizing the probability of 

multiple responses to a single edge; minimizing the probability of missed edge; 

minimizing the distance between the detected edge pixels and the actual edge 

(Canny, 1986). All these criteria play a significant role in addressing the issues 

of detecting and localizing the corneal nerves correctly. 

Canny Algorithm: 

a) Smooth Image: Apply a Gaussian filter to the image to reduce noise and 

smooth image. 

b) Compute Gradient: Calculate the gradient magnitude and direction at 

each pixel of the smoothed image. 

c) Non-Maxima Suppression: non-maximum suppression algorithm is 

applied to gradient magnitude image. 

d) Double Thresholding: To detect and link an edge pixel using a 

hysteresis threshold algorithm. 

More details of these are as follows. 

a) Smooth Image: Let 𝑮(𝒙, 𝒚) denotes the Gaussian filter as shown in 

Eq.A.1 (Haddad and Akansu, 1991) and  𝑰(𝒙, 𝒚) denotes the image. The 

convolution result of 𝑰(𝒙, 𝒚) with 𝑮(𝒙, 𝒚) will give a smoothed image as 

follows (Gomes, 2009):  
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𝑺(𝒙, 𝒚) =  𝑮(𝒙, 𝒚) ⊗ 𝑰(𝒙, 𝒚)                                             (𝐀. 𝟏) 

b) Compute Gradient: Firstly, the gradient of the smoothed image 𝑺(𝒙, 𝒚) will 

be used to find x and y partial derivatives 𝑮𝑿 and 𝑮𝒀 respectively as 

follows: 

𝑮𝑿(𝒙, 𝒚) ≈  [𝑺(𝒙, 𝒚 + 𝟏) − 𝑺(𝒙, 𝒚) + 𝑺(𝒙 + 𝟏, 𝒚 + 𝟏) − 𝑺(𝒙 + 𝟏, 𝒚)] 𝟐⁄         (𝐀. 𝟐) 

𝑮𝒀(𝒙, 𝒚) ≈  [𝑺(𝒙, 𝒚) − 𝑺(𝒙 + 𝟏, 𝒚) + 𝑺(𝒙, 𝒚 + 𝟏) − 𝑺(𝒙 + 𝟏, 𝒚 + 𝟏)] 𝟐⁄         (𝐀. 𝟑) 

 From these two standard formulas, the gradient magnitude and direction can 

be calculated respectively as follows: 

𝑮(𝒙, 𝒚) =  √𝑮𝑿
𝟐 (𝒙, 𝒚) + 𝑮𝒀

𝟐(𝒙, 𝒚)                                        (𝐀. 𝟒) 

𝜽(𝒙, 𝒚) = 𝒕𝒂𝒏−𝟏 (
𝑮𝒀

𝟐(𝒙, 𝒚)

𝑮𝑿
𝟐 (𝒙, 𝒚)

)                                               (𝐀. 𝟓) 

   

c) Non-Maxima Suppression: The resulting from the gradient normally 

contain wide ridges around the local maximum and to thin these ridges a 

non-maxima suppression procedure is used to find thin edges which 

correspond to the positions of local maxima. For each pixel (x, y) define 

four discrete directions di (gradient vector) of the normal edge; horizontal, 

vertical, 45° and -45°. From These 4 directions find the closest direction to 

𝜽(𝒙, 𝒚). If the value of 𝑮(𝒙, 𝒚) is lower of its two neighbors values along the 

direction di, let non-maxima suppressed N(x, y) = 0 (suppression); else, let 

N(x, y) =𝑮(𝒙, 𝒚). 

 

d) Double Thresholding (Hysteresis Thresholding): It may be noticed that 

thresholding the image still produces false edge points and to reduce the 
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number of these the hysteresis method uses both low and high thresholds 

TL and TH. It determines non-maxima suppressed NH(x, y) after 

thresholding N(x, y) with high threshold TH and determine non-maxima 

suppressed NL(x, y) after thresholding N(x, y) with low threshold TL. It is 

clear that NH includes the strong edge pixels and NL includes weaker edge 

pixels. Sometimes the edges in NH(x, y) have gaps, which are filled in 

using the lower threshold. 

 

Appendix B: Cornea Sub-Basal Epithelium System-GUI 

When the Epithelium panel is activated/selected there are several 

options that can be chosen:  

1. Open Original image button: When you click the button, a file chooser 

will appear and you will be able to select stack of images. Once you select 

the images a panel on the right will display the selected images (shown in 

Figure B.1).  

2. Run Analysis button: When the button is clicked another file chooser 

appears and the user have to select the appropriate images to be 

diagnosed. A panel with original and processed images will appear. In 

order to scroll through the images, slider, popup menu and a Go button are 

available as shown in Figure B.1. This function asks the user about the 

type of the microscope used to acquire the original images; it gives the 

user the choice between ConfoScan 4 and Heidelberg microscopes.  

3. Clinical Parameters: After running the analysis on the selected epithelium 

mage/images, the extract clinical parameters about the detected nerve will 
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automatically appear. These parameters include the following as shown in 

Figure B.1:  

 Nerve Number. 

 Nerve tortuosity. 

 Nerve Thickness. 

 Nerve Length. 

 Nerve Density. 

In addition, a new figure will shows up to display the colour image map with all 

detected sub-basal nerves are numbered, as shown in Figure B.2. 

4. Movement Slider: By clicking on the arrows of the slider, it will display the 

next image from the group of the epithelium images.   

5. Popup menu: The popup menu will also change the image but this time 

the user will be able to select the image using the image name.  

6. Go button: If you insert a number in the edit box and press the button, it 

will display the image according to that inserted value.  
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Figure B.1: The main interface of cornea sub-basal epithelium analysis. 

 
 

 

Figure B.2: Nerve number on color map image. 
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Appendix C: Cornea Endothelium Analysis System (CEAS)-GUI 

The proposed CEAS system consists of 3 panels for diagnosis and visualization 

purposes: 

 Clinical Features Panel. 

 Image Visualization Panel. 

 Pleomorphism Map Panel. 

 The main Steps to load an image and calculate the clinical features: 

1. Every time the user launches the software, he/she needs to press on the 

Starting Software button in order to connect the Matlab with the imageJ 

software. After that, the window of the imageJ software will show up, as 

shown in Figure C.1. The user can close it (for more convenience) and 

start working with the software. (This is only for the first time you are 

lunching the software). 

 

 

Figure C.1: The main interface of ImageJ software. 

 

2. To open an endothelium image press on the Load Endothelium Image 

button, after selecting an image the Image Visualization panel will show 

up. It contains two figures, one for the selected image (input image) and 

the other one is its segmented image that will be used to calculate the 

clinical features, as shown in Figure C.2. 
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3. These clinical features include: 

 Number of Cells in the selected ROI. 

 Cell Density. 

 Cell Pleomorphism. 

 Cell Polymegethism. 

 Cell Average Area. 

 Cell Average Perimeter. 

 

 

Figure C.2: The main interface of CEAS system. 

 

4. In this software, the user can choose where to calculate these features 

from the segmented image. By clicking on the Image Analysis button, a 

dialog box will ask the user to enter the number of Regions of Interest 

(ROIs) that he/she wants to analyse. For example, if the user enters No. 3 
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this means he/she will be able to crop three different ROIs within the 

segmented image. (Better results could be obtained by selecting from the 

best segmented part of the input image). 

5. Every time the users crop a new ROI, the clinical features of this ROI will 

be calculated automatically and shown in the Clinical Features panel. In 

addition, the software will create a new folder entitled (Results_Of_ + 

image’s Name) in order to save all the selected ROIs and their clinical 

features as a text file (.txt). 

6. In order to visualize the Pleomorphism map of all the selected ROIs, press 

on the Pleomorphism Map button. A new panel named Pleomorphism 

Map will show up containing a drop-list showing the names of the selected 

ROIs. The user can choose to display the Pleomorphism map for the 

selected ROI. This map will show the number of neighbours; whiter cells 

have a higher number of neighbours, while the darker cells have less 

number of neighbours (shown on Figure C.3). 

7. The user can do the same operations (2-5) from the File menu.  
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Figure C.3: The Pleomorphism map window. 
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