Bond strength between corroded steel reinforcement and recycled aggregate concrete

Musab Alhawat
School of Engineering and informatics
University of Bradford
Bradford, BD7 1DP, UK
m.alhawat@bradford.ac.uk

Prof. Ashraf Ashour
School of Engineering and informatics
University of Bradford
Bradford, BD7 1DP, UK
a.f.ashour@bradford.ac.uk

Abstract
This paper investigates the bond performance of recycled coarse aggregate (RCA) concrete with un-corroded/corroded reinforcing steel bars, with the main parameters being RCA content, corrosion level, bar diameter and embedment length. For this purpose, 60 pull-out specimens containing different percentages of RCA (i.e. 0%, 25%, 50% and 100%) and steel bars of two diameters (12 and 20 mm) and different embedment lengths were tested. In order to establish various levels of corrosion, specimens were exposed to an electrochemical corrosion for 2, 5, 10 and 15 days. The bond strength between RAC concrete and un-corroded/corroded steel are compared to current codes and equations proposed by other researchers.

Experimental results showed that larger corrosion rate of steel bars was observed with the increase of the replacement level of RCA due to its high porosity and water absorption. The use of RCA had a slight influence on bond strength for un-corroded specimens compared to that obtained from conventional concrete. Furthermore, the bond strength of RCA concrete was strongly affected by corrosion products; bond strength slightly enhanced for up to 2% corrosion rate, and then significantly decreased as the corrosion time further increased, similar to that of conventional concrete. However, the rate of bond degradation between RCA concrete and corroded steel bars was much faster than that observed in corroded conventional concrete.

1. Introduction
With the increase of concrete utilization, there is a rapid growth in the consumption of natural aggregates that is the largest concrete component. It is estimated that the global consumption of natural aggregates (NCA) approximately 48.3 billion tons every year [1]. Simultaneously, the increasing amount of construction wastes has created a significant concern from the environmental aspect. It has been reported that about 850 million tonnes of construction and demolition wastes (CDW) are generated in
the EU countries every year, which are about 31% of total waste generation, causing serious environmental issues accompanied by a shortage in landfills [2]. The use of recycled aggregate (RCA) produced from CDW seems not only a promising solution for these serious issues, but can also assist in reducing aggregate cost [3]. However, the quality of concrete containing RCA from CDW might be inferior to those made with conventional aggregate [4, 5] due to the presence of old adhered mortar to original concrete, leading to a porous, a higher absorption and cracks on the surface of RCA [6]. This higher absorption capacity may cause some difficulties to control the fresh properties of concrete, and consequently affects concrete durability and mechanical properties [3, 7]. However, results obtained from some studies indicated that RCA can be partially used up to 30% as an alternative to natural aggregate in concrete without affecting its properties [8].

Bond between steel reinforcement and surrounding concrete is one of the most fundamental properties affecting the structural performance of reinforced concrete. Bond strength between steel and concrete is mostly dependent on many parameters including; concrete strength, yield of reinforcement, reinforcement size and geometry, bonded length, concrete cover, reinforcement position, the type of used aggregate, and the presence of transverse reinforcement [9]. Corrosion of steel reinforcement could significantly affect the bond in reinforced concrete, especially when the embedded steel bars are severely corroded [10-13]. Steel reinforcement corrosion mainly causes volumetric expansion of corrosion products, which is responsible for exerting the expansive radial pressure at the steel–concrete interface. Corrosion may also lead to other deteriorations of concrete structures such as cracking and reduction of effective steel cross-sectional area available for structural purposes [14].

The bond strength between concrete containing normal aggregate and reinforcing steel bars has been extensively studied, nevertheless, relatively few studies have been carried out to determine the bond characteristics between RCA concrete and deformed steel bars. Some of the available results reported that the use of RCA in concrete does not have much effect on bond of steel reinforcing bars and reinforced RCA concrete with a possible reduction of up to 10% compared to normal concrete [15, 16]. The possible reason could be that the bond strength is mainly affected by reinforcement properties such as the surface profile and type of steel rebar rather than those related to aggregate properties [3]. However, some other researchers revealed that the bond strength could increase with increasing RCA quantity in concrete [17]. The higher bond strength of RCA concrete might be associated to the increase of friction resulting from the rough surface of RCA. Another possible reason might be attributed to the
internal curing influence of RCA resulting from further hydration when RCA is used in saturated surface
dry condition (SSD) [3]. [18] reported that the larger size of RCA in concrete might lead to less bond
strength between deformed steel and surrounding RCA concrete due to the presence of more air voids
in mixes.
Investigations in terms of bond strength between reinforcing steel and RCA concrete under corrosive
environments have been scarcely undertaken. Therefore, the main aim of the current paper is to study
the influence of RCA content on corrosion resistance of reinforcement embedded in concrete, in
addition to investigating the bond performance between RCA concrete and reinforcing steel bars, either
corroded or un-corroded using the pull-out test. For this purpose, the experimental investigations were
carried out on 60 pull-out specimens considering different parameters, namely RCA content, corrosion
level, embedded length of reinforcement and steel bar size. The obtained results for RAC concrete were
compared to those achieved form normal concrete, before finally being compared to current codes and
equations proposed by other researchers.

2. Experimental program

2.1. Materials

The main materials were Portland cement (CEM II), fine aggregate (NFA) and 20 mm maximum size
natural coarse aggregate (NCA). Recycled coarse aggregate derived from crushed washed
construction and demolition waste was used as a replacement to natural with a maximum size 20 mm.
Fig. 1 illustrates the two types of aggregate used in this research, while the typical characteristics of
RCA and natural fine and coarse aggregates are listed in Table 1. Fig. 2 shows the particle distribution
for both NCA and RCA, which conforms the requirement of BS EN 882, 1992 [19]. Two deformed steel
bars with diameters 12 and 20 mm were used in this study, conforming the requirements of BS 4449,

![Aggregate types used in this study: (a) NCA, (b) RCA.](image)
Table 1. Physical characteristics of used aggregate.

<table>
<thead>
<tr>
<th>Aggregate Type</th>
<th>Natural fine aggregate (NFA)</th>
<th>Natural coarse aggregate (NCA)</th>
<th>Coarse recycled aggregate (RCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum grain size (mm)</td>
<td>5</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>2.60</td>
<td>2.63</td>
<td>2.50</td>
</tr>
<tr>
<td>Water absorption (%)</td>
<td>2.10</td>
<td>1.06</td>
<td>4.4</td>
</tr>
<tr>
<td>Bulk density (Kg/m³)</td>
<td>1580</td>
<td>1600</td>
<td>1360</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>-</td>
<td>40</td>
<td>46</td>
</tr>
</tbody>
</table>

Fig. 2. Sieve analysis for RCA and NCA.

2.2. Specimen details

The pull-out test specimens were conducted according to RILEM CEB FIP (1983) [21] for a total of 60 specimens. The dimensions of the concrete cube specimens were 200mm*200mm*200mm with a single deformed steel bar centrally placed in the cubes. Three different series of pull-out specimens were carried out through this study as presented in Table 2 and Figure 3. Whilst the first and second series had a reinforcing bar of 12mm but having different bonded length, the third series was carried out with 20mm diameter bar having the same surface area as bars used in the second series. The bonded length of steel bars was selected to be five times of the bar diameter for the first and third series. The remaining length inside the cube was covered by a PVC pipe to ensure this part remained unbonded. The prominent length from the top was 310mm, while the lower part was isolated to prevent the bar from exposing directly to corrosion.
Fig. 3. Specimens test details; (a) Ø 12mm, \(l_d = 60\) mm; (b) Ø 12mm, \(l_d = 167\) mm; (c) Ø 20mm, \(l_d = 100\) mm.

2.3. Concrete mix design, casting and curing

Four groups of concrete were adopted in this study with a constant w/b ratio but different levels of RCA as shown in Table 2. Natural coarse aggregate (NCA) was substituted by 0%, 25%, 50% and 100% of RCA. Each group of concrete mix consisted of three series of specimens (Fig. 3), and each series consists of five specimens. The first specimen from each series was tested after 28 days without exposing to any corrosion, whilst the others were tested after 2, 5, 10 and 15 days of corrosion acceleration. All concrete mixes made with the same water to binder ratio of 0.4, and the mix proportions were kept constant for all concrete mixes except replacing NCA with RCA. It should be noted that the amount of water required for aggregate to be in a saturated surface dry condition (SSD) was added to the mix by calculating the difference between water absorption and water content. After finishing the cast, the specimens were left 24h at room temperature before they were demoulded. Then, all the specimens were immediately covered by plastic sheets for 28 days until the day of test. The details of mix proportions are demonstrated in Table 3.

Table 2. Description of tested specimens.

<table>
<thead>
<tr>
<th>Group</th>
<th>RCA %</th>
<th>Ø</th>
<th>(l_d)</th>
<th>Period of corrosion (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>12</td>
<td>60</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>167</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>100</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td>II</td>
<td>25</td>
<td>12</td>
<td>60</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>167</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>100</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td>III</td>
<td>50</td>
<td>12</td>
<td>60</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>167</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>100</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td>IV</td>
<td>100</td>
<td>12</td>
<td>60</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>167</td>
<td>0, 2, 5, 10, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>100</td>
<td>0, 2, 5, 10, 15</td>
</tr>
</tbody>
</table>
Table 3. Mixture proportion of concrete.

<table>
<thead>
<tr>
<th>w/b</th>
<th>Materials (Kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NCA</td>
</tr>
<tr>
<td>0.4</td>
<td>1180</td>
</tr>
</tbody>
</table>

2.4. Corrosion acceleration and testing procedure

Corrosion of steel in concrete is a slow process which may need a long time for reinforcement embedment to be corroded under natural conditions. With the limitation of time in performing the laboratory investigations, different techniques have been proposed to induce corrosion in a short period of time such as wet/drying technique, artificial climate environment technique, and impressed current/voltage acceleration technique [22]. Corrosion obtained by the latter is not fully simulative to that occurs in nature due to the difference in the electrochemistry behind the mechanism [23], in addition to the possibility of inducing more uniform corrosion along the surface of steel bar than that achieved under a natural environment [22]. However, a similar pattern of localized corrosion was obtained by impressed current technique with that occurs in real structures [24]. The impressed voltage technique has been adopted in this study owing to its advantages in saving time and cost in addition to the ability to control the corrosion rate through a test period by adjusting the applied voltage. The specimens were placed in plastic tanks containing 3.5% sodium chloride solution by weight of water to simulate the concentration of chloride in seawater [25, 26]. Pull-out specimens were placed inside plastic tanks, and approximately immersed up to 90% of their volume in NaCl solution. Each group of specimens was connected in parallel with DC power supply, and stainless steel bar was placed inside the tank to work as cathode, while steel reinforcement was used to act as anode. A constant voltage of 12V was applied to each specimen from a DC power supply for 2, 5, 10 and 15 days. As the concrete resistivity varied due to the variation of exposure time, the impressed current intensities ranged between 30mA to 270mA, generating different levels of corrosion as shown in Fig. 7. It should be noted that specimens with steel bars having 12mm diameter and 60mm bonded length recorded the lowest corresponding current intensity during all time of exposure, whereas higher current was observed with increasing bonded area, regardless of concrete ingredients. Moreover, the corresponding current for all specimens raised with the increase of exposure time, especially for specimens having longer embedment length during the period between 10-15 days, where some wide cracks were observed.
2.5. Concrete properties

Slump test was performed to measure the workability of fresh concrete in accordance with BS EN 12350-2, 2009 [27]. The compressive strengths of each mix were measured at 7, 28 and 90 days of curing in accordance with BS EN12390-3, 2009 [28] using (100 mm*100 mm *100 mm) cubes. Tensile test was conducted in accordance with BS EN 12390−6, 2009 [29] using cylindrical samples (300*150mm) and applying compressive loads over the length of cylinder. Two-point loading method was applied to measure the flexural strength at 28 days for beam samples having the dimensions of 500*100*100 mm. Therefore, the span between the two applied loads was 100 mm, while the distance between the two supports was 400 mm. The average of three samples was reported in accordance with BS EN 12390−5, 2009 [30]. The water absorption and dry density were simply measured using the specimens of 100 mm cube in accordance with BS1881-122, 1986 [31] and BS EN 12504-1, 2009 [32], respectively.

2.6. Pull-out test

Pull-out tests were conducted for both un-corroded and corroded specimens using a Denison machine with a capacity of 500 KN as shown in Fig. 5. The specimens were placed between two plates, and a rubber sheet was placed between the plate and the surface of the specimen to ensure that a load stress was uniformly distributed to the face of specimen. A data logger was connected to high precision linear variable differential transducers (LVDTs) to measure the slip of steel bar against the applied load. The axial load was applied up to cause full debonding of specimens, and the slip between the steel bar and

Fig. 4. Accelerated corrosion technique.
concrete was recorded at a constant loading rate of 0.01mm/min. The bond strength, defined as the average bond stress along the bar length, is calculated by dividing the bond failure load by the bonded surface area of the steel bar as given by Eq. 1.

\[\tau_u = \frac{P}{\pi D L} \]

(1)

where \(\tau_u \) is the bond strength, \(P \) is the applied load, \(D \) is the bar diameter and \(L \) is the bonded length.

![Fig. 5. Setup of the pull-out test.](image)

2.7. Weight loss measurement

At the end of pull-out test, the corroded bars were taken out from concrete specimens and immersed in a hydrochloric acid solution, and subsequently cleaned by water and an iron brush as recommended by [33]. The weight of steel bar was recorded after removing the rust and compared to the initial weight of the bar before corrosion. The corrosion level was calculated by Eq. 2.

\[\eta = \frac{(G_1 - G_2)}{g_0 L_d} \times 100 \]

(2)

where \(\eta \) is the corrosion level of reinforcing steel bars, \(G_1 \) and \(G_2 \) are the weights of steel bar before and after corrosion, respectively, \(g_0 \) is the weight per unit length of reinforcing bar and \(L_d \) is the bonded length.
3. Test results and discussion

3.1. Influence of RCA replacement level on concrete properties

Fig. 6 demonstrates the relationship between RCA content and compressive strength of concrete at different ages. It can be observed that there is a gradual reduction in compressive strength with the increase of RCA. As expected, the compressive strength of conventional concrete recorded the highest value at 7 and 28 days compared to other mixes. On average, concrete made with 25% RCA exhibited quite similar results with those obtained by normal concrete, agreeing with other investigations that showed that the use of up to 30% RCA has almost no effect on concrete properties [34, 35]. However, RCA had more contribution to reducing the strength of concrete when the level of replacement increased to 50% and 100% recording approximately 8.5% and 15% reduction, respectively, compared to conventional concrete. Similar trend was reported by others [36, 35, 37], who found that the use of 100% RCA can lead to a reduction between 10% and 30% compared to the conventional concrete. This reduction might be explained by the presence of old cement matrix adhered to the original aggregate, resulting in the formation of another interfacial transition zone (ITZ) between the old and new cement paste, in addition to that located between the natural aggregate and old cement paste. Therefore, two ITZs can be found in RCA concrete, whilst only one ITZ exists in normal concrete. The failure of RCA concrete mainly occurs at these frontier zones, which are considered the weakest areas in concrete matrix, making the bond between aggregate and the hydrated cementitious matrix weaker [38]. Micro-cracks and fissures found on the surface of RCA can also contribute to making the concrete more porous, causing more amount of water required to achieve the desirable workability, and as a result compressive strength values would be decreased with the increase of w/b ratio in the matrix. As time of curing extended to 90 days, the rate of strength gain was slightly better for RCA concrete than that achieved by normal aggregate concrete. This can be observed by comparing the improvement achieved over time for concrete made with 50% and 100% RCA (9.5%, 11.5%), respectively, with that found with normal concrete (8%), as similarly observed in previous studies [39, 40]. This might be attributed to further cementing action of the remnant un-hydrated mortar adhered to RCA, which may have contributed to improving the strength in the long term. Additionally, the high amount of absorbed water inside RCA particles can further assist in promoting the hydration process by providing internal curing.
The other main properties of RCA concrete (i.e. tensile strength, flexural strength, water absorption, workability and density) were also investigated. As it can be seen from Table 4, the tensile strength and flexural strength of RCA concrete were not significantly influenced by the replacement level of RCA. Whilst using 25% and 50% RCA were quite similar to that obtained by normal concrete, 100% RCA led to about 8% and 7% reduction in terms of tensile strength and flexural strength, respectively, following similar trends reported by some authors [41, 3]. This is mainly because of these properties are mostly dependent on the surface characteristics of RCA rather than the level of replacement. The water absorption of RCA concrete was significantly affected by the RCA content, reflecting the water absorption capacity of recycled aggregate. As the level of RCA replacement reached 100%, the water absorption increased about 40% compared to the normal one. Therefore, it can be confirmed that the durability properties of concrete are more deteriorated by the degree of RCA replacement than the mechanical properties. It is also observed that the density of RCA concrete was approximately 8% lower than that found with normal concrete. From Table 4, it can be also noted that the workability of RCA mixes in terms of initial slump was marginally higher than that found in control mixes, which is consistent with results obtained [42]. This might be explained by the increase of amount of free water required to compensate the higher absorption capacity of RCA, and therefore time was not sufficient for RCA concrete to absorb the extra water at the moment of slump test. However, after about 20 mins, all mixes showed equivalent workability levels, suggesting that the compensating water had been completely absorbed.
Table 4. The main properties of concrete mixes.

<table>
<thead>
<tr>
<th>Mix</th>
<th>Compressive Strength (MPa)</th>
<th>Tensile Strength (MPa)</th>
<th>Flexural Strength (MPa)</th>
<th>Water absorption (%)</th>
<th>Density (Kg/m3)</th>
<th>Slump (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-RCA</td>
<td>54.66</td>
<td>2.99</td>
<td>4.05</td>
<td>3.74</td>
<td>2404.43</td>
<td>33</td>
</tr>
<tr>
<td>25-RCA</td>
<td>54.11</td>
<td>2.95</td>
<td>4.03</td>
<td>3.81</td>
<td>2385.04</td>
<td>33</td>
</tr>
<tr>
<td>50-RCA</td>
<td>50.33</td>
<td>2.87</td>
<td>4.0</td>
<td>4.56</td>
<td>2272.12</td>
<td>37</td>
</tr>
<tr>
<td>100-RCA</td>
<td>47.08</td>
<td>2.77</td>
<td>3.81</td>
<td>5.26</td>
<td>2193.51</td>
<td>40</td>
</tr>
</tbody>
</table>

3.2. Influence of RCA replacement level on reinforcement corrosion

Fig. 7 shows the relationship between the corrosion rate of specimens containing different levels of RCA exposed to an electrochemical corrosion for 2, 5, 10 and 15 days. A wide range of corrosion degrees was obtained in this study ranging from 1.34% up to approximately 20% weight loss. It can be observed that the corrosion rate increases by increasing the level of RCA in concrete, especially, when the level of RCA replacement reaches 100%. It can be also noted that all specimens made with 25% RCA showed comparable corrosion rate results to normal concrete at all stages of corrosion exposure. After two days of exposure to corrosion, 100% RCA led to 20%, 20% and 32% increase in corrosion rate for the samples having embedded length 60, 167 and 100 mm, respectively, compared to those containing normal aggregate. This increase continued for 100% RCA concrete with the extension time of corrosion to five days reporting 4.88%, 5.68% and 3.46% weight loss, respectively, whilst the normal concrete reached 3.95%, 4.59% and 2.11% at the same period. The influence of RCA quantity evidently caused more corrosion as the period of corrosion exposure reached 10 and 15 days, reporting an increase in corrosion rate exceeded 50% in some cases, compared to the normal concrete. This is mainly attributed to the high porosity and water absorption of RCA, resulting from the presence of old adhered mortar on the surface of aggregate. This means that the corrosion rate constantly developed owing to the available of widening cracks on the surface of RCA concrete, allowing more chloride ions to penetrate the concrete. Hence, the rust products readily accumulated on the surface of steel bar. Another possible reason might be related to the presence of contaminants in RCA such as chloride, carbonate and sulphate, which can de-passivate the protective layer located around steel bars [43]. It can also be observed that more corrosion were spotted for both NCA and RCA concrete with specimens having longer bonded length, making an increase in corrosion rate per unit length. For example, by increasing the bond length from 60 mm to 167 mm, the corrosion rate per bond length for RCA concrete devolved between 5- 20%.
3.3. Bond stresses-slip relationships

The measured bond stress versus slip curves for the three series of 100% RCA specimens at various degrees of corrosion is drawn in Fig. 9. By analysing the relationship between bond stress and slip of steel bars, it can be seen that the behaviour of bond stress of RCA concrete was quite similar to that found with conventional concrete for both cases; corroded and un-corroded, as also reported by [44].

For specimens having a short embedment length (60 mm), the relationship between bond stress and slip can be generally divided into three distinguished stages. In the first stage, the bond stress steeply increased with a very little slip ranged between 0 and about 1.5 mm until reaching the ultimate load. The second stage, which represents the first part of descending branch, exhibited a drop in the load after reaching the peak load accompanied by an increase in the bond slip. At the third stage, the bond stress slightly decreases with a rapid increase in the non-recoverable slip until the steel rebar completely pulled out. For specimens having 100 and 167 mm embedment length, the relationship between bond stress and slip showed some differences. This can be observed especially in the descending branch, showing a sudden drop after reaching the peak stress, resulting from splitting failure. It is also observed that for specimens with 167 mm embedment length either free or had a little amount of corrosion, a slight increase in the bond stress was observed after reaching about 91% of the ultimate stress accompanied by a rapid displacement, corresponding to steel yielding before pulling out from concrete.
Fig. 8. Bond stress versus slip for specimens having Ø 12mm, \(l_d=60 \) mm and containing: (a) 0\%RCA, (b) 25\%RCA, (c) 50\%RCA and (d) 100\%RCA.
Fig. 9. Bond stress versus slip for specimens having Ø 12mm, \(l_d = 167 \) mm and containing: (a) 0%RCA, (b). 25%RCA, (c) 50%RCA and (d) 100%RCA.
3.4. Influence of RCA replacement level on bond strength

From Fig. 10, it can be observed that the bond strength, in general, slightly decreases with the increase of RCA level in concrete. For un-corroded concrete, it can be seen that bond strength between steel reinforcement and concrete containing 25% RCA was almost similar to that found in conventional concrete for all specimens. By using 50% RCA in concrete mixture, the bond strength after 28 days reached 26.53 MPa for the samples having 60 mm embedded length, which represents approximately 97% of the bond strength of conventional concrete. Similarly, the other two specimens having embedded length 167mm and 100mm reported about 95% bond strength compared to normal concrete.

For 100% RCA, it can be noted that the bond strength between 20mm deformed steel and RCA concrete decreased approximately by 11% compared to normal concrete, whilst those containing 12mm steel bar and having 60mm and 167mm bond length were less affected by reporting 6% and 9% decrease in bond strength, respectively. The possible reason for this reduction might be attributed to the decrease in the mechanical interlock and adhesive force with the increase of RCA ratio due to the presence of micro-crack in RCA surface. Another possible reason for this reduction is the influence of compressive strength on bond strength which is represented by the square root of compressive strength [9]. These results were in agreement with other authors [15, 16, 45] who found a reduction in bond strength by up to 10% when NCA is fully replaced by RCA, while the use of both types of aggregate; recycled coarse and fine aggregates leads to about 20% reduction in bond strength [46]. However, it was stated [47] that the bond strength tends to increase in the presence of RCA. This might be due the roughness of adhered mortar in RCA, which may increase the adhesion and friction mechanisms of bond strength at the steel-concrete interface. In another investigation [44], it was reported that a slight higher bond strength for RCA concrete when the compressive strength was similar to the normal concrete. It is probably can be said that the bond strength of un-corroded steel reinforcement is less sensitive to RCA replacement content than other influential factors such as steel surface profile and embedded length [47, 3]. The influence of RCA content on bond strength continued almost the same after exposing to a short period of an electrochemical corrosion (two days) to lead to about 10% reduction for the full replacement of RCA. It is interesting to mention that through this stage (2 days) the concrete containing 50% and 100% RCA documented a slight better enhancement in terms of bond strength compared to conventional concrete. For example, the bond strength between 167 mm bonded length and 100% RCA...
enhanced by 1.8%, whilst the normal concrete showed just 0.8% improvement. This could be explained by the fact that bond strength during this stage was still in improvement due to the low degree of corrosion and the rust products were thicker between steel bar and RCA concrete than that found in conventional one, which was the same observation reported in [44]. With the extension of corrosion period to 5 and 10 days, the influence of using 25% RCA in concrete was negotiable on bond strength. However, this influence became clearer at 10 days for the samples containing 50% and 100% RCA, especially for larger embedded length (167mm) to obtain 58% and 36% from that stated in conventional concrete. This might be due to higher water absorption and porosity of these concretes, allowing more chloride ions to easily penetrate into a steel-concrete interface. Hence, more corrosion products are expected to accumulate on the surface of steel causing internal cracks, and consequently affect the performance of bond between steel and concrete. As time reached 15 days which represents harsh corrosive environments, bond strengths were obviously affected by RCA content. For instance, the bond strength between RCA concrete and 60mm
Fig. 11. Relationship between RCA content and bond strength for specimens having: (a) Ø 12mm, \(l_d = 60 \) mm; (b) Ø 12mm, \(l_d = 167 \) mm; (c) Ø 20mm, \(l_d = 100 \) mm.

bonded length represented about 50% of that found in normal concrete, whereas the degradation of bond between rebar 20mm and the same concrete was approximately 32% of normal concrete. This huge reduction owing to the appearance of widening cracks on the surface of RCA concrete around steel bar, while they were less observed with concrete containing normal aggregate. Nevertheless, [48] found that stirrups can effectively reduce the difference between NCA and RCA for un-corroded/corroded specimens. This is mainly attributed to the ability of stirrups on providing enough confinement and controlling the development of cracks resulting from corrosion.

3.5. Influence of corrosion on bond strength

The variation of bond strength due to corrosion has been investigated for four different periods of exposure starting with 2 days which represents a low amount of corrosion and finishing up with 15 days which represents severe environments. Data related to the influence of corrosion on bond strengths of
60, 167 and 100 mm bonded length are plotted in Fig. 11. From the obtained results, it can be observed that bond strength is significantly influenced by steel corrosion for both types of concrete; normal and RCA concrete. However, it seems that the bond strength in RCA concrete is more sensitive to corrosion than conventional concrete. Bond strength slightly increased for all specimens after two days of corrosion acceleration when the corrosion rate ranged between 1.34% and 2%. The same observation was reported by other authors for NCA concrete [49, 10, 11], and even with RCA concrete [44], who found the corrosion products offer a favourable impact in terms of bond strength at lower corrosion values. This improvement may be explained by the increase of the surface roughness of steel reinforcement due to the creation of a firmly adhered layer of rust on the surface of steel reinforcement, which in turn enhances the radial stresses between the steel and surrounding concrete, and hence improving the frictional forces of bond. However, there is no consensus regarding the critical value of corrosion level as it was reported from 0.5% up to 2.4% weight loss [45, 12, 50]. The reason for this difference can be related to the difference in test set-up, the type of tested specimens, details of specimen and current applied to corrode the steel, and therefore parameters used in one experimental work might not be adequate to produce the same behaviour in other experiments. With a further of corrosion was produced at five days of corrosion, which can be classified as a pre-cracking stage, a loss in bond strength was observed for all specimens due to the development of corrosion rate to be between 2.5% and 5.6% weight loss. For instance, bond strength between normal concrete and 167 mm bonded length distinctly declined from 11.44 MPa to 6.0 MPa at 4.15% corrosion rate. Similarly, bond strength of 100% RCA concrete with 20mm diameter bar decreased by about 50% as the corrosion rate reached 3.5%. This probably happened due to the lubricating influence of the flaky...
corroded layer on the steel surface, causing a change in the surface condition of the bar and reducing the friction force of bond strength. [51] linked the beginning of losing the bond at a steel-concrete interface with the appearance of cracks on the concrete surface. By reaching 10 days of corrosion acceleration, which can be classified as a cracking stage, the passivity of the protective film on the surface of steel was already completely destroyed due to the high rate of corrosion, reaching 10% in some cases. In this advancing levels of corrosion, the ribs height of reinforcing steel began degrading, causing more losing in bond strength, in addition to the appearance of some tight cracks on the external surface of concrete specimens. Extending time to 15 days, bond strength between 167mm bonded length steel bar and concrete containing 100% RCA was almost lost corresponding to the high rate of corrosion (20%), while less degradation observed with conventional concrete. During this stage, which can be described as a post- cracking stage, some interactive factors may have led to this huge loss in bond at the steel-concrete interface. In addition to the reduction in the bar section, the reinforcement
lugs were obviously destroyed up to a significant level in many samples, accompanied by the
observation of some longitudinal widening cracks. As a result, the mechanical interlocking force
between steel and surrounding concrete was almost lost. It is important to explain that the appearance
of cracks on RCA concrete surface could be delayed compared to normal concrete when they were
exposed to the same level of corrosion. It is stated that about 30% more time needed for the first crack
to be appeared on the surface of RCA concrete compared to normal concrete owing to the high porosity
of RCA concrete, which might offer more space for corrosion products to be stored before being cracked
[44].

3.6. Influence of bar diameter on bond strength

In order to investigate the influence of bar diameter on bond strength, two different bar diameters; 12
and 20 mm were used in this study, while two different cases of bonded length were carried out. In the
first case, the influence of bar diameter was investigated using the same surface area of embedment
length (6280 mm²), whilst in the second case, the bonded length for each bar was scaled five times of
bar diameter as recommended by RILEM CEB FIP, (1983) [21]. From Fig. 12, it can be obviously
shown that bar diameter significantly influences the performance of bond between reinforcing steel and
surrounding concrete. As the bar diameter increases, the bond strength is also increased as long as
the surface area of bonded length being constant. Before and after exposure to the initial corrosion, the
specimens with 12 mm bar diameter reported about 65% of the bond strength found with 20 mm. This
difference is mainly associated with the difference in the relative rib area of steel reinforcement, playing
a significant role in bond performance between the bar and its interaction with concrete. The relative
bar area, which is mainly governed by the specific combination of bar spacing and ribs height, can be
described as a ratio between the bearing area of projections above the core of bar to the shearing area
between the ribs (ACI 408, 2003) [9]. To clarify this, the ribs height and spacing are not exactly the
same for different diameter bars, and the bond resistance, in fact, is controlled by the blocking of ribs
in concrete. In the current study, the relative bar rib for 20mm steel bar (0.16) is found to be about 20%
higher than that reported for 12mm. This influence can be supported by the results obtained by [52]
who reported 40% enhancement in bond strength when the relative ribs increased from 0.04 to 0.1. The
ACI 408 (2003) [9] requirements for the maximum spacing between ribs equal to 70% of bar diameter,
and the minimum height of ribs equal to 4% and 5% from the nominal bars (12mm and 20 mm),
respectively, whilst the minimum recommendations for relative rib area equal to 1, with favourable
values between 1.7 up to 2. The influence of relative bar rib is found to be more pronounced with the
presence of transverse confinement [53]. Findings obtained in this study can be supported by [37] who found about 24% development in the failure load when the relative bar rib increased from 0.08 to 0.16. Another possible factor could be related to this difference is the yielding of 12 mm steel bars before reaching the failure, which in turn might have led to reducing the frictional properties, in addition to the possibility of affecting ribs geometry by reducing relative rib area (CEB-FIB, 2010). It was indicated [55] that a significant reduction in bond stresses for specimens yielded before reaching failure compared to the same samples having a higher strength reinforcement and did not yield. However, the findings obtained by [56, 57] indicated that just about 2% lower bond strength for the same situation, whilst 10% of bond strength was higher after reaching the yield when transverse reinforcements are applied. As the corrosion rate develops, the specimens seemingly became less sensitive to this parameter, especially in the advanced stages of corrosion. The likely reason is the erosion of reinforcement lugs of both bars which are responsible for transferring the force between steel and concrete, causing a decrease in transferring this force and making the influence of bar size less effect.
With respect to using two different bonded length based on the size of used bar, the influence of bar diameter showed an opposite trend. From Fig. 13, it can be seen that bond strength of RCA concrete decreases as the bar diameter of reinforcing steel increases, similar observation found in normal concrete. For instance, at non-corrosion stage, the bond strength between 20mm reinforcing steel and RCA concrete containing 50% and 100% RCA reported approximately 60% and 63% of that obtained with 12mm, respectively, which can be supported by [58]. This can be explained by the difference in the surface area of bonded length between these two bars, in addition to the increase of the number and the volume of bleed water trapped pockets between the bars and concrete voids, causing an increment in the number of the voids and decreasing the contact area at a steel-concrete interface [59, 9]. The nonlinearity distribution of bond stress is more pronounced in larger bars (which requires a longer embedded length), resulting in a lower bond strength. By corroding the specimens for different periods, a similar behaviour was noted for both; NCA and RCA concrete. Similarly, [13] stated that bond strength reduced about 45% when the bar diameter increases from 12mm to 20mm, but the reduction being marginal when steel corroded. It is reported that influence of bar diameter on bond strength can be notably observed with low degrees of confinement, however, this impact almost disappeared with high degrees of confinement [60].
Fig. 14. Ratio of bond strength between the samples with bar 20mm and bar 12mm) for; (a). 0%RCA, (b). 25%RCA, (c). 50%RCA and (d). 100%RCA.

It can be probably concluded that the relationship between rebar diameter and bond strength cannot be always appreciated. This is fundamentally because of the embedment length is needed to be longer as bar diameter increases, while more bond forces are required for larger bars to be failed in the case of a given embedment length [9]. Similarly to normal concrete, the bar diameter of RCA concrete had a crucial influence on the failure mode of pull-out test' specimens for both corroded/uncorded steel bars. This can be observed when the samples having larger bar diameter (20mm) failed in splitting instead of pull-out failure observed with smaller bar diameters.

3.8. Influence of embedded length on bond strength

Based on the test results, it can be said that by increasing the development length of reinforcing steel, the ultimate force tends to be higher, however, the ultimate bond strengths obtained from both normal and RCA concrete specimens are clearly decreased. From Fig.14, it can be seen that the bond strength of specimens having an un-corroded embalmment length 5 times of bar diameter dropped by about 40% when the length increased to be 13 times of bar diameter. The same scenario was observed with concretes incorporating 50% and 100% RCA, recording approximately 37% and 35% of shorter bonded length, respectively. These findings confirms the earlier results obtained by [61], who reported 30-50% reduction in bond strength of RCA concrete when the embedment length doubled from 5d to 10d, where d is the bar diameter. This is mainly because of less bond stress is distributed along the bar when the embedment length increases, in addition to the increase of nonlinear distribution of bond stresses for larger embedment length, causing a reduction in bond strength. The other possible reason is associated with the increase of the number of bleed water trapped between a steel–concrete interface. Therefore, this increase in voids led to reducing the contacted area between the rebar and concrete. Hence, the average bond stress transferred to the surrounding concrete reduces when the bonded length
increases. It should be noted that increase in bond length will not always lead to an increase in the bond force, since the non-uniformly distribution of applied load reaches a marginal value close to zero at a certain distance, therefore a further increase in the embedment length will have no influence on the bond performance [26, 62]. After exposing to further corrosion, the degradation rate of bonding was higher for longer embedment length, and hence bond strength being more influenced by the change of bonded length. This might be occurred due to the presence of widening cracks resulting from corrosion along 167mm bonded bar, preventing the force from transferring between steel and concrete. The difference in embedment length also affected the failure mode of RCA concrete as the most specimens made with 5d bonded length failed by pulling-out the reinforcement, whilst the splitting failure was observed when the contacted area between steel and concrete was longer.

![Effect of embedded length on bond strength.](image)

From Fig.15, it can be seen that there are three types of failure mode were observed during the experiential work. For specimens having 12mm bar diameter, pull-out failure as shown in Fig. 14(a) occurred for the majority of those having smaller embedded lengths (60mm) due to the availability of adequate confinement provided by the large cover of concrete (96mm). This type of failure takes place when the shear force generated from concrete exceeds the radial force of steel bar, allowing reinforcement steel to crush the keys of concrete located between each pair of lugs, and therefore reinforcement easily pulled out without any visible concrete splitting. However, this mode developed to be accompanied by splitting in concrete when the accelerated time for corrosion extended to 10 days as shown in Fig.14(b), because of the formation of some tiny cracks caused by corrosion products, making the confining action almost equiponderant with the radial forces of reinforcement [63]. By reaching 15 days of corrosion, the mode of failure turned into splitting owing to the presence of
longitudinal cracks, making concrete to be easily splitted. By increasing the embedment length for the same bar (12mm) to be 13Ø instead of 5Ø (where Ø is the bar diameter), all specimens either; corroded or un-corroded exhibited splitting failure as shown in Fig. 14(c), indicating that the confining action generated by the circumferential tensile forces in concrete was smaller than the radial force of steel bar. Therefore, cracks are easily propagated at a steel-concrete interface until reaching the outer concrete surface. By increasing the nominal bar diameter from 12mm to 20mm, the latter pattern failure was observed with all tested specimens. It is important to explain that no differences between NCA and RCA concrete specimens were observed in terms of failure modes, since little change in compressive strength was reported. Therefore, the results confirmed that the failure modes are heavily controlled by concrete strength, bar diameter, embedment length and rate of corrosion, rather than the type of concrete used.

Fig. 16. Bond failure modes.

3.9. Concrete visual observation after corrosion
This part has only focused on the corrosion damage of reinforced concrete resulting from exposure to aggressive environments (15 days of corrosion acceleration). It is generally accepted that the mechanism of corrosion damage is fundamentally due to the formation of rust products (rustiness) around steel reinforcement, occupying up to six times of original steel volume [64]. This expansion could
lead to internal tensile stresses in concrete, and as a consequence, cracking and spalling are expected to occur on the surface of concrete [14]. Fig. 16 shows the difference between the specimens having 100% RCA and those containing only normal aggregate for the three types of used specimens. The visual observations of these samples exhibited a localized rust with a brownish colour along the periphery of embedded length of steel, while a wet orange oxide was spread over the internal surface of concrete. Nevertheless, it can be noticed that the amount of fluid corrosion products for the three types of specimens is more pronounced with RCA concrete, accompanied by a higher rate of steel dissolution, compared to normal concrete specimens. This is primarily attributed to its higher
permeability and water absorption, allowing more moisture and chloride ions to reach steel-concrete interface. This may be assigned to the formation of longitudinal cracks along the whole length of the sample, allowing chloride ions to easily penetrate concrete matrix, and therefore the process of corrosion was speeded up due to the large amount of electrons moving from cathode to anode sites. These visible cracks were less available with the specimens having a shorter bonded length (5 Ø).

4. Bond strength equations in code provisions and empirical equations
4.1. Bond strength between un-corroded bar and surrounding concrete
Several researchers have proposed equations for predicting the bond strength between steel reinforcement and surrounding concrete taking into account the main parameters such as compressive strength, bar diameter, embodiment length and concrete cover. The summary of these models is presented in Table 4, and it should be noted that none of these equations were developed for RCA concrete and they just were proposed based on the experimental results from specimens containing only normal concrete. The bond strengths obtained from the experimental tests have been compared to these equations, and presented in Fig.17. As shown in Table 5, the performance of predicted bond strengths by the previous equations generally show conservative results compared to the experimental results. It can be observed that using the predicted values of bond strength suggested by Darwin et al. [64] and Orangun et al. [55] showed the closest results to the measured values with a mean ratio of 0.951 and 1.04, and a standard deviation (SD) of 0.28 and 0.341, respectively, while Esfahani & Rangan’s equation [66] was less accurate with a mean ratio of 1.22 and SD of 0.51, since concrete cover, bar size and compressive strength were the only factors taken into account in this equation, whilst the influence of embedment length is not included in the equation. Apart from results predicted by CEB-FIP (2010) [54], all other equations give overestimated values for specimens having 167mm embedment length compared to those experimentally obtained. However, the results obtained from CEB-FIP (2010) formula for predicting splitting failure are significantly lower than those reported using the formula of pull-out failure. It can be also noted that the weakness of CEB-FIP (2010) is mainly attributed to the relying of the compressive strength of concrete for predicting the bond strength and it does take into account for the effect of other significant parameters such as bar diameter and embedment length. The influence of latter is not also covered by the equation proposed by the Australian Standard (2004), and therefore the equation gives the same result at any length.
Table 5. Existing models for prediction bond strength by previous researchers.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEB-FIP (2010)</td>
<td>[\tau_u = 2.5 \sqrt{f'_c} \text{ at pull-out failure;}]</td>
</tr>
<tr>
<td></td>
<td>[\tau_u = 7.0 \left(\frac{f'_c}{25} \right)^{0.25} \text{ at splitting failure}]</td>
</tr>
<tr>
<td>Australian Standard 3600</td>
<td>[\tau_u = 0.265 \sqrt{f'_c \left(\frac{c}{d_b} + 0.5 \right)}]</td>
</tr>
<tr>
<td>(2004)</td>
<td></td>
</tr>
<tr>
<td>Orangun et al., (1977)</td>
<td>[\tau_u = 0.083045 \sqrt{f'_c \left(1.2 + 3.0 \left(\frac{c}{d_b} \right) + 50 \left(\frac{d}{L} \right)^2 \right)}]</td>
</tr>
<tr>
<td>Darwin et al., (1992)</td>
<td>[\tau_u = 0.083045 \sqrt{f'c \left(1.06 + 2.12 \left(\frac{c}{d_b} \right) \right) \left(0.92 + 0.08 \left(\frac{C{\text{max}}}{C_{\text{min}}} \right) \right) + 75 \left(\frac{d}{L} \right)^2}]</td>
</tr>
<tr>
<td>Esfahani & Rangan (1998)</td>
<td>[\tau_u = 8.6 \frac{C}{d} + 0.5 \frac{C}{d} + 5.5 f_{ct}]</td>
</tr>
</tbody>
</table>

where \(C_{\text{min}} = \text{min}(C_x, C_y, C_s/2) \), while \(C_{\text{max}} = \text{max}(\text{min}(C_x, C_y), C_s) \), which \(C_x \) is the side cover, \(C_y \) is the bottom cover, and \(C_s \) is the spacing between the bars.

It can be concluded that even though these equations exhibited reasonable trends for prediction the bond strength of NCA and RCA concrete, more parameters such as relative rib area and water absorption are needed to be involved in these empirical equations to improve the accuracy of bond value.

Fig. 18. Experimental bond strengths versus predicted bond strength by some equations.
Table 6. Comparison of bond strength calculated from different equations with the experimental bond strength.

<table>
<thead>
<tr>
<th>RCA%</th>
<th>f_c</th>
<th>D</th>
<th>L</th>
<th>τ_{exp}</th>
<th>Darwin et al.</th>
<th>Orangun et al.</th>
<th>Esfahani</th>
<th>CEB-FIP</th>
<th>AS3600</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>τ_{theo}</td>
<td>τ_{theo}</td>
<td>τ_{theo}</td>
<td>τ_{theo}</td>
<td>τ_{theo}</td>
</tr>
<tr>
<td>0</td>
<td>54.66</td>
<td>12</td>
<td>60</td>
<td>27.12</td>
<td>25.84</td>
<td>0.74</td>
<td>21.30</td>
<td>0.79</td>
<td>21.85</td>
</tr>
<tr>
<td></td>
<td>54.66</td>
<td>12</td>
<td>167</td>
<td>11.44</td>
<td>16.23</td>
<td>1.20</td>
<td>17.37</td>
<td>1.45</td>
<td>21.85</td>
</tr>
<tr>
<td></td>
<td>54.66</td>
<td>20</td>
<td>100</td>
<td>18.98</td>
<td>21.51</td>
<td>0.83</td>
<td>15.16</td>
<td>0.8</td>
<td>17.48</td>
</tr>
<tr>
<td>25</td>
<td>54.11</td>
<td>12</td>
<td>60</td>
<td>27.05</td>
<td>25.79</td>
<td>0.74</td>
<td>21.51</td>
<td>0.79</td>
<td>21.75</td>
</tr>
<tr>
<td></td>
<td>54.11</td>
<td>12</td>
<td>167</td>
<td>11.39</td>
<td>16.18</td>
<td>1.23</td>
<td>21.47</td>
<td>1.51</td>
<td>21.75</td>
</tr>
<tr>
<td></td>
<td>54.11</td>
<td>20</td>
<td>100</td>
<td>18.55</td>
<td>21.47</td>
<td>0.85</td>
<td>15.08</td>
<td>0.82</td>
<td>17.48</td>
</tr>
<tr>
<td>50</td>
<td>50.33</td>
<td>12</td>
<td>60</td>
<td>26.53</td>
<td>25.39</td>
<td>0.73</td>
<td>20.41</td>
<td>0.77</td>
<td>20.94</td>
</tr>
<tr>
<td></td>
<td>50.33</td>
<td>12</td>
<td>167</td>
<td>10.83</td>
<td>15.78</td>
<td>1.28</td>
<td>16.64</td>
<td>1.51</td>
<td>20.94</td>
</tr>
<tr>
<td></td>
<td>50.33</td>
<td>20</td>
<td>100</td>
<td>17.51</td>
<td>21.23</td>
<td>0.86</td>
<td>15.33</td>
<td>0.83</td>
<td>16.75</td>
</tr>
<tr>
<td>100</td>
<td>47.08</td>
<td>12</td>
<td>60</td>
<td>25.87</td>
<td>25.09</td>
<td>0.73</td>
<td>19.83</td>
<td>0.77</td>
<td>20.34</td>
</tr>
<tr>
<td></td>
<td>47.08</td>
<td>12</td>
<td>167</td>
<td>10.26</td>
<td>15.48</td>
<td>1.28</td>
<td>16.17</td>
<td>1.55</td>
<td>20.34</td>
</tr>
<tr>
<td></td>
<td>47.08</td>
<td>20</td>
<td>100</td>
<td>15.63</td>
<td>21.05</td>
<td>0.94</td>
<td>14.11</td>
<td>0.91</td>
<td>16.27</td>
</tr>
</tbody>
</table>

Mean | 0.951 | 1.041 | 1.22 | 0.74 | 1.02
S.D | 0.228 | 0.34 | 0.51 | 0.21 | 0.47
C.O.V| 0.24 | 0.33 | 0.41 | 0.29 | 0.46

4.2. Degradation of Bond strength due to corrosion

The relationship between corrosion rate and its effect on the performance of bond has been investigated by several researchers. Most of the existing models expressed the change in the bond strength due to corrosion as follow:

\[K_t = \frac{\tau_c}{\tau_0} \]

where \(K_t \) is the relative bond strength, \(\tau_0 \) is the maximum bond strength without corrosion, and \(\tau_c \) is the maximum bond strength with corrosion.

The existing models for \(K_t \) are listed in Table 6, and compared to the experimental results in Fig. 18. It can be noted that the relative bond strengths predicted by the existing models exhibit conservative results compared to those obtained from the experimental work. In particular, the relative bond strengths predicted by Lee et al., (2002) and Kivell et al. (2012) are highly overestimated. This could be associated to the inaccuracy of these models as they were designed based on the results obtained from different experimental works, having different testing procedures, corrosion current and materials strength. For example, the compressive strengths in the current study are much higher than that used in these models. Apart from Auyeung et al., (2000) model, which exhibits the best performance with \(R^2 = 0.80 \),
the bond strengths obtained from all other models are overestimated, since they tend to monotonically decrease with the increase of corrosion rate. The empirical equations suggested by [70] Carbera, (1996) and [71] Bhargava et al., (2007) showed that the bond linearly declined by increasing the corrosion rate, which does not properly match the actual degradation trend. On the other hand, the formula proposed by Chung et al., (2008) overestimated the experimental bond strengths for both normal and recycled aggregate concretes. It is also noted that during the stage of increase in bond strength due to corrosion, all the values were expressed by (1), making the bond strengths before and after exposure to corrosion are the same, which were differently observed by the experimental results. From the experimental results, it can be said that the relationship between K_t and corrosion rate (η) slightly increases with a small amount of corrosion, and afterwards significantly decreases. This trend has not been captured by any of these models.

Table 7. Degradation model of relative bond strength by previous researchers.

<table>
<thead>
<tr>
<th>References</th>
<th>Normalised equation</th>
<th>K_t<sup>predicted</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabrera (1996)</td>
<td>$K_t = 1 - 5.6 \eta$, 0.72</td>
<td></td>
</tr>
<tr>
<td>Auyeung et al. (2000)</td>
<td>$K_t = e^{-32.51 \eta}$</td>
<td>0.80</td>
</tr>
<tr>
<td>Lee et al. (2002)</td>
<td>If $f_c' \leq 21$ MPa, $K_t = 1$, for $\eta < \ln(0.34 f_c' - 1.93)/5.21 - 0.0561$</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>If $f_c' > 21$ MPa, $K_t = 5.21 e^{-0.0561 \eta}$</td>
<td>0.57</td>
</tr>
<tr>
<td>Chung et al., (2008)</td>
<td>$K_t = 1$ for $\eta \leq 2.0%$, 0.64</td>
<td></td>
</tr>
<tr>
<td>Bhargava et al., (2007)</td>
<td>$K_t = 24.7\eta^{-0.55}$ for $\eta > 2.0%$, 16.87</td>
<td>0.68</td>
</tr>
<tr>
<td>Kivell (2012)</td>
<td>$K_t = 1.192 \eta^{-0.117 \eta}$, $\eta > 1.5%$, 1.0 for $\eta \leq 1.5%$, 0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$K_t = 0.76 e^{0.076 \eta}$, $\eta < 1.0$, 0.57</td>
<td>0.57</td>
</tr>
</tbody>
</table>
5. Conclusions

Experimental investigations were performed to evaluate the influence of recycled coarse aggregate on concrete properties and bond of reinforcing bars embedded in recycled coarse aggregate concrete under different levels of corrosion. Based on the results obtained from this investigation, the following conclusions can be drawn:

- The compressive strength of RCA concrete gradually reduces by increasing the amount of RCA in concrete. At 100% of RCA replacement rate, the compressive strength reduces by approximately 15% at 28 days; however, this effect becomes less pronounced as time of curing extended to 90 days.

- The tensile strength and flexural strength of RCA concrete are not significantly influenced by the replacement level of RCA; an 8% tensile/flexural strength reduction was observed at 100% RCA replacement. However, the water absorption of RCA concrete was considerably affected by the RCA content, reflecting the higher water absorption capacity of recycled aggregate.

- Overall, concrete with 25% RCA replacement level is comparable to normal concrete and did not show a significant change, even in harsh environmental conditions, and therefore, RCA can be recommended to be used up to this limit in structural applications.

- Corrosion of reinforcing steel initiated faster in RCA concrete than NCA, and larger corrosion rate was reported with the increase of the replacement level of RCA due to its high porosity and water absorption.
The ultimate bond strength of un-corroded steel concrete specimens is slightly affected by the increase of RCA level, but larger steel bar diameters may exhibit more bond strength reduction. Furthermore, the difference of bond strength between NCA and RCA concrete becomes more pronounced as the corrosion rate increases.

The bond strength of RCA concrete was strongly affected by corrosion products; bond strength slightly enhanced by up to 2% corrosion rate, however, this enhancement reported higher with the increase of RCA level. As the corrosion time further increased, the bond strength is significantly decreased, similar to that of conventional concrete. However, the rate of bond degradation between RCA concrete and corroded steel is much faster than that found in corroded conventional concrete.

No significant differences between NCA and RCA concrete were observed in terms of bond stress-slip curves and failure mode before and after exposure to corrosion.

For the same surface area, steel bars having larger diameter showed better bond strength for both NCA and RCA owing to the influence of surface ribs characteristics of steel bars. However, as the corrosion rate increased, this influence has reduced.

6. Acknowledgments
The authors wish to thank MONE BROS Company in Leeds (UK) for providing recycled aggregates used in this study. The authors also gratefully acknowledge Hanson Ltd, UK for supplying cement used in this study.

7. References

[9]. ACI Committee 408. Bond development of straight reinforcing bars in tension (ACI 408R-03). American Concrete Institute, Farmington Hills, USA 2003.

[57]. Zuo, J. and D. Darwin. Splice strength of conventional and high relative rib area bars in normal and high-strength concrete, American Concrete Institute 2000.

[62]. Wassouf, M. Bond and ductility of concrete reinforced with various steel bars surface and ductility conditions, University of Birmingham 2015.

