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A Comparative Analysis of Two-Stage Distress Prediction Models 

 

 

Abstract: On feature selection, as one of the critical steps to develop a distress prediction model 

(DPM), a variety of expert systems and machine learning approaches have analytically supported 

developers. Data envelopment analysis (DEA) has provided this support by estimating the novel 

feature of managerial efficiency, which has frequently been used in recent two-stage DPMs. As 

key contributions, this study extends the application of expert system in credit scoring and 

distress prediction through applying diverse DEA models to compute corporate market 

efficiency in addition to the prevailing managerial efficiency, and to estimate the decomposed 

measure of mix efficiency and investigate its contribution compared to Pure Technical Efficiency 

and Scale Efficiency in the performance of DPMs. Further, this paper provides a comprehensive 

comparison between two-stage DPMs through estimating a variety of DEA efficiency measures 

in the first stage and employing static and dynamic classifiers in the second stage. Based on 

experimental results, guidelines are provided to help practitioners develop two-stage DPMs; to 

be more specific, guidelines are provided to assist with the choice of the proper DEA models to 

use in the first stage, and the choice of the best corporate efficiency measures and classifiers to 

use in the second stage.  

 

Keywords: Corporate Two-stage Distress Prediction; Efficiency; Data Envelopment Analysis; 

Malmquist Index 
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1. Introduction  

Recent studies on corporate failure prediction aim to use broadly recognised sources and 

indicators of financial distress such as difficulties in operating and financing activities, and poor 

performance in management and leadership of the company in developing an early distress 

warning system to take proper preventive action against bankruptcy and immune the firm (see, 

for example, Altman, Iwanicz-Drozdowska, Laitinen, & Suvas, 2017; Baudraerts, 2016; Bauer 

& Agarwal, 2014; Laitinen & Suvas, 2016; Liang, Lu, Tsai, & Shih, 2016; Wu, Gaunt, & Gray, 

2010; Yeh, Chi, & Hsu, 2010). 

According to Zhou (2013), distress and bankruptcy prediction models are data-fitting based 

empirical research consisting of four steps: sampling, features selection, choice or design of 

classifier, and performance evaluation. Regarding the design of classifiers, related studies have 

used different techniques from a variety of fields such as statistics and probability, machine 

learning and expert systems. Statistical models, however, are based on assumptions which might 

not be valid for a given data set; e.g., linearity, multivariate normality, independence among 

predictor or input variables, and equal within-group variance-covariate matrices. The less 

vulnerable classifers to the underlying statistical assumptions are the ones from the field of 

artificially intelligent and expert systems (AIES) such as recursively partitioned decision trees 

(e.g., Frydman, Altman, & Kao, 1985), case-based reasoning models (e.g., H. Li & Sun, 2009, 

2011), neural networks (e.g., Du Jardin & Séverin, 2012; Kim & Kang, 2010), rough set theory 

(e.g., McKee & Lensberg, 2002; Yeh et al., 2010), genetic programming (e.g., Back, Laitinen, 

Sere, & Wezel, 1995; Alfaro-Cid, Sharman, & Esparcia-Alcazar, 2007; Etemadi, Anvary 

Rostamy, & Dehkordi, 2009), as well as the ones from field of operations research (OR), such as 

multi-criteria decision making analysis (MCDA) (e.g., Zopounidis & Doumpos, 2002) and Data 

Envelopment Analysis (DEA) (e.g., Sueyoshi & Goto, 2009; Sueyoshi, Goto, & Omi, 2010; Z. 

Li, Crook, & Andreeva, 2014, Ouenniche & Tone, 2017) – for a detailed classification of failure 

prediction models, the reader is referred to Balcaen and Ooghe (2006), Aziz and Dar (2006), 

Bellovary, Giacomino, & Akers (2017), Baharammirzaee (2010), Abdou and Pointon (2011), 

and Chen, Ribeiro, & Chen (2016).   

In addition to the application of expert systems and machine learning as classifiers of distressed 

and healthy firms, a variety of these techniques have been applied in the feature selection stage 
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(Chandrashekar & Sahin, 2014; Guenther & Schonlau, 2016; Jain, 1997; Sun et al., 2013; Tang 

& Chi, 2005; Wang, Ma, & Yang, 2014). The prevailing features used in DPMs are accounting, 

market, and macroeconomic indicators (see, for example, Xu & Wang, 2009; Yeh et al., 2010; 

Z. Li et al., 2014; Z. Li, Crook, & Andreeva, 2017), yet, recent studies commonly acknowledged 

the explanatory power of management performance in corporate distress (Seballos & Thomson, 

1990; Gestel et al., 2006; Yeh et al., 2010). In practice, newly developed DPMs have 

incorporated business efficiency, i.e. the ratio of weighted outputs (e.g., sales, profit, and net 

income) to weighted inputs (e.g., equity, asset, and employees), as an effective reflection of 

corporate management performance.  

Direct estimation of a company’s efficiency (i.e., technical and productivity efficiency) using 

financial statements is problematic. Although, most machine learning techniques and expert 

systems, e.g. neural networks, cannot provide efficiency estimations (Z. Li et al., 2017),  DEA as 

a type of machine learning technique (Cielen, Peeters, & Vanhoof, 2004) can incorporate 

multiple inputs and outputs to estimate a measure of the relative efficiency of a company. The 

estimated DEA efficiency measures have been applied both directly for classification to identify 

distressed and healthy companies (e.g., Cielen et al., 2004; Paradi, Asmild, & Simak, 2004; 

Sueyoshi, 2006; Premachandra, Chen, & Watson, 2011; Ouenniche & Tone, 2017), or indirectly 

as features in developing DMPs (Psillaki, Tsolas, & Margaritis, 2010; Xu & Wang, 2009; 

Sueyoshi et al., 2010; Yeh et al., 2010; Z. Li et al., 2014, 2017). Note that the latter application 

of DEA efficiency measures in the literature of bankruptcy and distress prediction is called two-

stage modelling, whereby a DEA model estimates a corporate efficiency measure in the first 

stage; then, the estimated measure is retained as a feature to develop DPM in the second stage. 

In practice, however, there are no guidelines regarding the choice of the proper DEA model (i.e. 

static vs. dynamic), type of returns-to-scale (i.e. constant returns-to-scale (CRS) vs. variable 

returns-to-scale (VRS)), orientation of DEA analysis (i.e. input-oriented, output-oriented, or 

non-oriented), and appropriate DEA inputs and outputs to be employed in the first stage, as well 

as the type of efficiency measures and the classifier to be used in the second stage.  

Our survey of the literature reveals several gaps in the literature on two-stage distress prediction 

modelling. First, to the best of our knowledge, no study provides a comprehensive comparison 

between two-stage DPMs; neither considering different DEA models that are used to estimate 

company efficiency in the first stage nor using different classifiers in the second stage. Second, 
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the literature on employing DEA efficiency measures as new features in model building (see, for 

example, Z. Li et al., 2014) is limited to employing Pure Technical Efficiency (PTE)
1
 and Scale 

Efficiency (SE)
 2

, thus ignoring Mix Efficiency (ME) or equivalently input and output slacks. 

Third, our survey indicates that the choice of DEA inputs and outputs to estimate company’s 

efficiency measures is restricted to accounting variables (Barr & Siems, 1997; Z. Li et al., 2014, 

2017; Psillaki et al., 2010; Xu & Wang, 2009; Yeh et al., 2010) thus ignoring market variables 

(see, Table 1). There are several issues or criticisms regarding the use of accounting-based 

information, e.g., accounting-based information only present a firm’s historical performance and 

may not be informative in predicting the future; the “true” asset values may be very different 

from the book values; and accounting numbers can be manipulated by Management (Agarwal & 

Taffler, 2008; Balcaen & Ooghe, 2006; Hernandez Tinoco & Wilson, 2013; Trujillo-Ponce, 

Samaniego-Medina, & Cardone-Riportella, 2014). To overcome these drawbacks, Shumway 

(2001) as the pioneer study used firms’ market value, past stock returns, and the idiosyncratic 

standard deviation of stock returns as market-driven variables to improve the performance of 

bankruptcy prediction models. The rationale behind the use of market-based variables is that, in 

an efficient market, stock prices will reflect both the information contained in accounting 

statements and the information contained in the future expected cash-flows. Furthermore, market 

variables are unlikely to be influenced by the firm’s accounting policies.  

This study adds to the current literature of two-stage DPMs in several respects. First, building on 

the work of Li et al. (2014) in analysing the contribution of decomposed scores of Technical 

efficiency (TE), i.e., PTE and SE, to predict financial distress, we suggest decomposing the non-

radial technical efficiency score, i.e., Slack-Based Measure (SBM) of efficiency (Tone, 2011), 

into PTE, SE and ME, and investigating how each of these measures individually contributes to 

DPMs. Second, considering the frequent use of market-driven information as features of DPMs 

in recent studies (see, for example, Xu & Wang, 2009; Yeh et al., 2010; Z. Li et al., 2014, 2017) 

and inspired by the prevailing application of Sharpe ratio (1966, 1994) to examine the 

performance of an investment, we suggest using Shumway’s market-driven information as input 

and output of DEA models to estimate the market efficiency performance of a firm (hereafter 

                                                 
1
 refers to the ability to improve the effectiveness by prudently allocating resources and using new technology 

2
 indicates the capacity to attain better efficiency by adjusting to its optimal scale 
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called market efficiency measure). Third, as an empirical contribution, this study provides a 

comprehensive comparison of two-stage DPMs that apply different DEA models, say, input-

oriented versus output-oriented, radial versus non-radial, static versus dynamic, to compute the 

measures of management efficiency and market efficiency of companies at the first stage of two-

stage analyses and use static and dynamic classifiers at the second stage. In sum, this paper 

extends the application of expert systems and machine learning in feature selection of distress 

prediction modelling through employing diverse DEA models to estimate market and managerial 

efficiency of firms and investigating the effectiveness of decomposing DEA measures on the 

performance of DPMs.  

The remainder of this paper is organised as follows. Section 2 reviews the literature on DEA in 

distress prediction. Section 3 describes the details of the experimental design including data, 

sampling, and hybrid two-stage models of distress prediction to be assessed and the proposed 

evaluation technique. Section 4 describes the empirical results and the findings. Finally, section 

5 presents the conclusion of this study.   

2. Literature review 

DEA is a non-parametric technique, which was introduced to measure the relative efficiency of a 

group of decision-making units (DMUs), e.g. firms, hospitals, products, prediction models, 

cities, and others, based on their respective inputs and outputs (Charnes, Cooper, & Rhodes, 

1978). DEA has been one of the most successfully used techniques in the research activities 

related to performance evaluation of banking and other financial institutions – for a 

comprehensive survey on DEA in banking; the reader is referred to Emrouznejad and Yang 

(2018), Paradi and Zhu (2013) and Fethi and Pasiouras (2010). The rational association between 

the company’s efficiency (as a proxy of management efficiency) and the probability of distress is 

commonly recognised in recent distress prediction studies (Seballos & Thomson, 1990; Gestel et 

al., 2006; Yeh et al., 2010). 

More relevant to this research, distress prediction studies applied DEA in two different ways. 

First, DEA is used as a classifier to discriminate between distressed and healthy groups of firms 

(Cielen et al., 2004; Paradi et al., 2004; Sueyoshi, 2006; Premachandra et al., 2011; Ouenniche & 

Tone, 2017). Second, in hybrid two-stage prediction frameworks, DEA is used to measure the 

relative efficiency of companies at the first stage. Then, the estimated DEA efficiency score is 
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used as an input to or explanatory variable in the prediction model at the second stage (Xu & 

Wang, 2009; Sueyoshi et al., 2010; Psillaki et al., 2010; Yeh et al., 2010; Z. Li et al., 2014, 

2017). The next two sections provide a concise review of the application of DEA in distress 

prediction as a classifier (see section 2.12.1) and as a predictor (see section 2.22.2). Table 2 

provides a summary of these studies.  

2.1. DEA as a Classifier 

Compared to the conventional statistical models, DEA as a non-parametric classifier has some 

methodological advantages. For example, DEA is a distribution-free framework and does not 

require specifying the distribution of features. Also, DEA relaxes the assumption of equality of 

variance-covariance matrices among all groups. Further, it does not incorporate a priori 

probabilities to account for the relative occurrence of observations in different populations and 

does not require a priori specification of a functional form for the input-output relationship 

(Paradi et al., 2004; Premachandra, Bhabra, & Sueyoshi, 2009). 

[Insert Table 1 Here] 

In the literature, the application of DEA scores for classification consists of using such scores to 

discriminate between two groups of Good (e.g. bankrupt) and Bad (e.g. non-bankrupt) entities or 

firms using a cut-off point or a statistical test (Simak, 1997; Pille & Paradi, 2002; Tsai, Lin, 

Cheng, & Lin, 2009; Shetty, Pakkala, & Mallikarjunappa, 2012; Paradi et al., 2004; Cielen et al., 

2004; Ouenniche & Tone, 2017) – see Table 2 for more details. 

As the pioneer study, Barr et al. (1993) used CCR model (Charnes, Cooper and Rhodes, 1978) 

under the constant returns-to-scale (CRS) assumption to measure the management efficiency of 

US banks. They found that there is a gap between efficiency scores of non-failed and failed 

banks, which is both significant and increasing as the failure date approaches. However, in 

bankruptcy and distress prediction, the returns-to-scale (RTS) regime is increasing or decreasing, 

therefore, the CRS assumption is unrealistic. 

Pille and Paradi (2002) developed four input-oriented BCC models (Banker, Charnes, & Cooper, 

1984) with different combinations of inputs and outputs, under the variable returns-to-scale 

(VRS) assumption, to predict financial failure of Credit Unions. The performance of DEA 

efficiency scores was statistically compared with a government modified “Z-score” model and 
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“equity to asset” ratio. Overall, consistent with Barr et al. (1993), they found that failed Credit 

Unions, especially one year before the failure time, have lower scores than healthy ones.  

Paradi et al. (2004) proposed the worse practice DEA analysis under BCC - aimed at finding the 

companies that are efficient at being bad - in combination with a layering technique, rather than a 

fixed cut-off point, to classify manufacturing firms into bankrupt and non-bankrupt. Also, they 

employed a different combination of inputs (the drivers of bad performance like current 

liabilities, interest expense, and bad debt) and outputs (the drivers of good performance like total 

asset, sales, profit) to identify the best set of inputs/outputs. The results suggested that combining 

the first three layers of worst practice efficiency frontiers improves the classification accuracy of 

identifying bankrupt and non-bankrupt firms up to 100 and 67 percent, respectively.  

Cielen et al. (2004) used CCR scores to predict bankruptcy and compared such a DEA classifier 

with a linear programming model (minimised sum of deviations (MSD)) and a rule induction 

(C5.0) model. They suggested using financial ratios with a positive correlation as inputs and 

those with a negative correlation as outputs. Regarding prediction accuracy, the result indicated 

that DEA outperforms both C5.0 and MSD models. However, the main methodological issue is 

that CCR cannot deal with negative values of financial ratios.  

[Insert Table 2 Here] 

Bowlin (2004) analysed cross-sectional and longitudinal differences in DEA scores under the 

BCC model, over a 10-year period, 1988 -1997, to compare the financial stability of different 

groups of firms using the statistical approach of Banker (1993).  

Emel et al. (2003) and Min and Lee (2008) applied an input-oriented CCR model to measure 

financial performance, namely, creditability scores, which were then used to classify firms with 

scores equal to one and less than one as companies with a good and relatively worse financial 

performance, respectively. To validate the discriminatory power of DEA, they used the DEA 

score as the dependent variable and financial ratios as independent variables in regression and 

discriminant analysis. The results suggested that DEA is a valid method for estimating the 

creditworthiness of companies.   

Premachandra et al. (2009) employed the additive DEA model of Charnes, Cooper, Golany, 

Seiford, and Stutz (1985) for bankruptcy prediction to take advantage of its specific features. 
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First, the additive DEA allows for negative values of inputs and outputs, as a result of its 

translation invariance property. Second, in contrast to radial models (i.e. CCR and BCC models), 

which require examination of both a DEA efficiency score and slacks to estimate the efficiency 

of a DMU, the additive model requires the consideration of slacks only. Third, while the radial 

DEA model based on an input-oriented or an output-oriented measurement results in different 

efficiency scores, the additive model includes both input and output slacks in the efficiency 

analysis, then it avoids the problem related to ratio form. The comparison of the additive DEA 

model with Logistic regression (LR) indicates that the DEA model (respectively LR) 

outperforms (respectively underperforms) in predicting non-bankrupt (respectively bankrupt) 

firms. 

However, additive DEA for bankruptcy prediction has some drawbacks. First, the selection of 

input and output variables are in reverse order to conventional DEA model that would usually 

cause different results (Shetty et al., 2012). Second, the additive model does not provide an 

efficiency score between 0 and 1. In other words, although the estimated measure can 

discriminate between bankrupt and non-bankrupt firms, it fails to evaluate the depth of 

bankruptcy (Premachandra et al., 2011; Shetty et al., 2012).   

To overcome the above drawbacks, Premachandra et al. (2011) applied super-efficiency additive 

DEA model (Fang, Lee, Hwang, & Chung, 2013) to develop a discriminant index based upon 

two frontiers, namely failure and success. Switching input-output classification identifies these 

two frontiers. Therefore, for determining failure (respectively success) frontier, the smaller 

(respectively larger) values in the financial ratios are considered as input (respectively output), 

and the larger (respectively lower) values in those ratios are considered as output (respectively 

input). The results indicate that the super-efficiency additive DEA model is relatively weaker in 

predicting failed firms compared to non-failed ones. However, the discriminant index based on 

two frontiers improves this weakness by giving the practitioners the option to choose different 

accuracy levels of failure, non-failure, and total prediction.  

Also, to overcome the shortcomings of the application of the additive DEA by Premachandra et 

al. (2009) in bankruptcy prediction, Shetty et al. (2012) proposed a modified efficiency measure 

using orientation-free non-radial directional distance formulation of DEA. Contrary to the 

additive DEA model, this approach measures the worst relative efficiency within the range of 
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zero to one. Further, contrary to the conventional DEA methods, this method identifies the worst 

performers and locates an inefficient frontier.  

Sueyoshi (1999) proposed a new type of discriminant analysis, namely “DEA-Discriminant 

Analysis (DEA-DA)” that incorporates the methodological advantages of DEA (for example, 

nonparametric and distribution-free features) into the discriminant analysis. This two-stage 

approach is designed to identify the existence of an overlap between the two groups at the first 

stage and to determine a group classification function for new observation samples at the second 

stage. Sueyoshi (2001) proposed the “extended DEA-DA” approach, which has two important 

features; 1) it can deal with negative values, and 2) it can estimate the weights of a DA function 

by minimising the total distance of misclassified observations. However, the drawback of the 

“extended DEA-DA” model is that it does not reduce the number of misclassified observations 

(as explained in accuracy performance evaluation), but the total distance of misclassified 

observations. To overcome this methodological issue, Sueyoshi (2004) proposed a mixed integer 

programming (MIP) version of DEA-DA to estimate the weights of the linear discrimination 

function by minimising the total number of misclassified observation. 

Furthermore, Sueyoshi (2006) compared the performance of two advanced versions of DEA-DA 

classifiers, namely standard MIP and two-stage MIP models with six other bankruptcy prediction 

models; logit, probit, Fisher’s linear DA, Smith’s quadratic DA, neural network, and decision 

tree. Tsai et al. (2009) also used the MIP version of DEA-DA (Sueyoshi, 2004) as a predictor of 

loan default and compared its accuracy with DA, LR and NN models. The result suggests that 

DEA-DA and NN have a better-classifying capability.   

Further, in a proposed two-stage model, Sueyoshi et al. (2010) applied RAM (range-adjusted 

measure: Aida, Cooper, Pastor, & Sueyoshi, 1998; Cooper, Park, & Pastor, 1999) as a DEA 

model to measure the operational efficiency scores of Japanese companies, in the first step. In 

the second step, the RAM efficiency score is used as the dependent variable in a Tobit regression 

to investigate whether corporate governance variables influence the operational efficiency of 

firms.  

Mukhopadhyay et al. (2012) proposed a combination of DEA and Multi-Layer Perceptron 

(MLP) to predict failure. First, they used super-efficiency negative DEA to identify the worst 

performers amongst the non-failed firms (i.e. companies with an efficiency score greater than 1). 
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The recognised worst non-failed firms in combination with failed firms are labelled as a failed 

group and then used to train the MLP. The developed MLP was then used for failure prediction. 

The proposed technique, therefore, recognises firms that have a high likelihood of facing failure 

along with those that have filed for bankruptcy.  

Avkiran and Cai (2014) applied a super-efficiency SBM model (Fang et al., 2013; Tone, 2011) 

as a forward-looking approach to predict distressed bank holding companies. Results suggested 

that DEA could identify distressed banks up to 2 years ahead.  

More recently, Ouenniche and Tone (2017) used a BCC (respectively SBM) model to estimate 

efficiency scores of the London Stock Exchange (LSE) listed companies and proposed a novel 

rule to classify firms in the training sample into bankrupt and non-bankrupt ones, which involves 

solving a non-linear programme to determine a DEA score-based cut-off point so as to optimise 

a given performance measure. Then, a k-Nearest Neighbour (k-NN) algorithm is trained on the 

in-sample classification and used to classify out-of-sample firms into bankrupt and non-bankrupt 

ones. The performance of the proposed DEA-CBR framework for in-sample and out-of-sample 

classification was tested by reworking the DA model of Taffler in their framework, which 

delivered an outstanding performance. 

2.2. DEA Score as a Predictor 

In the recent trend of DEA application in distress prediction, the use of DEA efficiency score as 

a feature in developing prediction models is becoming more prevalent. In the earliest study, Barr 

and Siems (1997) used the CCR model to measure the managerial efficiency of US banks at the 

first stage and then used the CCR efficiency score as a predictor in a Probit model at the second 

stage. Their findings suggest that removing the management efficiency variable from the Probit 

model decreases the model’s fit and classification accuracy.  

Xu and Wang (2009) used the BCC model to estimate the efficiency scores of Chinese firms in 

the first step. The second step compares the prediction accuracy of three failure prediction 

models, namely, SVM, MDA and logistic regression, with and without DEA efficiency. The 

results indicate that using an efficiency score improves the performance of prediction models 

effectively.  



12 

 

Yeh et al. (2010) used the CCR model to measure the efficiency of Taiwanese information and 

electronic manufacturing firms. The estimated CCR efficiency score and a list of frequently used 

financial ratios are employed as inputs of the second stage, namely rough set theory (RST), to 

select the most significant features. Finally, the selected features from RST are used as inputs of 

support vector machines (SVM) and back-propagation neural networks (BPN) to predict 

business failures. The results suggest that for both RTS-SVM and RST-BPN, the models using 

both financial ratios and DEA scores deliver better classification results than the corresponding 

models only employing financial ratios. 

Psillaki et al. (2010) proposed a two-stage model of credit risk prediction. In the first stage, they 

used a directional distance DEA model under VRS to determine the efficiency scores of a sample 

of French manufacturing firms. The firm efficiency score measures the company’s distance from 

the industry’s best practice frontier. In the second stage, they used logistic regression to evaluate 

the effect of a company’s efficiency in predicting failure over and above that explained by 

financial features. The findings suggest that more efficient firms are less likely to fail.  

Li et al. (2014) proposed a new application of DEA in bankruptcy prediction through using 

SBM-VRS to estimate Technical Efficiency (TE) and decomposing TE into Pure Technical 

Efficiency (PTE) and Scale Efficiency (SE) for a sample of Chinese companies, at the first stage. 

In the second stage, these efficiency measures along with other financial ratios are used in a 

Logistic regression model to predict the probability of failure. The authors introduced an 

interaction term into the model to allow for the impact of a variety of efficiency scores, across all 

industries, on the probability of failure to be identified.  

There are several limitations to the application of DEA in corporate failure and distress 

prediction studies, which could be summarised as follows. First, most of the studies have used 

cross-sectional or static DEA models that fail to consider the changes in efficiency over time. To 

the best of our knowledge, the only exception is Li et al. (2017) who applied time-varying 

Malmquist DEA to estimate dynamic efficiency scores and used them in a dynamic prediction 

model. Second, many of these studies have applied DEA under a constant returns-to-scale (CRS) 

regime (Paradi et al., 2004; Xu & Wang, 2009; Yeh et al., 2010; Avkiran & Cai, 2014; 

Mukhopadhyay et al., 2012) rather than VRS ones (Psillaki et al., 2010; Z. Li et al., 2014), which 

is the typical case in bankruptcy and distress prediction. Third, on DEA analysis orientation, 
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three studies (Cielen et al., 2004; Psillaki et al., 2010; Yeh et al., 2010) are output-oriented, and 

the remaining majority are input-oriented with a rather limited justification of the choice of 

orientation. Forth, while a large number of studies have estimated the DEA efficiency scores of 

firms using financial accounting variables (e.g. total assets, total liabilities, total sales, 

employees, cash flow), as far as we are aware only one (Avkiran & Cai, 2014) has estimated 

efficiency using market variables (e.g., market capitalisation, annual stock return, liquid asset) as 

inputs and outputs of DEA models. Finally, the effect of mix efficiency, which indicates the 

capacity to improve the effectiveness of firms by managing input- or output-slacks, on the 

probability of distress has never been investigated.  

3. Research Methodology 

This section provides the details of our research methodology, where we compare the 

performance of two-stage distress prediction models. To this end, we provide the details on our 

dataset (see section 3.1), the static and dynamic DEA models used in the first stage of two-stage 

DPMs (see section 3.2), and the static and dynamic models specification in the second stage of 

two-stage DPMs (see section 3.3).  

3.1. Data  

We took the following steps to select our dataset. First, we considered all non-financial and non-

utility UK companies listed on LSE at any time during an 8-year period from 2007 through 2014 

- Financial and utility companies are excluded because they are regulated. Second, we excluded 

the firms, which are listed less than two years in LSE, as historical information is a requirement 

for some modelling frameworks. Third, we excluded the firms with missing values for the 

principal accounting items (e.g., sales, total assets) and market information (e.g., price), which 

are necessary for calculating many financial ratios (Lyandres & Zhdanov, 2013). We replaced 

the remaining missing values with the recently observed ones for each firm (Shumway, 2001; 

Zhou, 2013). Fourth, we winsorised the outlier values by replacing the values higher 

(respectively lower) than 99
th

 (respectively 1
st
) percentile of each variable with the 99

th 

(respectively 1
st
) percentile value (Shumway, 2001). Fifth, we lagged all data including market-

driven variables described below to ensure that the data are available at the beginning of the year 

in which bankruptcy is observed (Bauer & Agarwal, 2014; Shumway, 2001).  
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[Insert Table 3 Here] 

Regarding the classification of firms into distress and non-distress classes, we followed the 

proposed definition of financial distress by Pindado, Rodrigues, & de la Torre (2008), where a 

company is classified as distressed if it experiences both of the following conditions for two 

consecutive years. First, the company’s earnings before interest, taxes, depreciation and 

amortisation (EBITDA) is lower than its interest expenses, and second, the company shows 

negative growth in market value. To be more specific, the distress variable, say 𝑦, equals 1 for 

financially distressed companies and equals 0 otherwise. In sum, our dataset consists of 2,096 

firms and 11,943 firm-year observations. Among the total number of observations, there are 676 

firm-year observations classified as distressed resulting in a distress rate average of 5.66 percent 

per year. The models are developed using the training sample period ranging from 2007 to 2011 

and tested using the holdout sample period ranging from 2012 to 2014. Table 3 presents the 

sample sizes. 

3.2. Stage One: Estimating Efficiency Measures Using DEA Models 

In this section, we explain cross-sectional (static) DEA models (see section 3.2.1), and 

Malmquist DEA model (see section 3.2.2) applied in the first stage of two-stage DPMs. Then, 

we describe the choice of inputs and outputs for DEA models (see section 3.2.3).  

3.2.1. Static DEA Models 

Several types of DEA models can be used depending on the conditions of the problem. Further, 

the types of DEA model can be identified based on the scale and orientation of the model. In this 

study, to compute the cross-sectional efficiency measures of companies, we use CCR (Charnes, 

Cooper, & Rhodes 1978), BCC (Bankert, Charnes & Cooper, 1984) and SBM (Tone, 2011) DEA 

models and perform both input-oriented (IO) and output-oriented (OO) analyses – See Table 4 

and Table 5 for details about DEA models. Also, we use SBM model under both constant 

returns-to-scale (CRS) and variable returns-to-scale (VRS) regimes, separately.  

[Insert Table 4 Here] 

Note that the CCR and BCC scores are called the (global) technical efficiency (TE) and the 

(local) pure technical efficiency (PTE), respectively. The BCC model estimates the efficiency of 



15 

 

DMUs when returns-to-scale (RTS) is not necessarily constant, i.e., it takes account of scale 

effect and postulates that convex combinations of the observed DMUs form the production 

possibility set (Cooper, Seiford, & Tone, 2007, p. 153).  If a DMU has full BCC efficiency but a 

low CCR efficiency, then it is operating locally efficient but not globally efficient, because of the 

scale size of the DMU. Considering these concepts and denoting CCR and BCC scores as  𝜃𝐶𝐶𝑅
∗  

and 𝜃𝐵𝐶𝐶
∗ , respectively, the scale efficiency (SE) is defined as follows (Charnes et al., 1978) : 

 𝑆𝐸 =
𝜃𝐶𝐶𝑅

∗

𝜃𝐵𝐶𝐶
∗      Eq. 1 

Therefore, the technical efficiency could be decomposed as 

 𝑇𝐸 = 𝑃𝑇𝐸 ×  𝑆𝐸 Eq. 2 

The advantage of this decomposition is that it determines the sources of inefficiency, i.e., 

whether it is due to inefficient operation (PTE) or due to detrimental conditions displayed by the 

scale efficiency (SE) or by both.  

[Insert Table 5 Here] 

Moreover, radial DEA models, i.e., CCR and BCC scores, overlook possible slacks in inputs and 

outputs, and therefore, would possibly over-estimate the efficiency scores by ignoring mix 

efficiency. The SBM model is a non-radial model that considers slacks in inputs and outputs. 

Note that the equality of optimal input-oriented (respectively, output-oriented) SBM measure, 

i.e.,  𝑝𝑖𝑛
∗  (respectively, 𝜌𝑜𝑢𝑡

∗ ), and optimal input-oriented (respectively, output-oriented) CCR 

measure , i.e., 𝜃𝐶𝐶𝑅−𝑖𝑛
∗  (respectively, 𝜃𝐶𝐶𝑅−𝑜𝑢𝑡

∗ ) holds, i.e., 𝜌∗ = 𝜃𝐶𝐶𝑅
∗ , if the input-oriented 

(respectively, output-oriented) CCR model has zero input-slacks (respectively, output-slacks) for 

every optimal solution. In other words, the strict inequality, i.e., 𝜌𝑖𝑛
∗ < 𝜃𝐶𝐶𝑅−𝑖𝑛

∗  (respectively, 

𝜌𝑜𝑢𝑡
∗ < 𝜃𝐶𝐶𝑅−𝑜𝑢𝑡

∗ ) holds if and only if the CCR measure indicates an input (respectively, output) 

mix inefficiency. Considering these concepts, the input and output “mix efficiency” (ME) are 

defined by Cooper et al. (2006: P.156) as follows.  

 𝑀𝐸𝑖𝑛 =
𝜌𝑖𝑛

∗

𝜃𝐶𝐶𝑅−𝑖𝑛
∗     and   𝑀𝐸𝑜𝑢𝑡 =

𝜌𝑜𝑢𝑡
∗

𝜃𝐶𝐶𝑅−𝑜𝑢𝑡
∗        Eq. 3 

Considering equation 1 (the decomposition of TE), the non-radial input- or output-oriented 

technical efficiency (SBM) could be decomposed into mixed efficiency (ME), pure technical 

efficiency (PTE) and scale efficiency (SE) as follows: 
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 𝑆𝐵𝑀 = 𝑃𝑇𝐸 × 𝑆𝐸 × 𝑀𝐸 Eq. 4 

In this study, we use CCR-IO, CCR-OO, BCC-IO, BCC-OO, SBM-CRS-IO, SBM-CRS-OO, 

SBM-VRS-IO and SBM-VRS-OO models to measure the cross-sectional managerial efficiency 

and market efficiency of companies. Also, we decompose the SBM measure of each company 

into ME, PTE and SE, and incorporate them in developing distress prediction models in the 

second stage.  

3.2.2. Dynamic DEA Model 

To estimate the efficiency measures of companies over time, we use the Malmquist DEA 

productivity index (Färe, Grosskopf, Norris, & Zhang, 1994; Färe, Lindgren, & Roos, 1992). 

Malmquist productivity index (MPI) is a multi-criteria assessment framework for comparing the 

performance of DMUs over time. Färe et al. (1992, 1994) used DEA to extend the original 

Malmquist Index proposed by Malmquist (1953) and constructed the DEA-based Malmquist 

productivity index as the product of two components; (1) catching-up to the frontier, which 

refers to the efficiency change (EC) of DMU with respect to the efficiency possibilities defined 

by the frontier in each period, and (2) efficient frontier-shift (EFS), which refers to the shift of 

efficient frontier between the two time periods 𝑡  and 𝑡 + 1  (see, Table 6 for details about 

Malmquist productivity index).  

Caves et al. (1982) introduced a distance function, Δ(. ), to measure technical efficiency with the 

basic CCR model (Charnes et al., 1978). Though, in the non-parametric framework, instead of 

using a distance function, DEA models are implemented. For example, Färe et al. (1994) used 

input (or output) oriented radial DEA model to measure the MPI. However, the radial model 

faces a lack of attention to slacks that could be overcome using Slacks-based non-radial oriented 

(or orientation-free) DEA model (Tone, 2011, 2002). Along with measuring cross-sectional DEA 

scores (section 3.2.1), we incorporate CCR-IO, CCR-OO, BCC-IO, BCC-OO, SBM-CRS-IO, 

SBM-CRS-OO, SBM-VRS-IO and SBM-VRS-OO models to measure the MPI. Also, we 

decompose the SBM measure of each company into ME, PTE and SE, and incorporate them in 

developing dynamic distress prediction models in the second stage.  

[Insert Table 6 Here] 
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Global Malmquist Productivity Index  

The primary objective of this study is to estimate the relative efficiency of 𝐷𝑀𝑈𝑠 (companies) in 

each period. However, the estimated Malmquist productive index (MPI), say, 𝑀𝑃𝐼0
𝑡,𝑡+1

, indicates 

the change of efficiency score between period 𝑡 and 𝑡 + 1, and not relative efficiency scores of 

DMUs at each period, then should be modified for our purpose. Further, referring to Pastor and 

Lovell (2005), the contemporaneous MPI is not circular, its adjacent period components can give 

conflicting signals, and it is sensitive to LP infeasibility.  

The adjacent reference index, proposed by Färe et al. (1992), suggests multiplying 𝑀𝑃𝐼0
𝑡,𝑡+1

 by 

Δ0
𝑡 (𝑥0

𝑡 , 𝑦0
𝑡), which results in the relative efficiency of 𝐷𝑀𝑈0 at period 𝑡 + 1 compared to period 

𝑡. However, the main drawback of this index is that it cannot estimate the relative efficiency 

score of non-adjacent periods, e.g., period 𝑡  and 𝑡 + 2 or 𝑡 + 1 and 𝑡 + 3. To overcome this 

drawback, Berg, Forsund, & Jansen (1992) used a fixed reference index, which compares and 

refers the relative efficiencies of all periods (say, 𝑡 (𝑡 ≥ 2)) to the first period (say, 𝑡 = 1). 

Therefore, it is possible that the efficiency scores of the periods later than the first one are more 

than 1 since the technology develops over time. Although, the fixed reference index acquires the 

circularity property with a base period dependence, it remains sensitive to LP infeasibility. More 

recently, Pastor and Lovell (2005) suggested a global MPI that contains circular competent, is 

not susceptible to LP infeasibility and provides a single measure of productivity change. Further, 

in a situation where efficient frontiers of multiple periods cross each other, the global index can 

be measured by the best practices in all periods. As Figure 2 presents, the relative efficiency of 

𝐷𝑀𝑈0  can be measured in terms of either the frontier of period 1 (consists of four DMUs: 

1,2,3,4 and 5) or the frontier of period 2 (consist of four DMUs: 6,7,8,9 and 10). An alternative is 

the global frontier, which is the combination of the best DMUs in the history, i.e. five DMUs: 

6,7,3,4 and 5. 

[Insert Figure 1 and Figure 2 Here] 

It is argued that if the length of the observation period is long enough, the current DMUs would 

be covered by the best historical DMUs, probably themselves. Thus, the relative efficiency to the 

global frontier could be considered as an absolute efficiency with the scores less than or equal to 

1 (Pastor & Lovell, 2005). In this paper, we use the global MPI proposed by Pastor and Lovell 

(2005), which overcome the above mentioned issues with previously proposed MPIs. 
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3.2.3. Choice of Inputs and Outputs for the First Stage 

To select suitable inputs and outputs for DEA models, we considered the following issues. First, 

the survey on the application of DEA in bankruptcy and distress prediction indicates that there is 

no standard choice of inputs and outputs for DEA – see Table 1 above. In practice, different 

DEA applications use different inputs and outputs, which is one of the drawbacks of DEA 

application (Premachandra et al., 2009). However, the choice of inputs and outputs should be 

related to the competitive environment (Oral & Yolalan, 1990). Second, regarding most of two-

stage prediction models, since financial ratios are used as features in the second stage, the 

monetary items of financial statements are used as inputs and outputs of DEA models in the first 

stage (Z. Li et al., 2014, 2017; Psillaki et al., 2010; Xu & Wang, 2009). Third, to the best of our 

knowledge, two-stage studies only used accounting items as inputs and outputs of DEA models 

to compute the managerial efficiency of companies (see, Table 8 for details). Fourth, to deal with 

negative values in inputs and outputs of DEA, the following popular approaches have been 

proposed: The Range Directional Measure introduced by Portela, Thanassoulis, and Simpson 

(2004), the Modified Slack-Based Measure introduced by Sharp, Meng and Liu (2007), the 

Semi-Oriented Radial Measure introduced by Emrouznejad, Anouze, and Thanassoulis (2010), 

and Variant of Radial Measure introduced by Cheng, Zervopoulos, and Qian (2013).  

In this study, for estimating management efficiency, we selected three inputs (Total Liabilities, 

Total Shareholders’ Equity and Number of Employees) and one output (Total Sales). Also, for 

estimating the market efficiency of firms, we implement the simple concept of Sharpe ratio, i.e., 

the ratio of excess return over the volatility of return, into DEA to estimate the market efficiency 

of firms. We use the market-driven variables of Shumway (2001) as inputs and outputs of DEA 

models. Traders discount the equity of firms that are close to distress then a firm’s last year 

excess returns and market value are associated with the market performance and probability of 

distress. Further, the idiosyncratic standard deviation of each firm’s stock returns, denoted sigma, 

is associated with market performance and the probability of distress logically. For a firm with 

high market value and excess return (respectively, high variable stock return), the market 

performance is high (respectively, low) and the probability of distress is low (respectively, high). 

Following the logic of maximising outputs and minimising inputs, we used the lag of volatility as 

input and the lag of excess return and market value as outputs of DEA models.  
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The firm’s market value is calculated as the number of outstanding shares multiplied by the share 

price at the end of the year before the observation. The firm’s past excess return, denoted lag of 

excess return, in year 𝑡 is estimated as the return of firm in year 𝑡 − 1  minus the value-weighted 

FTSE index return in year 𝑡 − 1. The excess returns of a firm are the cumulative monthly returns 

of that firm. The firm’s sigma is estimated as the standard deviation of the residual derived from 

regressing monthly stock return on market return in year 𝑡 − 1.  

To estimate efficiency measures using different DEA models, we employed MaxDEA that deals 

with negative values in inputs (such as shareholders’ equity) and outputs (such as lag of excess 

return) using the variant radial measure approach (G. Cheng et al., 2013). Table 7 summarises 

the descriptive statistics of winsorised inputs and outputs.  

[Insert Table 7 Here] 

3.3. Stage Two: Developing Distress Prediction Model 

In this stage, we fed logistic regression with static DEA scores and selected features to develop 

static DPMs. Also, we fed multi-period logistic regression with dynamic DEA scores and 

selected features to develop dynamic DPMs. 

3.3.1. Static Logit Model 

Since the seminal work of Ohlson (1980), Logit has become a frequently used static model in 

distress and bankruptcy prediction (Duda & Schmidt, 2010; Martin, 1977; Ohlson, 1980; Back et 

al., 1995). In the field of financial distress prediction, the dependent variable is a binary variable, 

which takes on two values, zero or one. The generic model for binary variables could be stated 

as follows: 

 {
𝑃(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠) = 𝑃(𝑦𝑖 = 1|𝑥𝑖)

𝑃(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠) = 𝐺(𝛽, 𝑋)          
 Eq. 5 

where 𝑌 denotes the binary response variable, 𝑋 denotes the vector of covariates, 𝛽 denotes the 

vector of coefficients of covariates in the model, and 𝐺(. ) is a link function that maps the scores, 

𝛽𝑡𝑥, onto a probability. In practice, depending on the choice of the link function, the type of 

probability model is determined. As for the logit regression model, the link function is the 

cumulative logistic distribution function, say 𝛩. 
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 𝐺(𝛽, 𝑋) = 𝛩−1(𝛽𝑡𝑋) Eq. 6 

which is between zero and one for all real numbers 𝛽𝑡𝑋. For our analysis, we specified logistic 

regression to be 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 + ∑ ∑ 𝛾𝑟𝑆𝑟𝑖 + ∑ ∑ 𝛽𝑗

𝑙

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

𝑛

𝑖=1

𝑥𝑗𝑖  Eq. 7 

where 𝑝𝑖  denotes the probability of facing distress for company 𝑖 ; 𝑆𝑟𝑖  denotes the 𝑟-th static 

efficiency score for company 𝑖; 𝛾𝑟  denotes a parameter for the static efficiency score 𝑟 to be 

estimated; 𝑥𝑗𝑖 denotes a measure of feature 𝑗 for company 𝑖, and 𝛽𝑗 is a parameter for feature 𝑗 to 

be estimated.  

3.3.2. Dynamic Discrete-Time Hazard Model 

Shumway (2001) proposed a discrete time hazard model using an estimation procedure similar to 

the one used for determining the parameters of a multi-period (dynamic) logit model. Many 

studies have applied this approach for computing the probability of a hazard occurrence (see, for 

example, K. F. Cheng, Chu, & Hwang, 2010; Nam, Kim, Park, & Lee, 2008; El Kalak & 

Hudson, 2016; Shumway, 2001). A general description of a discrete time hazard model could be 

presented as follows: 

 𝑃(𝑦𝑖,𝑡 = 1|𝑥𝑖,𝑡) = ℎ(𝑡|𝑥𝑖,𝑡) =
e(𝛼𝑡+𝑥𝑖,𝑡𝛽)

1 + e(𝛼𝑡+𝑥𝑖,𝑡𝛽)
= ℎ0(𝑡). 𝑒𝑥𝑖,𝑡.𝛽 Eq. 8 

where ℎ(𝑡|𝑥𝑖,𝑡)  represent the individual hazard rate of firm 𝑖  at time 𝑡 , 𝑥𝑖,𝑡  is the vector of 

covariates of each firm 𝑖 at time 𝑡; 𝛽 denotes the vector of coefficients; 𝛼𝑡  is the time-variant 

baseline hazard function related, which could be related to the firm, e.g. ln(age), or related to 

macroeconomic variables, e.g. volatility of exchange rate (Nam et al., 2008). We followed 

Shumway (2001) in using a constant time variant term, 𝑙𝑛 (𝑎𝑔𝑒), as a proxy of baseline rate. A 

firm’s age is defined as the number of calendar years it has been traded on the LSE. For our 

analysis, we modified the discrete-time hazard model as follows: 

 𝑙𝑜𝑔𝑖𝑡(ℎ𝑖,𝑑=1(𝑡)) = 𝛼 + 𝛽0ℎ0(𝑡) + ∑ ∑ 𝛾𝑟𝐷𝑟𝑖𝑡 + ∑ ∑ 𝛽𝑗

𝑙

𝑗=1

𝑛

𝑖=1

𝑚

𝑟=1

𝑛

𝑖=1

𝑥𝑗𝑖𝑡  Eq. 9 
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where ℎ𝑖,𝑑=1 denotes the probability of facing distress for company 𝑖 at time 𝑡; ℎ0(𝑡) denotes the 

baseline hazard function;  𝐷𝑟𝑖𝑡 denotes the dynamic efficiency score 𝑟 for company 𝑖 at time 𝑡; 

𝑥𝑗𝑖𝑡 denotes a measure of feature 𝑗 for company 𝑖 at time 𝑡; 𝛽0 is the coefficient of the baseline 

hazard rate to be estimated; 𝛾𝑟 is a parameter for the dynamic efficiency score 𝑟 at time 𝑡 to be 

estimated; and 𝛽𝑗 is a parameter for feature 𝑗 at time 𝑡 to be estimated.  

3.3.3. Choice of Features for the Second Stage 

To select suitable features for prediction models, we applied the following steps. First, we 

reviewed the literature (e.g., Ravi Kumar & Ravi, 2007; Zhou, 2013; Zhou, Lu, & Fujita, 2015) 

to select the most commonly used features in other studies including 83 accounting-based ratios 

and 7 market-based information. Second, we used t-test method to choose features which show a 

significant difference between two group’s means (Shin & Lee, 2002; Huang, Chen, Hsu, Chen, 

& Wu, 2004; Shin, Lee, & Kim, 2005).  

[Insert Table 8 Here] 

Third, for further reduction of features, we applied factor analysis, and principal component 

analysis with VARIMAX technique (M. Y. Chen, 2011; Mousavi & Ouenniche, 2018). To be 

more specific, we used factors analysis to select the variables that both the absolute values of 

their loadings and communities are greater than 0.5 and 0.8, respectively. Fourth, 34 variables 

which presented high factor loadings and high communality values, were retained as input 

features into the stepwise procedure in the second stage of two-stage distress prediction models 

(see, Table 8), where a stepwise procedure for each framework is used to select the most 

significant features. 

3.3.4. Choice of Efficiency Scores for the Second Stage  

Table 9 presents the descriptive statistics of static and dynamic managerial efficiency measures 

for two groups of distressed and healthy companies. The results of F-test suggest that, in most 

cases, input-oriented DEA scores discriminate better between the two groups of distressed and 

healthy firms. Therefore, we select input oriented managerial efficiency measures, i.e., CCR-IO, 

BCC-IO, SBM-CRS-IO and SBM-VRS-IO, and use equations 1 and 3 to compute SE-IO and 

ME-IO for the second stage. Table 10 shows the descriptive statistics of static and dynamic 
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market efficiency measures for two groups of distressed and healthy companies. The results of 

F-test indicate that, in most cases, output-oriented DEA models discriminate better between the 

two groups of distressed and healthy firms. Then, we chose output-oriented market efficiency 

measures, i.e., CCR-OO, BCC-OO, SBM-CRS-OO, SBM-VRS-OO, SE-OO and ME-OO for the 

second stage. We retain the selected static and dynamic scores and relate them to the probability 

of distress using equations 7 and 9, respectively. 

[Insert Table 9 Here] 

[Insert Table 10 Here] 

4. Empirical Results 

The objective of this study is to evaluate the relative performance of two-stage distress prediction 

models using UK data. Section 4.1 provides the assessment of models using the conventional 

unidimensional-ranking framework. Section 4.2 assesses the models using a multi-criteria 

evaluation framework.  

4.1. Unidimensional Ranking of Distress Prediction Models 

For a unidimensional ranking of different models, we use the commonly used performance 

criteria in the literature; i.e., the discriminatory power, the calibration accuracy, the information 

content, and the correctness of categorical prediction. Regarding the discriminatory power 

criterion that measures how much a prediction model can discriminate between distressed firms 

and healthy ones, we use Receivable Operating Characteristic (ROC), Kolmogorov-Smirnov 

(KS) statistics, Gini Index (GI), and Information Value (IV) as measures. Regarding the 

calibration accuracy criterion that measures how much a model is qualified in estimating the 

probability of distress (PD), we use Brier Score (BS) as a measure. Regarding the information 

content criterion that measures the extent to which the output of a model (e.g., PD, scores) 

carries enough information for prediction, we follow Agarwal and Taffler (2008) and use a log-

likelihood statistic (LL) and pseudo-R
2
 as measures. Finally, with respect to the correctness of 

the categorical prediction criterion that measures how often a model can predict distressed firms 

(respectively, healthy firms) as distressed (respectively, healthy) ones, we use Type I error (T1), 

Type II error (T2), misclassification rate (MR), sensitivity (Sen), specificity (Spe), and overall 
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correct classification (OCC) as measures (for more details about performance criteria and 

measures, the reader is referred to Mousavi, Ouenniche and Xu (2015). Table 11, Table 12, 

Table 13 and Table 14 present the estimated distress prediction models. The 𝜒2 tests indicate that 

all 34 models explain a significant amount of variation in the probability of distress. Tables 11 

and 12 present the estimated static models using the stepwise procedure in a logit framework 

using managerial efficiency scores and market efficiency scores, respectively. 

[Insert Table 11 Here] 

[Insert Table 12 Here] 

Also, Tables 13 and 14 indicate the estimated dynamic models using the stepwise procedure in a 

multi-period logit framework using managerial efficiency scores and market efficiency scores, 

respectively.  Retained earnings to total assets, negative net income for last two years, the lag of 

excess return, log (total asset to GNP index), real size, current liabilities over current assets, log 

(price) and inventory turnover are amongst the selected variables using the stepwise procedure. 

[Insert Table 13 Here] 

[Insert Table 14 Here] 

Table 15 summarises the performance measures of the 34 developed distress prediction models. 

The results could be summarised as follows. First, considering the performance of models 

without efficiency measures, i.e., the one-stage static model 1 and the one-stage dynamic model 

18, and models fed with efficiency measures, i.e., two-stage models, the results suggest that 

incorporating efficiency measures improves the performance of models. This result is consistent 

with the findings of Li et al. (2014, 2017), Psillaki et al. (2010), Yeh et al. (2010) and Xu and 

Wang (2009). 

Second, comparing the performance of dynamic models with static models in our study, for most 

of the performance measures, the dynamic models outperform static ones. To be more specific, 

on most performance measures – see, for example, T1, ROC, Gini, KS, IV, CIER, BS, LL and 

R
2
, the two-stage dynamic models are superior to static ones. However, considering T2, MR and 

OCC as performance measures of correctness of categorical prediction, static models 16, 11 and 

10 are amongst the best performers. In general, the density of dynamic models amongst the top-

ranking performers suggests their superiority in performance. The superiority of dynamic to 

static models could be related to their ability in incorporating time-varying features of the firms. 

This finding indicates that taking into account the multi-period performance of companies over 
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time as an explanatory variable in a dynamic framework is an appropriate technique to improve 

the performance of prediction models.  

Third, considering the performance of two-stage models with different types of company 

efficiency measures, i.e., market efficiency and managerial efficiency, for most of the 

performance measures, the models with management efficiency outperform the models with 

market efficiency. The reason is that as the F-tests in Table 9 and Table 10 indicate, the 

discriminatory power of the management efficiency scores is more than market efficiency 

measures. 

[Insert Table 15 Here] 

However, the findings suggest that taking into account T2, MR and OCC as measures of 

correctness of categorical prediction and BS as a measure of calibration accuracy, the models 

with market efficiency score outperform others.  

Fourth, on the type of DEA scores that models are fed with, i.e., decomposed DEA scores and 

original DEA scores, the following findings are notable. For static models, models 8, 5 and 4 that 

use decomposed managerial DEA scores, i.e., PTE, SE and ME, outperform the models that use 

original DEA scores, i.e., TE and SBM, considering most of the performance criteria. Also, 

model 16 that use decomposed market DEA scores, i.e., PTE, SE and ME, outperform all models 

on T2, MR, and OCC. For dynamic models, models with decomposed managerial DEA scores, 

i.e., models 25, 22 and 21 are superior regarding most of the performance criteria. Further, model 

32 with market ME score is the best performer considering BS, LL, R
2
, T2, MR, and OCC. This 

finding suggests that using decomposed efficiency DEA scores improve the performance of 

prediction models. These results are consistent with Li et al. (2014, 2017) that suggest models 

with decomposed measures are superior.  

4.2. Multi-criteria Ranking of Distress Prediction Models 

For multi-criteria evaluation of DPMs, we followed Mousavi et al. (2015) in using the super-

efficiency orientation-free SBM-DEA framework. We perform two rounds of evaluation using 

four different measures. In the first round, we use T1 error (as a measure of correctness of 

categorical prediction), BS (as a measure of calibration accuracy) as inputs and ROC (as a 

measure of discriminatory power) and R
2 

(as a measure of information content) as outputs of 
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DEA model. Also, in the second round, we replace T1 with T2 error as a measure of correctness 

of categorical prediction.  

From Table 16 the following results of the multi-criteria assessment of DPMs are noteworthy. 

First, comparing the performance of models without efficiency measures with models fed with 

efficiency measures as predictors, numerical results indicate that using efficiency measures 

improve the performance of models.  

Second, comparing the performance of dynamic models with static models in our study, taking 

into account T1 error (Panel A of Table 16) as a measure of correctness of categorical prediction, 

numerical results show that the dynamic models outperform the static ones. However, 

concerning T2 error (Panel B of Table 16), the results suggest that the static models are 

comparable to the dynamic ones.  

Third, comparing the performance of two-stage models with different types of company 

efficiency measures, i.e., market efficiency and managerial efficiency, under T1 error as a 

measure of correctness of categorical prediction (Panel A of Table 16), the results suggest that 

model 21 with managerial efficiency is the best model; though, model 32 that uses market 

efficiency is the third in ranking.  However, choosing T2 error (Panel B of Table 16), models 16, 

31 and 11 that use market efficiency are among the top five models. This result is consistent with 

a unidimensional ranking of models that suggest models with market efficiency scores 

outperform others under T2, MR and OCC as measures of correctness of categorical prediction. 

These results could be linked to the efficient market hypothesis theory, which claims that, in an 

efficient market, shares prices contain all available information, i.e. past, present and insider 

information, about the company.  

Fourth, considering the type of DEA scores that models are fed with, i.e., decomposed DEA 

scores and original DEA scores, the following findings are notable. In panel A (respectively, 

panel B) of multi-criteria assessment (Table 16), the dynamic model 25 that uses decomposed 

dynamic managerial DEA score, i.e., PTE, SE and ME (respectively, the static model 16 that 

uses decomposed static market DEA score, i.e., PTE, SE and ME) are the best performers. Also, 

model 32 with market ME score is one of the best performers in both Panel A and Panel B of 

multi-criteria assessment. These results are consistent with unidimensional assessment and 

suggest that the models with decomposed measures are superior in performance. In practice, 
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decomposing efficiency scores and using them in building prediction models provide more 

effective drivers of failure and therefore improve the performance of failure prediction models. 

[Insert Table 16 Here] 

5. Conclusion 

Following the extended application of DEA in providing analytical support for business decision 

making in the field of credit scoring and distress prediction, this study extends previous research 

on expert systems (Z. Li et al., 2017; Min & Lee, 2008; Shetty et al., 2012; Xu & Wang, 2009) 

by demonstrating the potential effectiveness of managing input- and output-slacks, i.e. mix 

efficiency (ME), in enhancing the performance of prediction models; by investigating the 

association of companies’ market efficiency and probability of distress; and by providing an 

empirical comparative analysis between several developed two-stage DPMs using different 

measures of efficiency as features and different dynamic and static frameworks.   

This study uses CCR, BCC and SBM-DEA models to estimate cross-sectional efficiency 

measures and applies Malmquist-DEA models to estimate dynamic efficiency measures. Also, it 

decomposes overall static and dynamic SBM efficiency scores into PTE, SE and ME scores, and 

overall static and dynamic TE efficiency score into PTE and SE scores and combine them with 

accounting, market, and macroeconomic ratios to develop DPMs.  

The empirical results suggest that taking account of the efficiency measures of companies, e.g., 

managerial, and market efficiency, improves the performance of DPMs. Further, findings 

suggest that the measures of managerial efficiency contribute more to enhancing distress 

prediction, although the measures of market efficiency, especially mix efficiency, improve the 

performance of prediction models as well. The lower contribution of the firms’ measures of 

market efficiency compared to managerial efficiency could be explained by the choices of inputs 

and outputs of DEA models. Also, the findings indicate that incorporating dynamic efficiency 

measures in a dynamic distress framework is the best approach to improve the accuracy of 

DPMs. This is because dynamic models by design could take account of changes in the 

conditions of firms over time. Moreover, the results show that the decomposition of TE 

(respectively, SBM) efficiency scores into PTE and SE (respectively, PTE, SE and ME) 

improves the performance of prediction models. This is because incorporating decomposed 
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measures of efficiency in the model would provide more detailed information on the firm and 

therefore would enhance distress prediction. 

The main strengths of the applied methodology are as follows: firstly, the two-stage modelling 

uses DEA in the first stage to estimate performance measures of a company, the obtained 

efficiency scores are then used as features of distress prediction models in the second stage. 

Second, using market information as input/output of DEA models leads to a new performance 

measure of a company, namely market efficiency. Third, using DEA models in the first stage 

benefits developers by incorporating several important inputs/outputs of performance at the same 

time. Forth, decomposing efficiency measures helps developers to analyse the effect of different 

perspectives of company performance, say, allocating resources and using new technology, 

adjusting optimal scale, and managing input- and output-slacks, on distress and bankruptcy.  

However, the main shortcoming of using DEA models in this study is the lack of a standard tool 

to select the most substantial inputs and outputs for DEA models; then, they are selected based 

on popularity in other studies or arbitrary.  

The implication of this study is that developers of two-stage DPMs can now make an informed 

decision regarding the selection of the best DEA models to evaluate companies’ efficiency in the 

first stage, as well as choosing appropriate decomposed efficiency measures to feed the chosen 

classifiers in the second stage. Another implication of this study is that, in addition to managerial 

efficiency, it offers insights into another efficiency feature of a company, i.e. market efficiency, 

that could result in distress.   

The main limitations of this research are the time and space and as such this study is restricted to 

specific DEA models and classifiers in the first and second stages, respectively. Also, as most 

failure prediction studies (Balcaen & Ooghe, 2006), the criterion of distress is chosen arbitrarily, 

which may have adverse consequences for the resulting DPMs.  

Several future research directions emerge from this study. First, larger and more diversified 

datasets for experiments and applications, especially with more variety of distress data structures, 

should be collected to validate the empirical findings of this study further. Second, considering 

failure-related events, other events such as bankruptcy, capital restructuring, takeover and 

liquidation should be used to validate the accuracy of this study conclusions. Third, concerning 

the choice of DEA models to evaluate the managerial and market efficiency of firms, future 
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studies should incorporate other types of DEA models, e.g. dynamic DEA or Dynamic-Network 

DEA, and other sources of information as inputs and outputs of DEA models. Forth, regarding 

corporate efficiency, in addition to managerial and market efficiency, other features of the firm 

such as corporate governance, financial and operational performance could be considered. Fifth, 

regarding the second stage of modelling, other statistical techniques, including static 

frameworks, e.g. discriminant analysis, mixed logit analysis, linear probability analysis, and 

dynamic ones, e.g. Cox-proportional hazard model, are applicable. Further, a variety of non-

parametric techniques such as k-nearest neighbour, cluster analysis, neural networks, support 

vector machine and Rough set approach should be investigated in future research. 
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