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Abstract 

Demand for more sophisticated models to meet big data expectations require significant data repository 

obligations, operating concurrently in higher-level applications. Current models provide only disjointed 

modelling paradigms. The proposed framework addresses the need for higher-level abstraction, using 

low-level logic in the form of axioms, from which higher-level functionality is logically derived. The 

framework facilitates definition and usage of subjective structures across the cyber-physical system 

domain, and is intended to converge the range of heterogeneous data-driven objects. 
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1. Introduction 

In the emerging cyber-physical systems (CPS) domain, data is the new fuel that powers decision making 

across the whole product lifecycle. Big data is now ubiquitous in most industry domains, gathered from 

a heterogeneous range of data and information sources, which present significant variation of data 

features such as quantities, formats, quality, and provenance. What is currently still required are 

integrated processes to effectively convert data into information, before rendering it contextual 

intelligence (CI) for operational advantage (Kutz, 2017). Within this process, the particular challenge 

with complex CPS is the consistent integration of data and information models with the physical system; 

for example, in relation to the reliability of a CPS, the physical system model and the information system 

representing the physical condition of the system underpins the system diagnostics and prognostics.  

Using the automotive industry as example, a first challenge is to identify suitable data structures to 

manage information and insight from a range of data sources. This paper takes as reference case for 

discussion the specific problem of powertrain healthcare (with the overall aim of developing an 

intelligent personalised dynamic asset health management for vehicle systems). Figure 1 illustrates the 

range of data sources that could provide useful information, from across all phases of the system 

lifecycle – from product development to manufacturing, use and retirement. This includes a mix of 

offline data sources (e.g. durability test data, material and manufacturing process data, maintenance / 

warranty data, dimensional metrology data – in test, manufacturing and after use) and online sources 

(e.g. sensor data recorder by ECU or available as data over the air (DOTA), electronic systems 



diagnostics). The exponential increase in data sources and volumes demands for significant efforts 

towards data governance and management.  

  

Figure 1. Engineering data sources for powertrain healthcare assessment 

Figure 2 presents an adaptation of the Data-Information-Knowledge-Wisdom (DIKW) hierarchy for the 

powertrain healthcare domain, illustrating the transformative journey from data to CI (Campean & 

Neagu, 2016). Such hierarchical structures contextualise and formalise current demands on big data 

expectations, including a smooth, intrinsic transformation from initial resources (data) to manageable 

information towards optimal ergonomic human system interaction, automated decision support with 

machine learning-based models, and a new level of knowledge governance (i.e. wisdom) through 

computational intelligence. Consequently, the initial resources that are data (coming in the form of both 

relational and non-relational formats from off-line as well as real-time inputs) are synthesised by 

nominating and recording relevant observations with quantitative and qualitative values as information 

for the use of experts and secondary systems. Such understanding of primary resources allows 

interpretation of faults (diagnostics) and their validation in a reactive form (e.g. analysis of fault records 

from fleet or garage data). The know-how stage of transforming information (and data) resources to 

knowledge permits pattern recognition strategies, assessing quality and applying machine learning (ML) 

models to prognostic models and personalised computational applications of data mining, such as 

personalised vehicle healthcare - currently the subject of extensive research and development for 

original equipment manufacturers (OEMs). The challenging aspect is the transformation of all three 

base yet hierarchical layers (DIK) to wisdom by computational intelligence in the endeavour to create 

model based systems as a formal ML process to define and implement sustainable resilient systems. 
 

 

Figure 2. Transforming data to CI: powertrain healthcare example 

This vision brings a holistic approach to the reliability challenge facing the automotive systems lifecycle. 

In theory, modern technology (building on smart sensors and Internet of Things) can monitor the 

condition of operational components and their environment in real-time. For instance, diagnostic 

analytics assess the probability of failure, while attempting to identify anomalies and mitigate system 

malfunction based on data over-the-air as well as historical data records. However, the current lack of 

multi-disciplinary integration between the physical system and the information system mean that the 

potential current technology offers is not fully exploited. This challenge motivates the current proposal 

of a framework for engineering big data. 



At the University of Bradford’s Automotive Research Centre, in the Advanced Automotive Analytics 

(AAA) research unit, we are developing new ways to engage big data with comprehensive 

computational logic. We take an object-level solution-independent approach to develop and implement 

a highly abstract modelling framework for engineering big data, with further research efforts focused 

on utilising category theory to explore dynamical systems enhancement. 

The need for such an approach is justified by some of the problems mentioned below: 

 Solution-neutral approaches can solve many problems at the conceptual level, but there are few good 

models for implementing those solutions. Addressing this deficiency will require substantial 

consolidation and a concerted effort to bring physical systems and information systems together. 

 CPS products have become more complex, their design and development procedures are multi-

disciplinary, and the demands for big data governance and management are increasing. A schema of 

denotation is required to represent the set of heterogeneous sources of which are shared by several 

divisions of the same system. 

 Heterogeneous CPS modelling languages are cross-disciplinary and incompatible. Conceptual 

exchange is often incoherent and not possible due to domain specific preconditioning. A prevailing 

cross-discipline “artefact” that is the source of compatibility, is needed to reinforce the universe of 

discourse within the CPS design process.  

The work presented in this paper is to deal with these problems based on a set of domain-neutral theories 

as a foundation of further research practice. In the process of engineering big data for CPS design, 

conceptual modelling is used to represent a model independent from an eventual solution that applies a 

domain-neutral modelling technique at the object-level of CPS design.  

The research methodology involves a bottom-up structure of the investigation with specific objectives:  

 A formal application of object representation in CPS, using model-based ontological reasoning, from 

a phenomenological view point, an ontological model of object distinguishes between the physical 

object and the conceptual object that is represented in several forms. This is listed as future work 

because of current limited space; 

 A theoretical basis towards a domain-independent and omnipresent physics principles (discussed in 

Section 3), applied to the object-level for CPS design; 

 A rigorous framework for complex multi-disciplinary design using axiomatic-based categorisation 

of data-objects, to consolidate the heterogeneous nature of the CPS domain; 

 A discussion of the complexity of big data challenges that offers a homogeneous preconditioning 

strategy to confront the challenge at the constituent level (object-level), bringing big data into the 

desired state of distribution for data governance and management protocol and procedure. 

The paper is structured as follows. Existing data management technology is reviewed in the second 

section of the paper, in contrast with the evolution of system modelling technology, discussed from 

functionality and implementation perspectives. The third section outlines the primary function for 

engineering big data and its expected behaviour. The focus of this paper is on proposing a framework 

and its structural components that will support engineering big data applications as a DIKW hierarchy, 

phase one of a multi part design methodology. The fundamental principles that underpin the rationale 

for this paper are introduced in the key definitions covered in section three, the philosophy behind the 

approach, alongside the framework model, its features and a narrative with explicit justification and 

reasoning. Following the rationalisation of the framework methodology, section four summarises the 

key points of the framework, and illustrates processes that occur within the object-level of the proposed 

framework. The paper concludes with a brief roundup of important features and the next phase of 

research, and discussion on the impact of Engineering Big Data on knowledge governance, management 

and how shareholders and researchers will benefit from strategies in the current Big Data Science field. 

2. Review of data repository technology and engineering systems modelling  

2.1. Data warehouse repository  

Data warehouse technology supports detailed, holistic and the homogeneous, long-term management of 

integrated data and domain information.  Developed with a particular focus on processing and providing 



access to large data sets, it is “a subject-oriented, integrated, time variant and non-volatile collection of 

data used in strategic decision making” (Inmon, 2015). In order words, a data warehouse re-structures 

data into organised domain information, more flexible and intelligent than a relational database, it 

supports aggregated atomic data values to present different granularities of information. Data warehouse 

information modelling for multi-dimensional information management has three general modelling 

schemas. The Star schema (the most common modelling paradigm) contains a large central table (flow 

table) with no redundancy and a set of smaller attended tables (dimension tables), one for each 

dimension.  In a Snowflake schema (Figure 3) a variant of the Star schema model, selected dimension 

tables might be normalised and thus further split the data into additional dimension tables. The 

Snowflake schema provides an example of potential high-level data warehouse modelling solution for 

engineering big data. The Starflake schema combines both modelling paradigms (Lehner & Sattler, 

2013). 

 

Figure 3. Information model - Snowflake-dimension schema 

Also referred to as ‘fact data’ (Lehner, 2002), flow-data is responsible for most of the content in this 

data repository. It is stored in a ‘Flow Table’, which may contain millions of rows, with multiple primary 

key values and primary key functionality. Flow-data defines domain events by specifying the 

dimensions accessed by data values stored in the dimension tables. It is this type of CI that supports 

domain specific decision-making. The granularity of big data stored in the repository determines the 

demand on the analytics factory.  

In the context of the data factory (see Section 4), dimension data is used for supporting temporal and 

spatial dimensionalities for a posteriori determinations by recourse to experience or experiment based 

on empirical particulars provided by sensors (Internet of Things), the domain of the superstructure 

synthetic model. It is less extensive than flow tables, non-dynamic, and de-normalised, in the sense that, 

dimension tables require little change. Previously-normalised databases (relational DBMS) use a similar 

strategy to increase performance. Reference Tables support the management of data stored in the 

dimensions, and can reduce the amount of data needed in the warehouse, and thereby the amount of 

direct access required. Derivative data is created from two or more sources of data, can be more 

efficiently stored and accessed, and is usually created as part of the routine that transforms data prior to 

storage. Another useful characteristic of this technology is the design of summary tables, which can 

improve query performance by allowing queries direct access to pre-calculated summaries and 

predefined views of data.  

The unique features that support data warehouse technology (multi-dimensional, flexible, dynamically 

adaptable database applications) complement the proposed (data) analytics factory requirements, in the 

sense that its features support fundamental requirements for interpolating raw data with computational 

logic. The categorisation process (see Section 3), which constitute and configure the framework this 

paper introduces, also require multi-dimensionality to maintain the composition of the homogeneous 



manifold (see Section 4) and the integrity of object-level interdependency. While maintaining essential 

characteristics of a data warehouse, data analytics develops upon these attributes to take advantage of 

its structure, functionality and method. 

2.2. Systems modelling techniques  

A good model has a degree of variability designed to deal with system fluctuations, insofar as the context 

is already part of the programmed experience, according to a formal set of rules. This paper introduces 

an informal set of rules formulated to adapt and take an active role in system applications. Runtime 

applications (Morin et al, 2009; Bencomo et al, 2008; Floch et al, 2006), by virtue of holding a particular 

detachment from ‘prior to runtime’, or ‘post runtime’ applications suggest at least, the requirement for 

legitimate ad hoc in play processing. As other modelling techniques also endeavour to achieve, runtime 

applications advocate a real ML adaptability approach, as opposed to function modelling, or models 

based on the behaviour of the system, or the inputs and the outputs of subsystem states (Eisenbart et al. 

2016; Eisenbart, 2014; Srinivasan et al., 2012; Pahl et al., 2007; King and Sivaloganathan, 1998). 

Nevertheless, model driven engineering is usually based on an understanding of how the system works, 

or what function it is required to deliver. 

Function modelling for system analysis promotes a top-down decomposition of the main function into 

sub-functions. System functions can be visualised through use case scenarios, state views, subsystem 

interaction, actor view, effect view, and process flow views (Eisenbart, 2014; Eisenbart et al. 2016). 

Applications of function analysis can be classified as value analysis, failure analysis, concept analysis, 

artificial intelligence, and function classification. Other function modelling approaches are considered 

under the six headings of ontology, semantic definition of function, function representation formalism, 

function-context relation, decomposition and verification, and implementation in a programming 

environment (King and Sivaloganathan, 1998). The level of abstraction, requirement-solution, system-

environment, and intended-unintended functionality, discuss function with an emphasis on the 

chronology of developing function definitions and function representations (Srinivasan et al., 2012). 

Others introduce a concise taxonomy based on the flow of materials, energy, and information through a 

system (Pahl et al., 2007). It remains good practice to avail of these models to facilitate a better 

understanding of the requirements, the modelling and analysis of complex system architecture and 

aggregation of function models across multiple modes of operation, and assess and predict system 

interaction early in the engineering design process.  Most engineering teams start to develop a functional 

model based on the understanding of how the system works rather than what function it is required to 

deliver (Yildrim et al. 2017), in this paper a solution-neutral methodology of system design is offered, 

by means of a rigorous framework for complex multi-disciplinary systems using axiomatic-based 

object-level modelling for CPS design. 

3. The rationale for a methodology based on universal principles of categories  

In this section, we argue qualitatively that when a system satisfies a theoretical basis for CPS towards 

certain preconditions, the system is stable and controllable within a specified framework. Developed 

around how we structure the world in our mind, rather than how the world is structured, this 

methodology is based on human thought processes, as a juxtaposition of two logically derived 

mathematical structures grounded in Newtonian physics. The categories of thought are identified as 

original Newtonian concepts, so that the conclusion is that Newtonian science is dealing only with 

subjective structures of our thinking. It is an attempt to identify the inner resources of the mind and 

isolate all the empirical particulars, and evaluate what is left. Even if we remove from experience 

everything that belongs to the senses (empirical particulars), there remain nevertheless certain original 

concepts, and certain judgements derived from them, which must have had their origin entirely  a priori, 

independent from experience. With this rationale, the categories of logical kinds of judgement are 

formed, as shown in Table 1. 

Sensing precedes understanding, insofar as the faculty of sensing is distinguished from the faculty of 

thinking. Our perception of objects comes from two things, the raw material world that we experience 

through our senses, and the form that the mind gives to that experience. Perceptual experience is formed 

from structured sensual experience. If empirical input comes to us as atomistic perceptions, somehow it 



gets sorted and ordered. Therefore, our faculties provide a structure to unify sense experience, while the 

mind provides structural principles that enable us to conceptualise what goes on in the world of 

perceptual experience. What the understanding does, it formulates judgements about perceptual 

experience using a structured set of categories. The categories are simple ways in which we think, which 

give order in the mental world, whereby the mind is the active contributor that structures experience and 

thought. The a priori categories are the universal principles applied to data-objects in the analytic model. 

Other data-objects, representing the physical components of the powertrain system, domain specific 

analytical specialists, or more enduring information data such as warranty data and engine test data, 

which alter only in quantum leaps, are also interpolated with the universal principles, providing an a 

priori continuity across the entire CPS domain. 

3.1. Object-level categorisation in the cyber-physical domain  

The a priori categorisation of data-objects distinguish analytical contextualisation from the a posteriori 

experimentation process, which is controlled in the synthetic model built on top. The initial analytic 

model supports real-time data acquisition processing, categorisation classification and association 

processing (i.e. associating real world data to data-objects of which the categories apply), conjoining 

the ‘data’ layer with the ‘information’ layer shown in Figure 2. The analytic model provides the 

preconditions that make categorisation possible, while the synthetic model provides the preconditions 

for conceptual understanding. Just as the forms structure perception, the categories of understanding, 

shown in Table 2, give structure to information systems at the object-level of understanding, satisfying 

a theoretical basis for CPS towards a stable and controllable set of preconditions within the specified 

framework: the way that we structure the world, rather than the way the world is structured. The 

categories are defined through reasoning; “if these are the ways in which we understand things, the ways 

in which we classify our experiences, then it’s natural that if you can lay out a classification of different 

kinds of judgement we make, that those judgements are likely to embody the a priori categories” (Kant, 

2008). The forms of perception meet the categories of understanding, the perception that comes into the 

mind, and then the understanding that gets a hold of it. Perceptions are particulars, the categories are 

universal. If every single representation stood by itself, every particular sense idea, simple idea, isolated 

from the others, nothing like what we call knowledge could ever arise, because knowledge forms a 

whole of representation, connected and compared with each other. 

Table 1. Logical kinds of judgement (Kant, 2008) 

Quantity of Judgement Quality Relation Modality 

Universal Affirmative Categorical Problematical 

Particular Negative Hypothetical Assertorical 

Singular Infinite/Indefinite Disjunctive Apodictical 

Table 2. Categories of understanding (Kant, 2008) 

Of Quantity Of Quality Of Relation Of Modality 

Unity Reality Of Inheritance & Subsistence Possibility - Impossibility 

Plurality Negation Of Causality & Dependence Existence – Non-existence 

Totality Limitation Of Community Necessity – Contingence 

 

We can relate the concept of time to all the categories using axioms (see Section 4); what we develop 

then is an abstraction, a temporalised conception of cause and effect, or of substance (see Table 2), 

whereby the cause must be the concurrent with, or antecedent to the effect; the idea of substance is the 

idea that something ‘is’, it has an ‘enduring identity’, continuity in time. The categories in relation to 

time provide a schema, whereby our pure sensuous concepts depend on some schemata of objects 

relative in time. The schemata therefore is nothing but a priori determinations of time according to rules, 

or ways of thinking about time according to rules, and these apply to all data-objects, following the 

arrangement of the categories, relate to the series in time, the content in time, the order in time, and 

finally, to the complex or totality in time. 



4. Design axioms - a priori determinations of time according to rules 

This section discusses a rigorous framework for complex multi-disciplinary design using axiomatic-

based object-level modelling. Logical axioms are statements that are taken to be true within the system 

of logic they define. Axioms of the categories are arithmetic-based statements that serve as a starting 

point from which other, more complex mathematical statements, are logically derived. The axiomatic 

arrangement of concerted data-objects in a CPS, accumulate continuous temporal representation of form 

and event, in the sense that it reduces the virtual experience to the science of geometry and arithmetic, 

through which the representations of a determinate space and time are generated. On this basis is it 

possible to advance the synthesis of representation as a temporal mode, through the composition of the 

homogeneous manifold. The origin of our axiomatic system lies in Kant’s (2008) schemata of the 

understanding, outlined below. 

On the Category of Quantity 

Software applications with the processing acumen to characterise the quantity of data-objects as 

universal, particular, or singular, contain and represent the synthesis of time itself, in the successive 

determination of data-objects, whereby:  

 Unity is defined as the state of objects being united or joined as a whole in a determined time; 

 Plurality is defined as an object containing several diverse elements in a determined time; and  

 Totality is nothing else but plurality contemplated as unity.  

On the Category of Quality  

Software applications with the processing acumen to characterise the quality of data-objects as 

affirmative, negative, or infinite, are defined as the synthesis of data-objects with the representation of 

time, whereby: 

 Reality is existence in a determined time; 

 Negation is the zero quantity of something in so far as it does not fill time, in a determined time; 

and 

 Limitation is the quantity of something in so far as it fills time, is exactly this continuous and uniform 

generation of the reality in time, as we descend in time from a certain degree, down to the vanishing 

thereof, or gradually ascend from negation to the quantity thereof.  

In the Category of Relation  

Applications with the processing acumen to characterise the relationship between objects as categorical, 

hypothetical, or disjunctive, are defined in the context of the relationship of data-objects to each other 

in all time, whereby: 

 Inheritance or subsistence is the permanence of the real in time, the idea of substance is the idea 

that something ‘is’, it has an ‘enduring identity’, a continuity in time; 

 Causality of a thing as the real which, when posited, is always followed by something else, the cause 

must be the concurrent with, or antecedent to the effect; and  

 Community is the reciprocal causality of substances in respect of their events, is the coexistence of 

the determinations of the one with those of the other - reciprocity of action and reaction. 

In the Category of Modality 

Applications with the software processing acumen that characterise the schema of modality and the 

categories, time itself, as the correlative of the determination of a data-object, whether it does belong to 

time, and how. Objects are characterised as problematic, assertoric, or apodictic, in the sense that: 

 Possibility is the accordance of a synthesis of different representations with the conditions of time 

in general (e.g. opposites cannot exist together at the same time in the same thing, but only after 

each other) and is therefore the determination of the representation of a thing at any one time; 

 Existence in a determined time; and  

 Necessity is the existence of a data-object in all time. 

Temporally oriented data-objects establish an accord between the analytic and synthetic model, whereby 

high-level computational statements, adhering to these axiomatic concepts of time, advance the 



synthesis of representation as a homogeneous manifold across the analytic synthetic threshold. 

Arithmetic being the science of time (the form of the inner sense), and geometry being the science of 

space (the form of the outer sense), retain the character of a temporal hypothesis referring to all possible 

relationships between data-objects and events, determined in pure a prior form. 

This paper discusses strategies of using axioms for systems, in order to synchronise the empirical 

particulars of the homogeneous manifold, to be considered as aggregates, i.e. as a collection of 

previously given parts with their contextually relevant data-object, as an ‘enduring identity’, a continuity 

in time. The axiomatic categorisation of data-objects is a set of constructs and rules to combine those 

data-objects; the temporal hypothesis is a method of procedures by which the axiomatic categorisation 

system can be used; a data-object is the product of the modelling process; and the Automotive Analytics 

Factory is the setting in which the modelling can occur. The quality of conceptual modelling is believed 

to have an enormous impact on information systems analysis and design (Recker & Bjorn, 2008). 

The first stage of engineering big data is transforming heterogeneous datasets into homogeneous subject 

oriented information (see Figure 4). Only thereafter, can we begin to convert big data from information 

into contextually relevant knowledge. Following that, the superstructure component of this framework 

is the complementary body of work, its function is illustrated in Figure 5 (though not discussed in detail 

because of limited space). This paper is focused on the substructure of the framework, the analytic 

model. Defined as the substructure with the superstructure (synthetic model) built on top. The concepts 

used to express the former are oriented around the natural conjugate of the powertrain system, its 

physical components, material properties, and mechanical functions. The latter superstructure, 

distinguishes the permanent from the changeable characteristics of the CPS. The effect of the synthetic 

model is determinable by recourse to experience or experiment based on empirical particulars provided 

by sensors (e.g. Internet of Things) to the information system at predetermined intervals, i.e. the real-

time data representing the homogeneous manifold of the physical system. This covers constructs 

required in engineering big data, the categorisation procedure is developed to consolidate the physical 

particulars with their contextually relevant data-objects. 

5. Proposed framework for engineering big data 

The proposed framework is a comprehensive methodology developed to interpolate data-objects with 

low-level logic, maintaining logical associations with higher level functionality. For example, 

engineering big data with computational logic for applications in more complex logical statements in 

higher level system operations. For illustration purposes, the case of engineering big data to assist in the 

development of a powertrain healthcare system is depicted in Figures 4 and 5. In particular, the category 

of relational judgement (Table 1) is explained in context with the axiomatic agent of the object manifold. 

Figure 4 describes in 3 phases how heterogeneous datasets are processed into information: 

 

Figure 4. Dataset information transfer function model 

 

Figure 5. Information to knowledge transfer function model 

Prior to operational processing, the four categories charged with supplementing contextual data-objects 

with omnipresent principles, first associate empirical datasets (engineering big data) with their physical 

counterpart components of the powertrain system, which are in turn categorised under the same 



omnipresent structures that enable us to contextualise observed events. This homogeneous association 

of data-objects is the a priori distribution state of the analytic factory. 

Associations are used to represent a wide range of connections amongst sets of objects. Such 

relationships are modelled by using associations and aggregations denoting hierarchical aspects in a 

community of objects coexisting as determinations of the one with those of the other. 

Initial processing occurs in the substructure (the ‘analytic model’ – see the lower segment of Figure 6), 

of which functions are illustrated in Figure 4. For the a priori distribution state described in phase 1, 

denoted as 𝜃, physical state parameters are based around: 

 The physical interaction between components, e.g. a touch condition of a controlled clearance; 

 The energy is transferred from one component or medium to another across the interface; 

 The information transferred at the interface; 

 The material used, or is there, or there is a material exchange at the interface; 

 The functional interdependence between physical components of the powertrain system. 

In phase 1; classification procedures in the analytic model associate heterogeneous datasets with a 

community of homogeneous data-objects (categorised data-objects), inheriting aggregations with other 

components, thus other empirical datasets, through their parent component hierarchical structure. For 

example, a Sensor contains many Datasets, which in turn contains many Values. A Powertrain is 

composed of physical Components. A Component contains a number of Sensors. Sensors represent the 

physical condition of individual powertrain components. As a community, they represent the powertrain 

system. In phase 2; categorisation commutes each dataset towards the a posteriori distribution (ML) 

process via the a priori distribution state. Through the dataset data-object association, recorded changes 

in the physical condition of components, and their environment, are processed in phase 3, by means of 

one or a combination of physical state parameters (reciprocity of action and reaction), of which functions 

are illustrated in Figure 5. The determinations of which reappraise life prediction evaluations: 

In phase 3; the a posteriori distribution procedure occurs in the superstructure (the ‘synthetic model’ – 

see the higher segment of Figure 6), built on top of the substructure. The a posteriori distribution process 

distinguishes the permanent from the changeable characteristics of the system, i.e. physical components 

from modes of physical components, in the sense that modes are determined by recourse to dynamic 

datasets and experimentation. For example, the Bayes equation (4.1) is the subjective distribution 

associated with 𝜃 after performing the experiment, and is the result of a synthesis between the a priori 

information and the sensor data. The associate between the a priori state and the flow data streaming 

from over-the-air is essentially the homogeneous manifold of the whole product lifecycle. 

 

𝑓(𝜃 𝑥⁄ ) = 𝑓𝑝(𝜃) =
𝑓𝑎(𝜃)𝑓(𝑥 𝜃⁄ )

𝑓1(𝑥)
 (4.1) 

The Bayesian process of combining the a priori information with the experimental data is described as 

follows: let 𝑥 be the vector of the times-to-failure and 𝑓(𝜃 𝑥⁄ ) its probability density function 

(Catuneanu & Mihalache, 1989), a function of a continuous random variable, whose integer value across 

the lifecycle of the vehicle is provided by the homogeneous manifold (sensors/a priori state). 

The motivation for this framework derives from an unintended consequence that has emerged in CPS 

design. The dual domains of discourse with incompatible ‘object’ representation, disjointed at the 

object-level of CPS design are the physical component and the data-object. The object-independent 

concept is applied by inserting arithmetic-based axiomatic rules into data-objects. Computation is the 

action of mathematical calculation, mathematics have composition, and the axioms provide composition 

to data-objects in the form of temporalised concepts (arithmetic). This research paper aims to form an 

interconnectivity between data-objects and determinations of data-objects, whereby upon the notion of 

permanence, rests the concept of change, and only the condition, or quality thereof changes, thereby, 

the integrity of object connectivity is predetermined and omnipresent.  

In a data warehouse raw data sits on a virtual shelf (i.e. cube), just as raw materials are stored in a 

warehouse; in an analytics factory model, raw data is manufactured with predefined logic, based on the 

categories and axioms, used to support further more complex mathematical logic in higher level domain 

applications such as machine learning-based modelling. Current technology affords us the means but 



not the wherewithal for autonomous ML, in the sense that, the tools currently available are deficient in 

effect. State-of-the-art modelling frameworks are reliant on sophisticated algorithms to retrieve data for 

operation use. In effect, engineering big data takes raw data out-of-the-box and into the realm of 

application, in other words, it no longer merely sits redundant in a data warehouse, rather, in an analytics 

factory, it sits pre-processed with a collection of association attributes established in advance. 

 

Figure 6. The automotive analytics factory model 

Endowed with universal principles that define the quantity, quality, relationship, and modality of domain 

objects, the analytics model is a centralised and integrated data resource, like an index catalogue, it is 

searchable, with regional, rural, and remote system connectivity. The motivation of this object-level 

methodology is to reduce processing time and effort through the synchronous construction of 

contextually intelligent data-objects, creating a symbiotic relationship and co-dependency amongst 

system objects by engineering big data them to retain the character of a temporal hypothesis. The 

analytic model is the substructure, modelled on the principles that govern sensory perception. The 

synthetic model is the superstructure, modelled on the principles that govern contextual understanding 

(see Figure 6). Albeit based on a philosophy grounded in pure mathematical structures and Newtonian 

physics, the initial objective is to apply mathematical logic to data structures, and in stage two, to design 

the superstructure to support autonomous ML methodologies based on conceptual understanding. 

Figure 6 illustrates the holistic teleological endeavour of the automotive analytics factory. The 

subsystems that support the model deal with the ongoing day-to-day operations.  It is within this function 

that we apply design, development, and manufacturing resources, including warranty data, diagnostics 

data, field operational parameter data, durability test data, engine development test data, manufacturing 

data, and external data. Stochastic data is assessed under supervisory conditions before applying new 

ML strategies and models to the automotive healthcare domain. Such applications are static, and change 

only in quantum leaps. In order words, the ML models remain constant form day-to-day, and only 

change after domain specialists observe, analyse and direct such activity. Models adapted for the specific 

purpose of individual vehicles monitor the condition of powertrain functionality and of its environment. 

In our example models measure powertrain function reliability, evaluate potential actions for recourse, 

and perform other domain specific tasks. Model governance monitors tactical ML decisions, whom 

makes them and holds domain supervisors accountable for altering models and developing new insight. 



6. Conclusion and further work 

In this research paper we have addressed a multi-disciplinary problem in CPS design that fosters 

contradictory presuppositions emerging form the information systems and the physical systems domain. 

Addressing the problem at the conceptual level, this paper proposes a solution-neutral approach that 

confronts the challenge at the object-level of design, introducing a domain-independent constituent-

based framework. The motivation behind the framework is driven by the need for a higher level of 

abstraction that supports explicit uninhibited continuity, bounded by a digital twin of the physical system 

and cross-system applications. Further work will begin towards a formal application of object 

representation in CPS, using model-based ontological reasoning, from a phenomenological view point. 

The primary objective towards developing an ontology of an object, is to establish a cross-disciplinary 

“artefact” that will reinforce the universe of discourse. This paper presents a theoretical basis towards 

applying the domain-independent artefact to operational systems, using an omnipresent set of constructs 

and rules. Our proposal offers a rigorous framework for multi-disciplinary design (see Section 5) using 

an axiomatic-based (see Section 4) categorisation technique (see Section 3), in what we refer to as 

engineering big data. These processes take place in the analytic model of the Analytics Factory. The 

analytic model is the substructure of the framework, developed to consolidate the heterogeneous 

disposition of the CPS domain, through a series of operational functions (see Figure 4). The 

superstructure, built on top, is the synthetic model, developed to determine by recourse to experience, 

acquired from empirical particulars provided by sensors, of which functions (see Figure 5) are the 

subject of further research. Alongside the ontological model of an object, future work will also focus on 

the axiomatic concepts of time, to advance the synthesis of representation as a homogeneous manifold 

across the analytic synthetic threshold, in the sense that the axioms retain the character of a temporal 

hypothesis in the analytic model, referring to all possible relationships between objects and events in 

the synthetic model, and a temporalised conception of cause and effect.  
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