This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information.

To see the final version of this work please visit the publisher's website. Access to the published online version may require a subscription.

Link to publisher's version: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001360?af=R

Citation: Carstea EM, Zakharova YS and Bridgeman J (2018) Online fluorescence monitoring of effluent organic matter in wastewater treatment plants. Journal of Environmental Engineering. 144(5).

Copyright statement: ©2018 American Society of Civil Engineers. Reproduced in accordance with the publisher's self-archiving policy. This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001360?af=R
Online fluorescence monitoring of effluent organic matter in wastewater treatment plants

Elfrida M. Carstea1,2*, Yulia S. Zakharova3 and John Bridgeman4

1Senior Scientist, National Institute of R&D for Optoelectronics, Atomistilor 409, 077125, Magurele, Romania; elfrida.carstea@inoe.ro

2Marie Curie Research Fellow, Department of Civil Engineering, University of Birmingham, B15 2TT, UK

3Research Fellow, Department of Civil Engineering, University of Birmingham, B15 2TT, UK, julia_ripe@hotmail.co.uk

4Professor of Environmental Engineering, Department of Civil Engineering, University of Birmingham, B15 2TT, UK, J.Bridgeman@bham.ac.uk

Wastewater treatment is an energy-intensive operation. Energy consumption is forecast to increase by 60% in the forthcoming decade due to tightened legislation surrounding the discharge of final effluent to watercourses. Treatment plants rely on the time-consuming and unreliable biochemical oxygen demand to assess the quality of final effluent, leading to process inefficiencies. Here, we show that fluorescence spectroscopy is a robust technique for real-time monitoring of changes in effluent quality. We installed three portable fluorimeters for 1 month at the final effluent discharge point of a large municipal wastewater treatment plant. We show that organic matter composition of the wastewater varies diurnally depending on the flow rate and antecedent rainfall. High fluorescence intensity and ammonia are attributed to sewage sludge liquor, which is regularly discharged to the treatment plant. Moreover, elevated fluorescence intensities were recorded as a result of process failure following a power outage. Our study shows that on-line fluorescence analysis is capable of
detecting both minor changes in effluent quality and issues with treatment process performance.

Keywords: real-time monitoring, fluorescence spectroscopy, wastewater treatment plant, organic matter

Introduction

The most significant energy usage in wastewater treatment plants (WwTPs) arises from the vigorous aeration of settled sewage in the activated sludge process (ASP, an aerobic system involving entrainment of air for microbial degradation of organic matter - OM). This process contributes to over 55% of the energy budget associated with wastewater treatment (Environmental Knowledge Transfer Network 2008). Due to the diurnal variations in wastewater flow and load, and lack of rapid and reliable effluent monitoring (Bourgeois et al. 2001; Jouanneau et al. 2014), treatment plants often over-aerate the settled sewage to be certain of achieving regulatory compliance, leading to excessive energy consumption and unnecessary operating costs.

In the past two decades, several studies have demonstrated, through off-line monitoring experiments, the potential of fluorescence spectroscopy for treatment process control (Ahmad and Reynolds 1995; Bridgeman et al. 2013; Cohen et al. 2014; Murphy et al. 2011; Ou et al. 2014; Singh et al. 2012, 2015; Tartakovky et al. 1996). The technique offers practical advantages, such as: fast measurements, cost-effectiveness, lack of need for reagents, and high sensitivity (Coble et al. 1990; Yang et al. 2015). However, no on-line fluorescence monitoring studies have been performed at WwTPs. To date, Galinha et al. (2011) have undertaken the only real-time monitoring study of wastewater on a pilot scale membrane bioreactor system to predict performance parameters. They found that fluorescence was able to describe influent and effluent chemical oxygen demand (COD), but could not predict other performance parameters. Singh et al. (2015) obtained promising results from an online
monitoring study on two water recycling sites. Using a single-wavelength fluorescence sensor, they were able to prove the robustness of the technique in detecting reverse osmosis membrane fouling and integrity. Moreover, Singh et al. (2015) showed that the sensor was sufficiently sensitive to identify underperformance issues. Real-time monitoring of treated wastewater at WwTPs has been hampered by numerous factors that can interfere with the fluorescence signal: fouling, pH, inner filter effects, temperature and metal ion presence (Henderson et al. 2009; Reynolds 2002). To counteract these issues, regular, time consuming cleaning of contact surfaces or subsequent data corrections are recommended.

Here, we report the first in-situ and on-line monitoring of treated wastewater, using three fluorescence portable devices, to test the robustness of the technique and the hypothesis that we can obtain valuable results from a 1-month monitoring experiment without major device cleaning or subsequent data correction. In addition, a laboratory scale activated sludge system was constructed to establish, before the in-situ experiment, the relationship between fluorescence and BOD.

Methodology

The real-time experiment was undertaken for 29 days, from the 10th of August until the 7th of September 2015, at a WwTP located in the West Midlands, UK. The treatment plant serves a region of 450,000 population equivalent and collects on average 120 ML/day of wastewater from various types of sources: household, surface runoff, industrial (soluble oil, chemical laboratory waste, engine cleaning, painting wastes, laundering, meat processing, slaughterhouse, print waste etc.). In addition, the WwTP receives activated sludge mixed liquor from a nearby sewage sludge facility at periodic intervals. During the experiment, liquor was pumped, before noon, on the: 13th, 15th, 21st and 24th of August 2015.

The treatment process train consists of coarse and fine screens at the inlet, six primary sedimentation tanks, 3 activated sludge reactors and 12 final settlement tanks. The primary
treatment step removes solids as well as oil and grease, after which, the remaining wastewater is delivered to the ASP, comprising three basic components: 1) a reactor in which microorganisms are kept in suspension, aerated, and in contact with the wastewater they are treating; 2) liquid-solid separation; and 3) a sludge recycling system for returning activated sludge back to the beginning of the process.

Real-time monitoring

Laboratory scale ASP experiment

Before the in-situ measurements were undertaken, a laboratory scale ASP was constructed to check the feasibility of the method and the relationship with BOD. Settled sewage and returned activated sludge (RAS) were collected twice a week from the WwTP and stored at 4°C prior to use. The setup consisted of a feed primary tank (30 L volume), aeration tank (10 L volume) and final settling tank (4 L volume) (Fig. S1). The settled sewage was pumped into the aeration tank at a rate of 11 mL/min. Two aquarium air stones were inserted in the aeration tank to replicate the aeration process and two stirrers ensured a greater degree of mixing. A stirrer was inserted in the final settling tank to ensure settlement of the sludge flocs. The settled sludge was returned to the aeration tank via a peristaltic pump at a rate of 11 mL/min. An average mixed liquor suspended solids (MLSS) concentration of 3,300 mg/l was maintained in the aeration tank. When the quantity of MLSS decreased, additional RAS was added without changing the volume of liquor in the aeration tank. The health and population of microorganisms in the activated sludge reactor were checked regularly via microscope. The experiment ran for six weeks and samples were collected daily for fluorescence, BOD$_5$, COD and total organic carbon (TOC) analyses. Dissolved oxygen concentration and pH were monitored every 30 min in the ASP tank.

In situ measurements

Three portable fluorescence instruments were installed and left unattended at the WwTP
final effluent discharge point, before the discharge to the river. Specifically, these were two
submersible probes (Cyclops 7, Turner Designs; EXO1 sonde, YSI Xylem) and a cuvette-
based (DuoFluor; designed and manufactured at the University of Birmingham) (Bridgeman
et al. 2015). The Cyclops 7 and EXO1 were inserted directly into the final effluent channel.
Proprietary protective caps were placed over the two submersible sensors and they were not
cleaned for the duration of the experiment. The sensors were also secured with ropes to
prevent excessive movement caused by the fluid flow.

The cuvette-based DuoFluor device was installed in an adjacent shed for power
connection and protection from rainfall (Fig. S2). The final effluent was pumped to the
fluorimeter at a flow-rate of 340 mL/min. A mesh covered the pump end tube to prefilter the
water and prevent debris from entering the cuvette. However, biofilm growth was observed
with time on the cuvette walls and on the tubing. Consequently, the cuvette was washed (10
% nitric acid) and rinsed with de-ionised water on a weekly basis, and the tubing was replaced
after two weeks.

The measurement frequency was set at 15 min for all instruments. Cyclops 7 was
initially set up to measure every 30 min, however the number of data points was insufficient
to obtain an adequate assessment of water quality fluctuations. No problems occurred with the
submersible devices. However, operation of the DuoFluor ceased one week before the end of
the experiment due to power failure.

Measurements

Fluorescence peaks

This study focused on specific fluorescence components, assigned to spectral regions T
($\lambda_{ex}/\lambda_{em}$ - ~280 nm / 350 nm) and C ($\lambda_{ex}/\lambda_{em}$ - ~ 330 nm / 425 nm), which can be used to
assess the quality of wastewater (Carstea et al. 2016). Peak T is generally associated with
living and dead cellular material and their exudates and indicates microbial activity
Peak T is also widely associated with material derived from anthropogenic activities (Yu et al. 2014). Several fluorophores could contribute to these regions (Carstea et al. 2016; Coble et al. 2014). Considering the variety of wastewater discharges received by the WwTP and the wavelengths used by the devices, the following components could fluoresce in the peak T region: lignins, aromatic hydrocarbons and indoles originating from domestic waste (partially degraded foods, undigested dietary fibre, toilet paper, proteins and peptides), petrochemical, pharmaceutical and paper industries. Peak C is defined as reduced quinone-like and was identified in OM from a wide variety of aquatic systems, especially those dominated by terrestrial and microbial inputs (Ishii and Boyer 2012). Potential contributors to the fluorescence of peak C could be: lignin breakdown products, quinones, flavonoids, humic acids and fluorescent whitening agents (FWAs) originating from municipal wastewater (food, plants, microbes, fungi, laundry detergents, sanitary products, toilet paper and tissues) and paper making industry (Carstea et al. 2016). In a recent study, it was shown that the removal rates of peaks T and C correlated with the removal of pharmaceuticals, such as gemfibrozil, ibuprofen and naproxil, and with personal care products, such as triclosan or caffeine (Sgroi et al. 2016). Thus, the exact composition of fluorophores cannot be determined by the measurement of peaks T and C, however, these peaks are highly effective in showing the removal of wastewater OM. Apart from these two peaks, the common fluorescence regions reported for FWAs, at excitation wavelength 370 nm and 400 nm (Coble et al. 2014), were also considered, due to the proximity of EXO1 excitation wavelength to one of the FWAs peaks. Past studies (Assaad et al. 2014; Chandler and Lerner 2015; Graham et al. 2015), proposed FWAs as indicators of human faecal contamination, sewer misconnections and landfill leachates.

Fluorescence measurements

Fluorescence was measured with three portable fluorimeters. Cyclops 7 measures the
fluorescence intensity at the excitation / emission wavelengths of 285 nm / 350 ± 55 nm, with a limit detection range of 3 ppb to 5,000 ppb tryptophan standard. EXO1 sonde houses three sensors: fDOM (fluorescence dissolved OM), conductivity/temperature and pH. The fDOM sensor records at 365 ± 5 / 480 ± 4 nm (excitation / emission wavelength pair). The detection range is 0 ppb - 300 ppb quinine sulphate units. DuoFluor is capable of detecting fluorescence in real time at 280/350 nm (Peak T) with minimum limit of detection 1.5 ppb of L-tryptophan and at 330/425 nm (Peak C) with minimum limit of detection 1.5 ppb of quinine sulphate. The linearity between the portable devices and a benchtop spectrofluorimeter (Varian Cary Eclipse) was checked with a series of dilutions of L-tryptophan and quinine sulphate standards (Fig. S3). L-tryptophan solutions were varied between 50 ppb and 250 ppb, while quinine sulphate was prepared in concentrations of 10 ppb to 700 ppb. The linearity of the EXO1 was checked up to 400 ppb of quinine sulphate, as recommended by the manufacturer. R² values exceeded 0.98 for all instruments.

Excitation-emission matrices were produced using the benchtop spectrofluorimeter: by scanning excitation wavelengths from 200 to 400 nm in 5 nm steps, and detecting the emitted fluorescence in 2 nm steps between 280 and 500 nm. Excitation and emission slit widths were set to 5 nm. Instrument stability was checked by recording the Raman values (at excitation wavelength 348 nm and emission wavelength 395 nm) before each set of measurements. The average Raman value was 9.94 a.u. with a standard deviation of 0.24. The fluorescence peaks were extracted using the peak-picking method, in accordance with previous studies (Coble et al. 2014).

Ancillary analyses

Rainfall, temperature, total phosphorus, iron, ammonia and suspended solids were measured daily on-site at the WwTP outfall. In addition, samples were collected twice a week for BOD₅, COD, TOC, nitrate and turbidity (Table S1). Low values were observed for all...
parameters, indicating effective treatment of the wastewater. BOD\textsubscript{5} was measured based on the standard method for wastewater testing using a HQ40d portable meter (Hach) with an IntelliCAL LBOD101 LDO probe. The accuracy of the BOD\textsubscript{5} measurements was checked using a 300 mg/L glucose-glutamic acid standard, and a coefficient of variation of 3.6 % was observed. COD and nitrate were measured using a DR890 Hach colorimeter, following standard procedures: \textit{viz.} Reactor Digestion Method (USEPA) for COD, and Chromophoric Acid Method (high range, Test ‘N Tube) for water and wastewater for nitrate. Turbidity was recorded using a Hach 2100N turbidimeter. TOC measurements were undertaken using a Shimadzu TOC-Vcpn analyser, using the non-purgeable organic carbon determination method.

Results and discussion

Laboratory scale ASP

Before the \textit{in-situ} study, a laboratory-based experiment was undertaken replicating the ASP to establish the relationship with BOD and to determine the potential of using fluorescence spectroscopy for real-time measurements. WwTPs measure BOD on a daily basis; however, a qualitative method is used, which provides ranges of BOD values and the result cannot be compared with fluorescence intensity. The regulatory 5-day BOD test is performed only once per month. Therefore, the laboratory scale ASP was designed to identify this fluorescence/BOD relationship.

Figure 1 shows the fluorescence intensity of peaks T and C measured with the benchtop fluorimeter plotted against BOD. The Kendall correlation coefficients with BOD\textsubscript{5} are: 0.71 (p<0.001 – 2-tailed test of significance, N=87) for peak T; and 0.43 (p<0.001 – 2-tailed test of significance, N=87) for peak C. The correlation between BOD and fluorescence is challenging to identify at low BOD concentrations (Hudson et al. 2008), thus the values quoted above were determined using a combination of data from final effluent and settled
sewage samples. An improved correlation was observed for BOD with peak T compared to
the peak C/BOD relationship was reported in other studies (Bridgeman et al. 2013; Hudson et
al. 2007). The various types of fluorophores that contribute to the peaks T and C fluorescence
region explain the difference in correlation values. In addition, Reynolds (2002) found that
peak T is more representative for the biodegradable organic matter than peak C. Considering
the strong correlation between peak T and BOD, obtained in this study, and the relationship
reported in other studies (Bridgeman et al. 2013; Carstea et al. 2016; Coble et al. 2014;
Hudson et al. 2008), it is clear that peak T fluorescence can detect some of the components
measured with BOD. Furthermore, fluorescence spectroscopy provides more information on
the nature of OM than the BOD test does and may be used as an independent indicator test for
the presence of bioavailable OM (Hudson et al. 2008).

Similar relationships were obtained between fluorescence and COD and TOC. The
Kendall correlation coefficients with COD are: 0.72 (p<0.001 – 2-tailed test of significance,
N=87) for peak T; and 0.44 (p<0.001 – 2-tailed test of significance, N=87) for peak C. While,
the Kendall correlation coefficients with TOC are: 0.82 (p<0.001 – 2-tailed test of
significance, N=81) for peak T; and 0.49 (p<0.001 – 2-tailed test of significance, N=81) for
peak C. The good correlation between peak T and TOC may be attributed to the sugars and
lignin (Baker 2002) degraded from sanitary products. However, the relationship between
fluorescence peaks and BOD, TOC and COD varies depending on the ratio of fluorescent to
non-fluorescent OM in a sample (Henderson et al. 2009).

In situ measurements

Peaks T and C data provided by the 3 devices are shown in Figure 2. Kendall
correlation analysis showed an association between EXO1 data and DuoFluor peaks T and C
(R²=0.49 & 0.48, p<0.001), while Cyclops 7 data presented a slight correlation with the
DuoFluor peak T (R²=0.28, p<0.001) (Table 1). The analysis also revealed that the EXO1 and
the DuoFluor data correlated with peaks T, C and FWAs measured with the Varian benchtop spectrofluorimeter. The variation in correlation coefficients might be explained by the differences in excitation and emission wavelengths used by the devices. For instance, the EXO1 excitation wavelength is closer to the optical region of FWAs, compared to the region where peak C is generally reported (Coble et al. 2014), and compared to the peak C excitation wavelengths measured with the DuoFluor and Varian Cary Eclipse. In addition, the correlations with Varian Cary Eclipse data were established using a small sample size (N=8), a larger dataset being needed to obtain statistically significant correlations. However, the results are sufficient to provide an indication of devices potential to measure peaks T and C in situ.

During the experiment, the DuoFluor system recorded a constant decrease in peak C fluorescence intensity (Fig. 2D) due to biofilm formation on the cuvette. Regular cuvette cleaning (twice per week) was required to ensure adequate DuoFluor fluorescence results. The EXO1 and the Cyclops 7 sensors were not cleaned during the entire experiment and no substantial reduction in fluorescence intensity was observed. However, further studies are needed to test the time span until fouling interferes with the fluorescence signal. This experiment shows that submersible instruments are more practical at WwTPs. The advantages of needing less frequent cleaning (no cleaning for at least 1 month) and being battery powered make them preferable for effluent monitoring. Fluorescence data were not corrected for thermal quenching as little impact was expected for a decrease of 0.5°C from day to night and of 3°C change over the entire period (Fig. S4A). Based on previous work (Carstea et al. 2014), it is estimated that the fluorescence intensity would increase by 0.3 % for a decrease in temperature of 0.5°C and by 2.6 % for a 3°C temperature change. Temperature correction may be needed in areas with high seasonal variation. Inner filter effect is also known to impact the fluorescence measurements. However, Henderson et al. (Henderson et al. 2009)
showed that the inner filter effect is unlikely to occur in surface and wastewater samples with a TOC concentration below 25 mg/l. The final effluent TOC concentrations measured within the current experiment varied between 6.29 mg/L and 9.28 mg/L. Moreover, the same samples showed absorbance values below 0.20 at 254 nm, this being the threshold recommended by Aiken (Coble et al. 2014) for optically dilute samples. Metal ions have been shown to affect the fluorescence intensity and peak position of OM components (Coble et al. 2014). The average iron concentration measured at the WwTP final effluent discharge point was 0.30 mg/L (Table 2). Poulin et al. (Poulin et al. 2014) found that an iron:organic carbon ratio of 0.3 would reduce the fluorescence intensity between 7 % and 23 % depending on the type of water sample. In this study, an average value of 0.03 for the iron:organic carbon ratio was observed. Suspended solids have been shown to influence the results from in situ fluorimeters (Coble et al. 2014). However, Belzile et al. (2006) found a strong correlation between a submersible fluorimeter and a benchtop spectrofluorimeter, at unfiltered samples with suspended solids concentrations below 35 mg/L. In the current study, the effluent suspended solids concentrations varied from 4.5 mg/L to 20.7 mg/L. Filtration, which would reduce the quantity of suspended solids, may also contaminate the sample and remove a large fraction of fluorescent components that are found in particulate or colloidal form (Coble et al. 2014). Furthermore, one aim of this study was to test the robustness of fluorescence spectroscopy to monitor effluent quality without major intervention during or after measurement. For this purpose, a qualitative analysis of effluent OM, i.e. without correction for inner filter effect or extensive calibration, was sufficient to detect changes in effluent water quality.

Peaks T and C displayed a diurnal variation with a cycle of approximately 12 h, the highest intensity being recorded around midnight and the lowest intensity at noon (Fig. 2). During dry weather days, peak T displayed a decrease in fluorescence intensity of < 9 % for
the Cyclops 7 and 16 % for the DuoFluor between midnight and noon, while peak C decreased by < 10 % for the EXO1 sensor and 17 % for the DuoFluor over the same period. The diurnal variation in fluorescence intensity was consistent with the changes in effluent flow rate, conductivity and pH (Fig. S4 (B) and (C), and Fig. S5). However, fluorescence intensity was not directly proportional to the degree of increase in flow rate. The effluent flow rate presented 2 peaks, every day, of almost equal intensity (Fig. S5). We also observed two peaks in the fluorescence data; the first peak being recorded at midnight and the second peak at approximately 2 pm (Fig. 3). This 2 pm peak was substantially lower in intensity compared with the midnight peak, although high flow rate was recorded. It is concluded that these midnight and 2 pm peaks correspond to intensive household water use during the mornings and evenings. Considering the total wastewater retention time within the WwTP from inlet to discharge point (12-16h) and the additional retention time in the sewerage network from household to the WwTP, it is believed that the high values of peaks T and C observed at midnight correspond to the previous day morning high wastewater input, while the 2 pm peak represents the previous evening water usage.

Several rainfall periods, of different intensity and duration, were recorded during the real-time experiment (Table 1). We divided the precipitation days into 4 events: event I – 13th to 14th of August; event II – 19th of August; event III – 23rd to 27th of August; event IV – 30th of August to 3rd of September. The WwTP is served by a combined sewerage system and therefore rainfall increases the influent flow and modifies the properties of the influent affecting process performance and effluent quality (Wilén et al. 2006). Therefore, it is believed that the amount and frequency of precipitation affects most of the measured water quality parameters, depending on the catchment and sewerage system. Rain events were seen to trigger high ammonia and iron values (Table 2). Precipitation also increased the concentration of total phosphorus; the highest value being recorded during or after the first
day of the rain event. Conductivity and pH decreased after each rain event, depending on the intensity of the event (Fig. S4). Conductivity showed a significant decrease after events I and IV, while pH was the parameter least affected by precipitation.

A decrease in fluorescence intensity was observed one day after the beginning of each precipitation event (Fig. 2). Precipitation events I and IV generated the greatest decrease in Peak C (32 % & 42 % respectively) measured using the EXO1. Cyclops 7 recorded Peak T reductions of 25 % (event I) and 28 % (event IV). DuoFluor measured a 26 % decrease in peak C and 25 % in peak T following event I. The full impact of event IV was not assessed with the DuoFluor due to data loss following a power outage at the WwTP. However, the same effect is observed on peaks T and C after the other rain events. Overall, the decrease in fluorescence intensity is consistent with the quantity of rain per event. After each rain event the fluorescence intensity increased progressively until the next rainfall. Previous studies on urban river monitoring (Carstea et al. 2009) showed that peaks T and C intensity increased after precipitation events, due to the release of higher quantities of OM with surface runoff compared to the receiving water. Here, a dilution of the wastewater’s heavily concentrated OM was observed. Others (Mines et al. 2007) also reported a dilution effect, reflected in a decrease in BOD values. Since BOD correlates with fluorescence (Bridgeman et al. 2013), a rainfall-generated decrease in fluorescence intensity is anticipated.

In addition to the daily variation and impact from precipitation, two data anomalies were identified on the 24th of August and 3rd of September, both immediately after midnight (Fig. 2– circled with red). These anomalies are most evident from the EXO1 sensor data. The data are higher than the normal daily variation, with or without precipitation, and may be associated with changes in influent quality or treatment processes. The first anomaly is explained by the release of liquor from the sewage sludge facility on the 24th of August at 12:00pm. The WwTP managers report that silt is occasionally released with the liquor,
resulting in elevated concentrations of ammonia in the effluent. Unusually high ammonia was recorded at the same time as the high fluorescence intensity (Fig. S5). The high fluorescence intensity during the first anomaly could indicate the production of autochthonous OM from the sewage sludge liquor (Cohen et al. 2014; Riopel et al. 2014), as peak C components increase in the soluble microbial products with increasing retention times (Yu et al. 2015). Also, condensed polymerized humic-like material may form during biodegradation (Saadi et al. 2006). Therefore, liquor may carry large quantities of autochthonous OM, some of it biologically resistant, produced during the long retention times, along the stages of the sewage sludge facility.

The second anomaly (Fig. 2) is a result of the power issues that occurred at the WwTP. On the 3rd of September, low power caused the aeration tank air blowers to fail. Fluorescence data can be used to identify the process failure. The increase of peak C fluorescence from the second anomaly may represent FWAs present in the sewage. Peak C wavelengths coincide with the fluorescence regions of FWAs (Henderson et al. 2009). However, FWAs were also measured in the excitation/emission wavelengths region of 250 nm / 344 nm and 422 nm (Boving et al. 2004). Almost 80% of FWAs are removed after the biological treatment and these compounds may be used as molecular markers of less effective treatment processes (Hayashi et al. 2002). Therefore, temporary interruption of the ASP tanks would have led to the presence of untreated FWAs, as seen in the second anomaly.

Thus, real-time, in situ analysis demonstrated the ruggedness of fluorescence spectroscopy and the ability to detect minor changes in effluent quality. Fluorescence spectroscopy could be used to identify underperformance issues, albeit with a time lag between the failure and the feedback information. However, fluorescence spectroscopy still represents a fast and effective control method, and a reliable alternative to BOD. The benefits of improved treatment control via fluorescence spectroscopy go beyond CO₂ reductions and
climate change mitigation, as they will also facilitate environmental improvements, reduce operating costs and improve the financial performance of the global wastewater industry.

Conclusions

- This study reported the first real-time monitoring of effluent wastewater using fluorescence spectroscopy. Results show that fluorescence spectroscopy is a robust technique for monitoring changes in effluent quality. It also shows that portable devices can run continuously, for 1 month, without any cleaning procedure in the case of submersible systems (or with limited regular cleaning for cuvette-based fluorimeters). Further studies are needed to test the time span until fouling interferes with the fluorescence signal. In addition, multiple sites should be considered in future studies to account various peculiarities of wastewater input.

- Fluorescence peaks T and C showed that OM varied diurnally depending on the flow rate. Precipitation decreased the fluorescence intensity of both peaks due to dilution of wastewater with runoff. The degree of decrease in fluorescence intensity was found to be proportional to the quantity of rainfall.

- 15 min measurement frequency yielded sufficient data to obtain a detailed assessment of daily variation, precipitation impact on influent quality and treatment process.

- A qualitative analysis of effluent OM, i.e. without correction for inner filter effect or extensive calibration can detect changes in effluent water quality. However, temperature correction may be needed in areas with high seasonal variation. Inner filter effect correction may be required when quantitative measurements are needed.

- Submersible instruments proved to be a more practical tool for *in situ*
measurement compared to the cuvette-based device. The advantages of reduced cleaning frequency (no cleaning for at least 1 month) and battery operation make them preferable for effluent OM monitoring.

- Results showed that fluorescence intensity of peaks T and C was capable of detecting minor changes in influent OM quantity and issues with treatment process. The substantial impact on peak C fluorescence intensity with changes in the system was attributed to the input of autochthonous OM from sewage sludge liquor and the presence of untreated FWAs. Although the variation in fluorescence was more clearly observed at peak C compared to peak T, it is recommended that both peaks are monitored due to variations in wastewater composition.

Acknowledgements

The first author acknowledges the support of the European Commission Framework Programme 7, Marie Curie IEF (PIEF-GA-2012-329962) and the Core Program, ANCS (PN 16.40.01.01). The work of David Hoyland, John Bryant and Steve Brooks in the School of Physics and Astronomy at the University of Birmingham in the design and manufacture of the Duo Fluor instrument is gratefully acknowledged. We thank Severn Trent Water for allowing access to the treatment plant and wastewater quality data. We also thank Mr. Mark Carter for laboratory and field support.

Supplemental Data

Figs. S1-S5 and Table S1 are available online in the ASCE Library (ascelibrary.org).

References

fluorescent whitening agents in a mountain river.” *Chemosphere*, Elsevier Ltd, 100, 27–33.

Bay and adjacent rivers: Their application as anthropogenic molecular markers in coastal environments.” *Environmental Science and Technology*, 36(16), 3556–3563.

Figure captions

Fig. 1. Relationship between BOD and fluorescence. (A) peak T and (B) peak C (N=87).

Fig. 2. In situ fluorescence measurements. Peak T measured with (A) Cyclops 7 and (B) DuoFluor. Peak C measured with (C) EXO1 and (D) DuoFluor. Rainfall events I-IV are marked with blue and anomalies are circled with red. The DuoFluor stopped recording during rain event IV due to a power failure at the WwTP. The large differences in the fluorescence intensity observed at graph (D) for the dates Aug 17, Aug 20, Aug 24 and Aug 28 were caused by cuvette cleaning on the DuoFluor.

Fig. 3. Examples of daily fluorescence variation for the 3 portable devices. (A) peak T fluorescence and (B) peak C fluorescence. The 2 pm peak is marked with a blue square.
Table 1. Kendall Correlation Between the Data from Portable Devices and Varian Benchtop Spectrofluorimeter.

<table>
<thead>
<tr>
<th>Device</th>
<th>Cyclops 7</th>
<th>EXO1</th>
<th>DuoFluor</th>
<th>Varian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak T</td>
<td>Peak C</td>
<td>Peak T</td>
<td>Peak C</td>
</tr>
<tr>
<td>Cyclops 7</td>
<td>1</td>
<td>0.19</td>
<td>0.28</td>
<td>0.02</td>
</tr>
<tr>
<td>EXO1</td>
<td>-</td>
<td>1</td>
<td>0.49</td>
<td>0.48</td>
</tr>
<tr>
<td>DuoFluor</td>
<td>Peak T</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Peak C</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Correlation coefficients in bold have p values below 0.001 (p-values < 0.001 are considered significant).
Table 2. Standard Parameters Measured by the WwTP.

<table>
<thead>
<tr>
<th>Date</th>
<th>Precipitation (mm)</th>
<th>Temperature (°C)</th>
<th>Total Phosphorus (mg/L)</th>
<th>Iron (mg/L)</th>
<th>Ammonia (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.08</td>
<td>0.0</td>
<td>19.5</td>
<td>0.57</td>
<td>0.31</td>
<td>0.06</td>
</tr>
<tr>
<td>11.08</td>
<td>0.0</td>
<td>18.9</td>
<td>0.73</td>
<td>0.29</td>
<td>0.06</td>
</tr>
<tr>
<td>12.08</td>
<td>0.0</td>
<td>18.8</td>
<td>0.70</td>
<td>0.33</td>
<td>0.21</td>
</tr>
<tr>
<td>13.08</td>
<td>33.0</td>
<td>19.4</td>
<td>0.44</td>
<td>0.34</td>
<td>0.21</td>
</tr>
<tr>
<td>14.08</td>
<td>3.0</td>
<td>18.5</td>
<td>0.98</td>
<td>0.49</td>
<td>2.37</td>
</tr>
<tr>
<td>15.08</td>
<td>0.0</td>
<td>19.2</td>
<td>0.47</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>16.08</td>
<td>0.0</td>
<td>19.7</td>
<td>0.30</td>
<td>0.28</td>
<td>0.30</td>
</tr>
<tr>
<td>17.08</td>
<td>0.0</td>
<td>18.5</td>
<td>0.62</td>
<td>0.28</td>
<td>0.06</td>
</tr>
<tr>
<td>18.08</td>
<td>0.0</td>
<td>18.2</td>
<td>0.50</td>
<td>0.33</td>
<td>0.06</td>
</tr>
<tr>
<td>19.08</td>
<td>8.0</td>
<td>18.9</td>
<td>0.44</td>
<td>0.37</td>
<td>0.08</td>
</tr>
<tr>
<td>20.08</td>
<td>0.0</td>
<td>19.2</td>
<td>0.61</td>
<td>0.33</td>
<td>0.30</td>
</tr>
<tr>
<td>21.08</td>
<td>0.0</td>
<td>19.5</td>
<td>0.46</td>
<td>0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>22.08</td>
<td>0.0</td>
<td>19.7</td>
<td>0.38</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>23.08</td>
<td>9.0</td>
<td>20.1</td>
<td>0.37</td>
<td>0.46</td>
<td>0.32</td>
</tr>
<tr>
<td>24.08</td>
<td>9.0</td>
<td>18.9</td>
<td>0.55</td>
<td>0.27</td>
<td>0.06</td>
</tr>
<tr>
<td>25.08</td>
<td>7.0</td>
<td>18.4</td>
<td>0.66</td>
<td>0.30</td>
<td>1.81</td>
</tr>
<tr>
<td>26.08</td>
<td>0.5</td>
<td>18.7</td>
<td>0.38</td>
<td>0.26</td>
<td>0.06</td>
</tr>
<tr>
<td>27.08</td>
<td>0.5</td>
<td>18.3</td>
<td>0.48</td>
<td>0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>28.08</td>
<td>0.0</td>
<td>18.4</td>
<td>0.39</td>
<td>0.21</td>
<td>0.06</td>
</tr>
<tr>
<td>29.08</td>
<td>0.0</td>
<td>18.9</td>
<td>0.49</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td>30.08</td>
<td>18.0</td>
<td>19.2</td>
<td>0.51</td>
<td>0.17</td>
<td>0.06</td>
</tr>
<tr>
<td>31.08</td>
<td>12.0</td>
<td>18.3</td>
<td>0.39</td>
<td>0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>01.09</td>
<td>25.0</td>
<td>17.0</td>
<td>0.51</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>02.09</td>
<td>4.0</td>
<td>17.0</td>
<td>0.30</td>
<td>0.19</td>
<td>0.27</td>
</tr>
<tr>
<td>03.09</td>
<td>1.0</td>
<td>17.3</td>
<td>0.37</td>
<td>0.23</td>
<td>0.07</td>
</tr>
<tr>
<td>04.09</td>
<td>0.0</td>
<td>17.1</td>
<td>0.50</td>
<td>0.40</td>
<td>0.68</td>
</tr>
<tr>
<td>05.09</td>
<td>0.0</td>
<td>17.1</td>
<td>0.37</td>
<td>0.25</td>
<td>0.40</td>
</tr>
<tr>
<td>06.09</td>
<td>0.0</td>
<td>17.4</td>
<td>0.49</td>
<td>0.24</td>
<td>0.30</td>
</tr>
<tr>
<td>07.09</td>
<td>0.0</td>
<td>17.7</td>
<td>0.54</td>
<td>0.34</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Supplementary data

Online fluorescence monitoring of effluent quality in wastewater treatment plants

Elfrida M. Carstea1,2*, Yulia S. Zakharova3 and John Bridgeman4

1Senior Scientist, National Institute of R&D for Optoelectronics, Atomistilor 409, 077125, Magurele, Romania; elfrida.carstea@inoe.ro

2Marie Curie Research Fellow, Department of Civil Engineering, University of Birmingham, B15 2TT, UK

3Research Fellow, Department of Civil Engineering, University of Birmingham, B15 2TT, UK, julia.ripe@hotmail.co.uk

4Professor of Environmental Engineering, Department of Civil Engineering, University of Birmingham, B15 2TT, UK, J.Bridgeman@bham.ac.uk
Fig. S1. The setup for the laboratory scale activated sludge process. BOD – biochemical oxygen demand; DO – dissolved oxygen. The orange and black arrows indicate the direction of the flow.
Fig. S2. The setup for the *in-situ* fluorescence measurements. The EXO1 and Cyclops 7 were connected to handheld devices and tightened with ropes to the cover grid above the effluent channel.
Fig. S3. Linearity check of the three portable devices and comparison with a benchtop spectrofluorimeter. The fluorescence intensity was corrected by extracting the blank spectrum.
Fig. S4. In situ measurements with the EXO1 sonde. (A) temperature, (B) conductivity and (C) pH.
Fig. S5. Flow rate (brown line) and quantity of ammonia (red line) at the effluent.

Graph provided by the WwTP.
Table S1. Standard parameters and peak T and peak C fluorescence for grab samples of final effluent. The fluorescence peaks were measured with a benchtop spectrofluorimeter.

<table>
<thead>
<tr>
<th>Date</th>
<th>BOD (mg/L)</th>
<th>COD (NTU)</th>
<th>TOC (a.u.)</th>
<th>Nitrates (mg/L)</th>
<th>Turbidity (NTU)</th>
<th>Fluorescence intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peak T</td>
</tr>
<tr>
<td>13.08.2015</td>
<td>1.6</td>
<td>27</td>
<td>8.9</td>
<td>30.7</td>
<td>N/A</td>
<td>106</td>
</tr>
<tr>
<td>17.08.2015</td>
<td>2.9</td>
<td>23</td>
<td>8.5</td>
<td>23.8</td>
<td>2.18</td>
<td>100</td>
</tr>
<tr>
<td>20.08.2015</td>
<td>1.9</td>
<td>24</td>
<td>9.3</td>
<td>28.8</td>
<td>1.90</td>
<td>104</td>
</tr>
<tr>
<td>25.08.2015</td>
<td>3.0</td>
<td>30</td>
<td>7.9</td>
<td>19.0</td>
<td>1.85</td>
<td>94</td>
</tr>
<tr>
<td>28.08.2015</td>
<td>1.7</td>
<td>32</td>
<td>N/A</td>
<td>27.3</td>
<td>1.54</td>
<td>107</td>
</tr>
<tr>
<td>01.09.2015</td>
<td>2.7</td>
<td>15</td>
<td>6.3</td>
<td>14.9</td>
<td>2.18</td>
<td>76</td>
</tr>
<tr>
<td>03.09.2015</td>
<td>3.0</td>
<td>18</td>
<td>7.2</td>
<td>16.5</td>
<td>2.67</td>
<td>81</td>
</tr>
<tr>
<td>07.09.2015</td>
<td>1.7</td>
<td>17</td>
<td>8.5</td>
<td>22.1</td>
<td>1.96</td>
<td>97</td>
</tr>
</tbody>
</table>

* Fluorescence whitening agents’ excitation wavelength