The University of Bradford Institutional Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information.

To see the final version of this work please visit the publisher's website. Access to the published online version may require a subscription.

Link to publisher's version: https://doi.org/10.2217/fon-2017-0003

Copyright statement: © 2017 Future Medicine Ltd. Reproduced in accordance with the publisher's self-archiving policy.
An Update on Genomic-guided Therapies for Pediatric Solid Tumors

Pui Chi Tsui¹, Yin-Fai Lee², Zoey Wing Yee Liu³, Laura Ren Huey Ip⁴, Wenying Piao⁴, Alan Kwok Shing Chiang⁵,*, Vivian Wai Yan Lui⁴,*

¹Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
²School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
³Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
⁴School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
⁵Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR

*denotes Co-corresponding authors

Corresponding Authors:

Dr. Alan Kwok Shing Chiang:

Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR

Phone: (852) 22554091
Fax: (852) 28551523
Email: chiangak@hku.hk

Dr. Vivian Wai Yan Lui:

School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR

Phone: (852) 3943-5388
Fax: (852) 2603-5123
Email: vlui002@cuhk.edu.hk
Financial Disclosure: VWY served as a scientific consultant for Novartis, Hong Kong.

Acknowledgements: We are grateful for the clerical assistance from Mr. Hoi Lam Ngan, Mr. Chin Weng Wu and Mr. Samuel Yan Jin Fang. This study is supported by the Seed Grant of Strategic Research Theme for Cancer, The University of Hong Kong of AKSC. VWYL is funded by the Research Grant Council, Hong Kong (#17114814, #17121616, General Research Fund; T12-401/13-R, Theme-based Research Scheme), and the Start-up Fund, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong. WP is funded by the Faculty Postdoctoral Fellowship Scheme, Faculty of Medicine, the Chinese University of Hong Kong.
An Update on Genomic-guided Therapies for Pediatric Solid Tumors

Keywords: Pediatric solid tumors; whole-exome sequencing, clinical trials on targeted therapies

Abbreviations: whole-exome sequencing (WES), Pediatric Cancer Genome Project (PCGP); Therapeutically Applicable Research To Generate Effective Treatments (TARGET)

Abstract:
Currently, out of the 82 FDA approved targeted therapies for adult cancer treatments, only 3 are approved for use in children irrespective of their genomic status. Apart from leukemia, only a handful of genomic-based trials involving children with solid tumors are ongoing. Emerging genomic data for pediatric solid tumors may facilitate the development of precision medicine in pediatric patients. Here, we provide an up-to-date review of all reported genomic aberrations in the 8 most common pediatric solid tumors with whole-exome or whole-genome sequencing data (from cBioPortal database, Pediatric Cancer Genome Project (PCGP), Therapeutically Applicable Research To Generate Effective Treatments (TARGET)) and additional non-WES studies. Potential druggable events are highlighted and discussed so as to facilitate preclinical and clinical research in this area.
Introduction

The global incidence of pediatric cancers in 2012 is ~13.5 per 100,000 population in patients aged 0-19, with a mortality rate of about 12% [1]. To date, cancer is still the leading cause of death in young adults and children apart from accidents. Among all pediatric cancers, solid tumors account for two-third of all cases, while leukemias account for the remaining one-third of cases. The most common pediatric solid tumors include cancers of the brain and the central nervous system (CNS), neuroblastoma, rhabdomyosarcoma, bone cancer, Wilms’ tumor as well as germ cell tumors, etc.

There are currently 82 FDA approved targeted therapies for the treatment of adult cancers [2]. The clinical implementation of genomic-guided precision medicine (the use of the right drug for the right patient) based on specific tumor genetic aberrations has unprecedentedly extended the survival of many adult cancer patients, including those with advanced or metastatic diseases, as well as leukemias. Yet, major advances in improving the survival of various pediatric solid tumors are, by far, lacking. The scarcity of genomic data, especially on actionable or druggable gene mutational events presents a major roadblock for the development of precision medicine for pediatric solid tumors. Currently, the main treatment modalities for pediatric solid tumors are still surgery, chemotherapy and radiotherapy. Personalized treatment options are limited.
Here, we aim to provide the most up-to-date overview of genomic aberrations found in pediatric solid tumors from the public domain (cBioportal.org [3, 4]; USA, Pediatric Cancer Genome Project (PCGP) [5], Therapeutically Applicable Research To Generate Effective Treatments (TARGET) [6]) as well as additional published whole-genome sequencing (WGS) studies as well as other published non-WES studies for the most common pediatric solid tumors (all summarized in Supplementary Table 1 with original references). Recent findings from several major multi-cancer pediatric clinical studies are also included in this review. We found that WES data have only been reported in a relatively small number of cases and cancer types. Among 11 most common pediatric solid tumors, including medulloblastoma, glioblastoma multiforme, low grade glioma, neuroblastoma, Wilms’ tumor, osteosarcoma, Ewing’s sarcoma, rhabdomyosarcoma, retinoblastoma, hepatoblastoma, and germ cell tumors, only 9 (the underlined ones) have been whole-exome or whole-genome sequenced as of today. We highlighted some potential druggable targets based on finding in adult tumors.

Further, we also comprehensively summarized all current genomic-related clinical trials involving children with these cancers. This review should highlight potential druggable targets and provide insights for future development in precision medicine in pediatric solid tumors.

Exceptional responders in pediatric solid tumors shed hope for precision medicine development
The success of precision medicine requires a good understanding of the genomic aberrations in tumors that will correlate with a good clinical response to a drug therapy. To date, the understanding of pediatric tumor genomics and how these genetic aberrations correlate with clinical outcome is lacking. Yet, scattered reports on pediatric tumor patients showing exceptional responses to some targeted therapies [7-9]. The first exceptional response was reported in a BRAF(V600E)-mutated pediatric glioblastoma multiforme patient with BRAF inhibitor vemurafenib, whose complete response lasted for 6 months [7], as well as BRAF(V600E)-mutated metastatic rhabdoid meningioma treated with a BRAF inhibitor, dabrafenib, whose response was reported to last for 7 months with partial resolution of her tumor mass [8]. Other than BRAF-mutated tumors, Zapletalova et al reported a 16 months of complete response from a 9 year old tuberous sclerosis complex (TSC) patient with malignant perivascular epithelioid cell tumor (PEComa) carrying germline mutation of the PDGFR-alpha [9]. These emerging reports of exceptional responders in pediatric patients whose treatment was decided based on their tumor genomic profile do implicate the potential promise of precision medicine for pediatric solid tumors.

WES studies in pediatric solid tumors reveal several potential druggable targets

As illustrated in adult cancers, whole-exome sequencing (WES) of tumor tissues reveals important druggable targets for treatment and future drug development. The mutational profiles of adult cancer provide a genomic roadmap, prompting both preclinical and clinical development of precision medicine in adult cancers. As for pediatric solid tumors,
due to the rarity of the diseases, WES studies are challenging to be conducted with a
number of samples. Yet, as of today, out of the 11 most common pediatric solid tumors,
there are published genomic data of eight of these tumor types, including
medulloblastoma, glioblastoma multiforme, low grade glioma, neuroblastoma, Wilms’
tumor, osteosarcoma, Ewing’s sarcoma and rhabdomyosarcoma (Supplementary Table
1) [10-44]. As for the remaining 3 solid tumor types (retinoblastoma, hepatoblastoma,
erg cell tumors), though no large scale WES has been performed, we have included genomic events from other non-WES studies in order to provide a better profile of all 12 pediatric tumor types concerned.

Based on these WES data of pediatric tumors and the existing published drug-response reports from adult patients, several currently druggable targets are highlighted in Supplementary Table 1. Mutational events of >3% rate of occurrences were summarized (original data are available in the original references). In medulloblastoma, among the 254 whole-exome sequenced cases, there are no immediate actionable or druggable events with >3% rate. Whilst for glioblastoma multiforme (GBM; 606 cases sequenced total, representing the largest tumor cases sequenced among the 11 most common pediatric solid tumors), several prominent drug targets with mutational events have been identified. Due to the fact that only 6 of the 606 GBM tumors were from children (age 0-18), there are little implications for pediatric GBM treatments until the genomic information of a large enough pediatric GBM cohort is available. Yet, as of today, based on this tumor type, there could be several druggable targets, including \textit{EGFR}, \textit{PIK3CA}, \textit{NF1}, \textit{IDH1} and \textit{IDH2} mutations. However, among the 95 \textit{EGFR} mutations reported in GBM patients, only one mutation has been previously reported to
be associated with gefitinib sensitivity in lung cancer patients [45]. This finding indicates the presence of drug-sensitive mutant of \textit{EGFR}, though in a very small number of GBM patients. Further, hotspot and activating mutations of \textit{PIK3CA} (including E542K, E545K, and H1047R) are also present in 9 patient tumors, implicating potential sensitivity to PI3K pathway inhibitors. It remains to be determined if \textit{NF1} mutations, which will drive tumorigenesis via the Ras pathway, can be targetable with MAPK pathway inhibitors in pediatric cancers or not, given the conflicting data in several tumor types. In melanoma, though \textit{NF1} mutations are common, recent studies suggest that \textit{NF1} mutations may not predict for MEK inhibitor sensitivity [46]. However, a recent report demonstrated marked clinical responses of a \textit{NF1}-mutated neurofibromatosis-associated glioblastoma case to tremetinib, a MEK inhibitor [47]. A recent clinical trial on Neurofibromatosis Type 1-Related Plexiform Neurofibromas also showed high rates of clinical responses (70% cases) to another MEK inhibitor, selumetinib, among pediatric patients [48].

Lastly, there are 15 GBM patient tumors (5.2%; 15/290 cases) harboring \textit{IDH1} hotspot mutation (R132H/G), which may confer sensitivity to \textit{IDH1}-mutant specific inhibitor, AG-120, under development in clinical settings. The \textit{IDH1} and \textit{IDH2} genes encode the enzymes isocitrate dehydrogenase 1 and 2, respectively. Normal wildtype IDH enzymes are responsible to generate energy for cells by breaking down the cell nutrient, \(\alpha\)-ketoglutarate. Recent studies in multiple cancer types reveal that \textit{IDH1/2} mutations can serve as new therapeutic targets since \textit{IDH1/2} mutations can switch the cancer cell energy programming and produce the oncogenic metabolite, 2-hydroxyglutarate (2-HG), as well as dysregulating cell differentiation. An important glioma study by Rohle \textit{et al}
showed that a mutant specific inhibitor of IDH1 (R132H), namely AGI-5198, which have
been identified through a large-scale drug screen, was able to effectively inhibit the
mutant IDH1 activity, resulting in marked inhibition of IDH1-mutant glioma cell growth
and promoted glioma cell differentiation [49, 50]. Currently, there are several ongoing
clinical trials investigating the safety profile and potential clinical efficacies of IDH1-
mutant specific inhibitors (e.g. AG-120, an oral selective inhibitor that inhibits mutated
IDH1 protein) in glioma and other cancers. Results show early promises in glioma
patients (however, age of patients have not been disclosed) with some cases of stable
disease beyond six months [51]. Similar to IDH1 mutation, clinical trials are ongoing to
determine the safety profile and potential efficacy of IDH2 mutant inhibitor (AG-221) in
patients with blood cancer (acute myeloid leukemia).

For low grade glioma, mutant IDH1, IDH2, PIK3CA, NF1, BRAF, and FGFR1 are
potential drug targets with a >3% rate (Supplementary Table 1). Similar to glioblastoma
multiforme, IDH1, IDH2, PIK3CA, NF1 are potentially druggable with IDH1/2-mutant
specific inhibitors, PI3K pathway inhibitor and MAPK pathway inhibitors, respectively. It
is noticeable that 221/289 cases of low grade glioma tumors harbored IDH1(R132X)
hotspot mutations AG-221, which can be druggable with an IDH1-mutant specific
inhibitors AG-120. Also, there are 4.2% (12/286 cases) of patients with IDH2 hotspot
mutations (R172X), which can be potentially druggable. Notably, as high as 21.3%
cases of low grade glioma harbor FGFR1 gene duplication or activating gene fusion
(FGFR1-TACC3 fusion) or mutation, implicating this subset of FGFR1-altered patients
can be potentially sensitive to FGFR inhibition [52]. Further, BRAF(V600E) activating
mutation occurs in low grade glioma patient at a rate of 0.35% (TCGA, Provisional) which confers sensitivity to vemurafenib or BRAF inhibitors. Lastly, there are 6 cases with hotspot activating mutations of PIK3CA (E542K, E545K/A, and H1947R/L) which can also be potentially druggable with PI3K pathway inhibitors, while no drug-sensitive EGFR activating mutations have been identified in low grade glioma patients thus far. There are quite a number of druggable mutations to be potentially tested in both preclinical and clinical settings for this tumor type.

In neuroblastoma, ALK genetic aberrations (amplification, gain, deletion, point mutations, etc.) have been reported in 6-9% cases by WES conducted in the US and Europe (Supplementary Table 1) [53, 54]. However, an Egyptian study report an exceptional high rate of ALK aberrations in 50% of patients [55]. Yet, most of these neuroblastoma-associated ALK aberrations are not related to sensitivity to ALK inhibitors as ALK inhibitor sensitivity is known to be contributed mainly by ALK gene rearrangements as largely reported in lung cancer patients. Rather, a subset of neuroblastoma patients whose tumor harbor the resistant mutation, ALK(F1174V) are likely to be resistant to ALK inhibitors.

For retinoblastoma, RB1 and RBL2 mutations are the only mutated genes, which are currently undruggable. However, amplification of MYCN been reported in some cases of retinoblastoma and may serve as drug targets for MYCN-Aurora A dual inhibitor, CD532
WES of Wilm’s tumor, thus far, do not reveal any noticeable drug targets, while MYCN amplification may serve as a potential druggable event.

No WES have been conducted for hepatoblastoma, however, other non-WES studies revealed that PIK3CA mutations (2.1%; 1/47 cases) can potentially be druggable with PI3K pathway inhibitors (e.g. BYL719, BKM 120, everolimus, etc.), which are in later phases of clinical trials in adult cancers. For osteosarcoma, WES did not reveal any apparent drug targets. Yet, non-WES studies indicate that MYC, MDM2 and VEGFA amplifications can potentially be targeted with MYC inhibitors, MDM2 inhibitors, and VEGF or VEGFR inhibitors, respectively. As MYCN amplification appears to be a noticeable target for several pediatric solid tumors, the potential benefit of metronomic topotecan may also be investigated as previous studies demonstrated high topotecan sensitivity in MYCN-amplified cell models (neuroblastoma [57]), and this agent has been shown to be effective for childhood cancer with safe clinical profile [58].

Two large scale Ewing’s sarcoma WES studies reveal a lack of druggable mutations with a >3% occurrence rate [32, 33]. Note that there are ~2% of PIK3CA mutations (V344G, K733G), however, it is unclear if these mutations can confer sensitivity for PI3K targeting or not. For rhabdomyosarcoma, though genomically aberrations of NF1, PIK3CA and FGFR4 genes are potential druggable targets, detailed analysis of the FGFR4 events (V550L/M mutations in 3 tumors (out of 43 cases sequenced), preclinical prediction suggest that this mutation is likely a gatekeeper mutation that may not confer
sensitivity to a FGFR4 inhibitor, BLU9931 [59]. However, new FGFR inhibitors may be
developed to overcome such a resistance mechanism in the future.

WES data are available for germ cell tumors (TCGA Provisional, via cbioportal). A
prominent drug target is KIT, which is mutated in 18.8% of germ cell tumors. Mutations
in exon 11 of KIT (juxtamembrane domain of KIT spanning amino acids 550-591) are
known to confer sensitivity for imatinib in GIST and melanoma [60]. In this TCGA cohort
of germ cell tumors, a total of 8 exon 11 KIT mutations have been identified, including
W557G/C/R (4 patients), and G565_T574delinsA, V560G, L576P, Y578C and K642E (1
patient each). Notably, L576P and K642E have been reported to be associated with
durable partial or complete responses to imatinib in melanoma [60], while 18 KIT
mutations are associated with imatinib-resistance (D816X), which may be sensitive to
other tyrosine kinase inhibitor, such as PKC412 [61] as shown in vitro settings. From
this provisional genomic data of germ cell tumors, it appears than other than KIT, there
is a paucity of druggable mutations. Though driver gene mutations such as KRAS and
NRAS hotspot mutations (G12S/D, Q61X) are common in germ cell tumors, but they are
not readily druggable yet.

These WES data from specific tumor types show that some genetic subsets of these
pediatric patients may be responsive to some targeted therapies already approved for
adult cancers or to agents currently undergoing clinical trials for adult patients. In fact,
the two exceptional responder cases \cite{7,8} demonstrated potential clinical responses in pediatric patients for precision medicine based on their tumor mutational profiles. Thus, it becomes increasingly important to conduct more pediatric clinical trials based on patients’ tumor genetics. Recently, three important clinical studies investigating practical clinical implementation of sequencing into clinical management of pediatric cancers from the University of Michigan \cite{62}, from Texas Children’s Cancer Center \cite{63}, as well as from Dana-Farber (the Individualized Therapy (iCat) study, \cite{64}) showed that a substantial percentage of pediatric solid tumor patients (~40\%) have potentially actionable genomic aberrations.

Anticipating more WES data for more pediatric solid tumors

It is important to note that several WES projects on pediatric cancers are in progress, which will further inform us the druggable genetic profiles of pediatric solid tumors. These include the Pediatric Cancer Genome Project by St. Jude Children’s Research Hospital and Washington University (sequencing 13 types of solid tumors including brain tumors, neuroblastoma, retinoblastoma and Wilms’ tumor \cite{5}. Some of these WES data, including those of medulloblastoma \cite{12}, retinoblastoma \cite{20}, osteosarcoma \cite{30}, adrenocortical tumors \cite{65}, low grade neuroepithelial tumor \cite{66}, high grade glioma \cite{67} and low grade glioma \cite{16} had been published. Another ongoing effort is that of the TARGET program by the Office of Cancer Genomics of the National Cancer Institute, which is currently sequencing several tumor types (including neuroblastoma, osteosarcoma and kidney tumors including Wilms’ tumor, clear cell sarcoma of the kidney, congenital mesoblastic nephromas and rhabdoid tumor) \cite{6}. The program had
published WES data on neuroblastoma [19], Wilms’ tumor [24], clear cell sarcoma of the kidney [68] and rhabdoid tumor [69]. It is worth noting that most of these WES studies were performed as single studies, primarily involving Caucasian subjects. It is important that additional WES or even whole-genome sequencing (which can effectively identify large gene fusion events potentially missed by WES) studies on pediatric solid tumors derived from other patients of diverse ethnic backgrounds are performed to enhance our understanding of the genomic aberrations associated with these pediatric cancers.

In addition to these above-mentioned large-scale genomic characterization studies for specific pediatric tumor types which can inform us both the underlying cancer biology involved as well as potential treatment directions, several large scale clinical studies are ongoing to actively investigate various practical aspects and clinical outcomes of clinical implementation of genomics-guided precision medicine for pediatric solid tumors. These include: 1) the Baylor Advancing Sequencing into Childhood Cancer Care (BASIC3) study for children with newly diagnosed solid tumors and brain tumors [70], 2) the University of Michigan Pediatric Michigan Oncology Sequencing study (PEDS-MIONCOSEQ; [71], which includes an integrative sequencing approach to examine all genetic variants, fusions, gene copy changes into precision medicine decision, 3) the iCat follow-up study, called the Genomic Assessment Informs Novel therapy (GAIN) consortium study, which will perform specialized tumor profiling for newly diagnosed, recurrent, as well as refractory solid tumors (NCT02520713) together with iCat clinical recommendations for clinical management, and 4) the multi-institutional INdividualized Therapy FOR Relapsed Malignancies in Childhood (INFORM) study, which is a German
program coordinated through the German Cancer Research Center (German Clinical Trials Register, Study ID: DRKS00007623) for precision treatment of high-risk refractory or relapsed pediatric cancers including solid tumors [72]. Molecular profiling includes WES, WGS, RNA sequencing, methylation and expression array profiling. 5) Lastly, the Children’s Oncology Group (COG)-National Cancer Institute (NCI) are launching a collaborative trial called the COG-NCI Pediatric Molecular Analysis for Therapeutics Choice (Pediatric MATCH) in 2017 [73]. This trial employs an umbrella design with multiple single-arm trials for patients with matched molecular profiles to be put on classes of selected molecular targeting agents at the initial phase. Importantly, the efficacy and safety of these agents have been carefully reviewed by the Pediatric MATCH Target and Agent Prioritization (TAP committee). These 7 classes of molecular targeting agents include inhibitors for mTOR/PI3K, MEK, PDGFR-alpha, BRAF, ALK, TRK and FGFR [73]. The results of these major ongoing clinical studies are highly anticipated as it will start teaching us about pediatric responder genomics as in adult trials, and probably also inform us on related longer-term efficacy and toxicity issues for young cancer patients. Some early results from these several studies have been recently published and we have summarized those major findings in the “towards precision treatment for pediatric solid tumors” section below.

Current Targeted Therapies for Pediatric Solid Tumors
Although there are 82 targeted therapies approved by the US FDA for the treatment of adult cancers, only 3 of these drugs have been approved for use in children (everolimus, dinutuximab and denosumab) irrespective of the genomic status of the tumors. For the
11 pediatric solid tumors shown in Supplementary Table 1, only everolimus has been approved for the treatment of subependymal giant cell tumor for both children and adults, dinutuximab for neuroblastoma for both children and adults, and denosumab for giant cell tumor in skeletally mature adolescents and adults (Table 1). Besides children with neuroblastoma and giant cell tumor, pediatric patients with the remaining 10 tumor types listed have no new treatment options other than the conventional therapies. Two additional drugs have been approved for adults with glioblastoma multiforme (bevacizumab) and rhabdomyosarcoma (pazopanib) and Hodgkin’s lymphoma (brentuximab) but not for children with the same cancer types.

Everolimus is a kinase inhibitor approved for the treatment of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis in children [74]. A phase 3 randomized, double-blind, placebo controlled trial (EXIST-1) in pediatric and adult patients (N=117; median age 9.5 years) showed 27 out of 78 (35%) patients receiving everolimus had at least 50% reduction in tumor size at 6 months in the absence of new or worsening non-target SEGA lesions, or new or worsening hydrocephalus [75]. A recent long-term follow-up study showed that with 60 months of everolimus’ use, 52-60% of patients demonstrated SEGA volume reduction of >30-50% [75].

Dinutuximab, also called Ch14.18, is a GD2-binding monoclonal antibody, which has been recently approved by the FDA as part of the first-line therapy for patients with high-risk neuroblastoma. It has been approved to be used in combination with
granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2 (IL-2) and 13-cis-retinoic acid (RA) for the treatment of pediatric patients with neuroblastoma [76].

Its efficacy is demonstrated in a phase 3 randomized, open-label, multicenter trial (N=226; median age 3.8 years). In patients receiving the dinutuximab regimen (six cycles of isotretinoin and five concomitant cycles of dinutuximab in combination with alternating GM-CSF and interleukin-2) vs isotretinoin treatment alone, the event-free survival and overall survival after 2 years was 66% and 86% (vs. 46% and 75%, respectively) [77].

Denosumab is a monoclonal antibody against RANKL, which is aberrantly overexpressed in giant cell tumor of bone (GCTB) in skeletally mature adolescents [78]. It has been approved by the FDA (under the priority review program) as the first and the only approved drug for GCTB in 2013. The approval was based on the clinical effectiveness and safety revealed from two clinical trials on 305 patients of which 10 were skeletally mature adolescents with GCTB. It showed an overall objective response rate in 2 out of 6 patients (33%) using modified Response Evaluation Criteria in Solid Tumors (RECIST 1.1) [79].

These 3 FDA approved targeted therapies have proven to be of use in solid tumors unresponsive to standard treatment in children, leading to a significant improvement in survival.
Towards precision treatment for pediatric solid tumors

Gene-based clinical trials in pediatric solid tumor patients are challenging to conduct, mainly due to the very small number of childhood cancer patients in any single center. Further, the efficacy and clinical details for precision medicine implementation in pediatric oncology have not been well-established yet. Recently, several large scale studies have started to investigate various clinical aspects and issues related to implementation of precision medicine for pediatric solid tumors. Major findings include: 1) with genomic profiling including WES, WGS, or targeted sequencing, up to 32-56% of pediatric patients with solid tumors had potentially druggable/actionable genomic aberrations [62-64, 72, 73, 80-82]. 2) Such actionable findings have impacted cancer management in several noticeable ways, including changes in drug therapies based on somatic or germline mutations identified (even for refractory cases with no more treatment options), changes in diagnosis, consideration or provision of genetic counseling, and genetic testing of at-risk siblings. 3) Among some of the “precision-treated patients”, very promising clinical responses, including complete or partial durable responses were observed in some very rare pediatric solid tumors with ALK inhibitors (for ALK or MET rearrangements), BRAF or MEK inhibitors (for BRAF mutation or rearrangement), with panzopanib (for TFE3 rearrangements), and sirolimus (for PIK3CA mutation), etc (details summarized in Table 2). 4) Potentially limited by the lack of previous evidence of gene-drug sensitivity data in these rare cancers and scarcity of drugs with previous toxicity data in children, some patients were not treated with new drug options even with known genomic profiles. Therefore, it becomes clear that increasing the availability of targeted therapies for young patients with more
extensive toxicity profile information may provide clinical benefit for them. It is anticipated that these ongoing multi-center, multi-cancer type trials in young patients, including the PEDS-MIONCOSEQ, BASIC3, iCat follow-up study, INFORM, Pediatric-MATCH, will offer further practical insights and provide strong evidence-based clinical rationale for implementation of precision medicine in the near future, potentially with improved clinical outcomes for these young patients. Among those, clinical outcomes from umbrella trials are highly anticipated.

In addition to these large scale clinical studies dedicated to pediatric solid tumor patients, there are some pediatric-inclusive trials investigating the clinical efficacies of drugs or drug combinations targeting five genetic alterations, namely BRAF, EGFR, ALK, ROS1 and MET in various tumor types (Table 343a). Some of these ongoing clinical trials include young adults aged 16 or above. Most of these clinical trials have not reached phase 3, except for vemurafenib, which is tested in adolescents aged 16 or above. Especially for EGFR alterations, it is known in adult non-small cell lung cancer (NSCLS) that only EGFR-activating mutations will confer sensitivity to EGFR tyrosine kinase inhibitors (TKIs). It remains to be examined in these pediatric drug trials if EGFR gene amplification or EGFR overexpression may identify pediatric responders to EGFR inhibitors. Similarly, whilst ALK targeting has been shown to be effective in NSCLC patients with ALK-gene rearrangements, it remains to be examined in pediatric drug trials if ALK inhibitors would be effective in ALK-altered pediatric tumors. The results of these gene-based clinical trials are highly anticipated as new options for pediatric patients may be identified.
Ongoing clinical trials for targeted therapies for pediatric solid tumors

Besides genomic-guided clinical trials, trials addressing the efficacy of specific targeting of the EGFR, IGF1R and PI3K pathways with no specified gene analysis in the trial designs are also underway (Table 4). Most trials are in early stages, except for a phase 3 clinical trial of nimotuzumab (a humanized monoclonal antibody against EGFR; NCT00561691) in diffuse pontine glioma. In neuroblastoma, a phase I study (NCT02337309) is testing the use of SF1126, a PI3-kinase inhibitor, in pediatric patients with neuroblastoma. Only after the initial phase I study, the subsequent phase II design will test for the use of SF1126 in patients with tumors such as retinoblastoma with MYCN amplification, MYCN expression or Myc expression. Besides, a number of early clinical trials are testing IGF1R targeting in pediatric patients. The results of these targeting approaches will reveal the efficacies and related long-term toxicities of targeting these pathways in pediatric patients. It is important to note that these trial results of targeted therapies in pediatric patients may, in the near future, further guide the identification of related genetic biomarkers of response among potential pediatric responders.

There are documented cases of exceptional responders to targeted therapies. An example is a 12-year-old Caucasian male with BRAF V600E mutant glioblastoma multiforme [7] who achieved complete regression of tumor in response to a BRAF
inhibitor (vemurafenib). It is anticipated that some of these pathway inhibitors can be clinically effective in pediatric solid tumors with tolerable toxicity profile.

Future Perspectives:

As of today, there are only 8 pediatric solid tumor types with whole-exome sequencing data available. Among those, some of the studies have only very limited number of cases being sequenced. It is anticipated that with additional 3 large scale sequencing projects ongoing, some new druggable genetic events may be uncovered for these often aggressive tumors, which often lack treatment options. Efforts thus far, have revealed a limited number of potential druggable mutations such as **EGFR, ALK, PIK3CA, FGFR1, NF1, IDH1 and IDH2** mutations. These findings may help define new clinical trial design, or pediatric basket-type of trials for these patients. Multi-center or international efforts are often required for clinical trials to be conducted with reasonable patient number for the testing of new agents for these rare tumors. Lastly, it is noted that most of these published WES represent the genomic profiles of mostly Western pediatric patients, therefore, additional sequencing efforts in more pediatric cancers from a more diverse ethnicity can be encouraged, which may facilitate a more global development of precision medicine for pediatric solid tumors worldwide. In conclusion, current FDA-approved targeted therapies available for pediatric solid tumors are grossly insufficient. New pediatric gene-based clinical trials are urgently needed to provide the impetus for the development of precision medicine for pediatric solid tumors.
Executive Summary:

Exceptional responders in pediatric solid tumors shed hope for precision medicine development

- BRAF-mutated and ALK-mutated pediatric solid tumors have good clinical responses in case reports.
- Gives hopes for precision medicine for pediatric cancers with genomic profiling.

WES studies in pediatric solid tumors

- 8 out of 11 most common pediatric solid tumors have potential druggable genomic aberrations.
- Main targets include: BRAF, EGFR, PIK3CA, NF1, IDH1, IDH2, MYCN, ALK, FGFR1, FGFR4, and KIT.

Anticipating more WES data for more pediatric solid tumors

- Many ongoing tumor-specific large scale WES studies
• Many ongoing clinical multi-tumor type sequencing studies coupled with clinical investigations of drug efficacy based on molecular profile and toxicity in children.

Current Targeted Therapies for Pediatric Solid Tumors

• Currently with only 3 approved targeted therapies for pediatric solid tumors.
 - everolimus for subependymal giant cell tumor for both children and adults
 - dinutuximab for neuroblastoma for both children and adults
 - denosumab for giant cell tumor in skeletally mature adolescents and adults.

Towards precision treatment for pediatric solid tumors

• major clinical findings investigating the feasibility and practical issues for implementing molecular profiling for potential precision treatment of pediatric cancers.
• ~40% pediatric solid tumors have potential druggable targets
• Some clinical responders have been reported together with genomic profiles
• Several ongoing major trials for precision medicine in the US and Germany

Ongoing clinical trials for targeted therapies for pediatric solid tumors

• Ongoing clinical trials targeting *BRAF, EGFR, ALK, ROS* and *MET* have included genomics for children
• Also ongoing clinical trials for EGFR, IGF1R, and PI3K pathway inhibitors do not include genomic profiling.
References:

41. Lake A, Shield LA, Cordano P et al. Mutations of NFKBIA, encoding IkappaB alpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. *Int. J. Cancer* 125(6), 1334-1342 (2009).

**-important study with clinical responder genomic information for individual patients.

**-gives important mutation-drug matching details for the the Pediatric MATCH trial

**-gives important mutation-drug matching details for the the Pediatric MATCH trial

76. U.S. Food and Drug Administration, Center for Drug Evaluation and Research. Full prescribing information: UNITUXIN. Mar 2015. Available at...

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>US Incidence rate (per 100,000)</th>
<th>Cases in US (2009-13)</th>
<th>WES/ WGS/ Others</th>
<th>Country (Cohort)</th>
<th>Frequency of common mutations</th>
<th>Other known genetic events</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medulloblastoma</td>
<td>4.1*</td>
<td>1560* (2008-2012)</td>
<td>WES (N=92)</td>
<td>U.S. Canada (Children)</td>
<td>WNT11 (13.7%), DUX1 (8.8%), PTCH1 (4.6%), CNOT3 (5.0%), SMARCA4 (4.4%), MYC (4.4%), ARCA1 (4.6%), PTCH1 (3.9%), BRCA1 (3.9%), PIK3 (1.3%), IDH1 (3.3%), MAN1C1 (3.3%), PLEK2 (3.0%), TNF (3.3%), GNAS (3.3%), SPT5 (3.3%), LAN1 (3.9%)</td>
<td>−</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WES (N=120)</td>
<td>Germany (Children)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WES (N=177)</td>
<td>U.S. (Children)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Glioblastoma multiforme</td>
<td>1.6*</td>
<td>650* (2008-2012)</td>
<td>WES (N=299)</td>
<td>U.S. (NA)</td>
<td>IDH2 (4.2%), PTEN (2.1%), TP53 (3.0%), WNT16 (4.6%), RAF1 (3.0%), BRAF (2.3%), PIK3CA (4.6%), TP53 (3.4%), ARID1A (4.5%), WAP (1.9%), IDH1 (3.3%), IDH2 (1.3%), IDH3A (1.3%), IDH3B (1.3%), IDH3G (1.2%), IDH3H (1.3%)</td>
<td>−</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WES (N=35)</td>
<td>(N=56)</td>
<td>(N=87)</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WES (N=51)</td>
<td>(N=2) (Promyel)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WES (N=85)</td>
<td>(N=2) (Recurrent)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Low grade glioma</td>
<td>17.1*</td>
<td>7066* (2008-2012)</td>
<td>WES (N=268)</td>
<td>U.S. (NA)</td>
<td>IDH1 (77%), PIK3 (15.1%), TP53 (10.4%), CDK1 (19.6%), NOTCH1 (10.8%), AKAP18 (7.1%), PIK3CA (8.4%), FLT1 (7.5%), PIK3R1 (4.5%), SMARCA4 (4.5%), PTEN (4.6%), ARID1A (4.5%), IDH2 (4.2%), PTEN (2.1%), TP53 (3.0%), WNT16 (4.6%), RAF1 (3.0%), BRAF (2.3%), PIK3CA (4.6%), TP53 (3.4%), ARID1A (4.5%), WAP (1.9%), IDH1 (3.3%), IDH2 (1.3%), IDH3A (1.3%), IDH3B (1.3%), IDH3G (1.2%), IDH3H (1.3%)</td>
<td>−</td>
<td>[15]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WES (N=268)</td>
<td>Japan (N=268)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Note: Mutations: WES = whole exome sequencing, WGS = whole genome sequencing.
Osteosarcoma

<table>
<thead>
<tr>
<th>Mutation</th>
<th>TP53</th>
<th>RB1</th>
<th>ATRX</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP53</td>
<td>82.4%</td>
<td></td>
<td></td>
<td>N.A.</td>
</tr>
<tr>
<td>RB1</td>
<td>29.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATRX</td>
<td>29.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>others</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Others

- Mutation: TP53, RB1
- Amplification: RUNX2

Hepatoblastoma

<table>
<thead>
<tr>
<th>Mutation</th>
<th>TP53</th>
<th>WTX</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP53</td>
<td>18.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTX</td>
<td>14.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>others</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Ewing’s sarcoma

<table>
<thead>
<tr>
<th>Mutation</th>
<th>TP53</th>
<th>WTX</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP53</td>
<td>63.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTX</td>
<td>17.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>others</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Rhabdomyosarcoma

<table>
<thead>
<tr>
<th>Mutation</th>
<th>TP53</th>
<th>WTX</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP53</td>
<td>4.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTX</td>
<td>102.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>others</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Notes

- TP53, WTX: regions/possible genes
- STAG2, COPS13, H195
- CTNNB1, TP53, WTX2; FWT2; FGFR17 (4%)
<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Subtypes</th>
<th>FDA approved targeted therapy drugs for children</th>
<th>FDA approved targeted therapy drugs for adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS tumors</td>
<td>Medulloblastoma</td>
<td>-</td>
<td>Bevacizumab</td>
</tr>
<tr>
<td></td>
<td>Glioblastoma multiforme</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Low grade glioma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>-</td>
<td>Everolimus (Subependymal giant cell tumor, age > 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Everolimus (Subependymal giant cell tumor)</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>-</td>
<td>Dinutuximab</td>
<td>Dinutuximab (FDA approval based on clinical trial involving pediatric patients)</td>
</tr>
<tr>
<td>Retinoblastoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wilms’ tumor</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hepatic tumors</td>
<td>Hepatoblastoma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bone tumors</td>
<td>Osteosarcoma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ewing's sarcoma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>-</td>
<td>Denosumab (Giant cell tumor, skeletally mature adolescents)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Denosumab (Giant cell tumor)</td>
</tr>
<tr>
<td>Soft tissue sarcomas</td>
<td>Rhabdomyosarcoma</td>
<td>-</td>
<td>Pazopanib hydrochloride</td>
</tr>
<tr>
<td>Germ cell tumors</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2: Clinical responders reported in early clinical trials in pediatric solid tumors.

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Genomic aberration(s) reported</th>
<th>Response</th>
<th>Duration of response</th>
<th>Drug</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perivascular epithelioid cell tumor</td>
<td>SFPQ-TFE3 fusion</td>
<td>90% tumour reduction</td>
<td>16 months</td>
<td>pazopanib</td>
<td>[62]</td>
</tr>
<tr>
<td>Wilms tumor</td>
<td>AMER1 deletion, MYC p.P44L, MAX p.R60Q</td>
<td>Partial response</td>
<td>> 15 months</td>
<td>VEGF2 inhibitor (XL-184)</td>
<td>[62]</td>
</tr>
<tr>
<td>Infantile fibrosarcoma</td>
<td>Chr3q copy loss, chr16 copy gain; STAG2 (p.Y355F) mutation, IL-3 indel, Homozygous deletion CDK2NA, CDKN2B, LMNA-NTRK1 fusion, NTRK1, LMNA overexpression</td>
<td>Partial remission</td>
<td>N/A</td>
<td>ALK inhibitor (crizotinib)</td>
<td>[62]</td>
</tr>
<tr>
<td>Renal cell carcinoma</td>
<td>CDKN2A/2B copy loss, PPM1D frame-shift insertion (9p.T506fs), ASPSCR1-TFE3 fusion</td>
<td>Stable disease</td>
<td>10 months</td>
<td>pazopanib</td>
<td>[62]</td>
</tr>
<tr>
<td>Epithelioid inflammatory myofibroblastic sarcoma</td>
<td>RANBP2-ALK fusion</td>
<td>complete metabolic and anatomic response at 8 months later after initial treatment</td>
<td>N/A</td>
<td>ALK inhibitor (crizotinib)</td>
<td>[80]</td>
</tr>
<tr>
<td>Myofibroblastic sarcoma</td>
<td>CARS-ALK fusion</td>
<td>Complete remission for 9 months after end of therapy. Then relapse, again response to ALK-inhibitor.</td>
<td>9 months</td>
<td>ALK inhibitor (ceritinib)</td>
<td>[72]</td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td>PTPRZ1-MET fusion, TP53 p.T125R</td>
<td>Mixed response</td>
<td>N/A</td>
<td>ALK inhibitor (crizotinib)</td>
<td>[72]</td>
</tr>
<tr>
<td>Anaplastic pilocyticastrocytoma</td>
<td>FAM131B-BRAF fusion</td>
<td>Stable disease</td>
<td>N/A</td>
<td>MEK inhibitor (trametinib)</td>
<td>[72]</td>
</tr>
<tr>
<td>Genes involved in Trial design</td>
<td>Drug</td>
<td>target</td>
<td>NCT</td>
<td>Phase</td>
<td>Drugs</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>BRAF</td>
<td>BRAF</td>
<td></td>
<td>NCT01677741</td>
<td>2</td>
<td>Dabrafenib, Dabrafenib + Trametinib</td>
</tr>
<tr>
<td></td>
<td>BRAF</td>
<td></td>
<td>NCT01619774</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAF</td>
<td></td>
<td>NCT02285409</td>
<td>1, 2</td>
<td>MEK162</td>
</tr>
<tr>
<td></td>
<td>BRAF</td>
<td></td>
<td>NCT02089101</td>
<td>1, 2</td>
<td>Selumetinib</td>
</tr>
<tr>
<td></td>
<td>BRAF</td>
<td></td>
<td>NCT01386450</td>
<td>1, 2</td>
<td>Selumetinib</td>
</tr>
<tr>
<td></td>
<td>BRAF</td>
<td></td>
<td>NCT01653622</td>
<td>1</td>
<td>Vemurafenib, Cabozantinib + Pazopanib</td>
</tr>
<tr>
<td></td>
<td>BRAF</td>
<td></td>
<td>NCT01393947</td>
<td>3</td>
<td>Vemurafenib</td>
</tr>
<tr>
<td>EGFR</td>
<td>EGFR</td>
<td></td>
<td>NCT00995066</td>
<td>3</td>
<td>Cetuximab</td>
</tr>
<tr>
<td></td>
<td>EGFR</td>
<td></td>
<td>NCT0182350</td>
<td>2</td>
<td>Gefitinib + Bevacizumab + Temozolomide</td>
</tr>
<tr>
<td></td>
<td>EGFR</td>
<td></td>
<td>NCT02447419</td>
<td>2</td>
<td>Gefitinib</td>
</tr>
<tr>
<td></td>
<td>EGFR</td>
<td></td>
<td>NCT00198159</td>
<td>2</td>
<td>Gefitinib</td>
</tr>
<tr>
<td>ALK</td>
<td>ALK</td>
<td></td>
<td>NCT00939770</td>
<td>1, 2</td>
<td>Crizotinib</td>
</tr>
<tr>
<td></td>
<td>ALK</td>
<td></td>
<td>NCT02455528</td>
<td>2</td>
<td>Ceritinib</td>
</tr>
<tr>
<td></td>
<td>ALK</td>
<td></td>
<td>NCT01742286</td>
<td>1</td>
<td>Ceritinib</td>
</tr>
<tr>
<td>ALK, ROS1, MET</td>
<td>ALK</td>
<td></td>
<td>NCT02473497</td>
<td>2</td>
<td>Crizotinib</td>
</tr>
<tr>
<td></td>
<td>ALK</td>
<td></td>
<td>NCT02034981</td>
<td>2</td>
<td>Crizotinib</td>
</tr>
<tr>
<td>Genes involved in Trial design</td>
<td>Drug target</td>
<td>Drug</td>
<td>NCT</td>
<td>Phase</td>
<td>Condition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>None</td>
<td>EGFR</td>
<td>Cetuximab</td>
<td>NCT00148109</td>
<td>2</td>
<td>Sarcoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erlotinib</td>
<td>NCT00124657</td>
<td>1, 2</td>
<td>Brain & CNS tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erlotinib</td>
<td>NCT00418327</td>
<td>1</td>
<td>Malignant brain tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erlotinib</td>
<td>NCT00360854</td>
<td>1</td>
<td>Brain stem glioma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erlotinib</td>
<td>NCT01962896</td>
<td>2</td>
<td>Germ cell tumors (except pure mature teratoma)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sirolimus + Gefitinib</td>
<td>NCT00040781</td>
<td>1</td>
<td>Unspecified childhood tumor, protocol specific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gefitinib</td>
<td>NCT00042991</td>
<td>1, 2</td>
<td>Gliomas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nimotuzumab</td>
<td>NCT00600054</td>
<td>2</td>
<td>Diffuse pontine glioma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nimotuzumab</td>
<td>NCT00611691</td>
<td>3</td>
<td>Diffuse intrinsic pontine glioma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vandetanib + Dasatinib</td>
<td>NCT00996723</td>
<td>1</td>
<td>Diffuse intrinsic pontine glioma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cixutumumab</td>
<td>NCT00881441</td>
<td>1</td>
<td>Ewing's sarcoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cixutumumab</td>
<td>NCT00831844</td>
<td>2</td>
<td>Solid tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cixutumumab + Tensirolimus</td>
<td>NCT00880282</td>
<td>1</td>
<td>Unspecified childhood tumor, protocol specific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cixutumumab + Tensirolimus</td>
<td>NCT01614796</td>
<td>2</td>
<td>Sarcomas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figitumumab</td>
<td>NCT00474760</td>
<td>1</td>
<td>Ewing's sarcoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ganitumab</td>
<td>NCT00563680</td>
<td>2</td>
<td>Ewing's family tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RG1507</td>
<td>NCT00561444</td>
<td>1</td>
<td>Desmoplastic small round cell/tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCH717454</td>
<td>NCT00617890</td>
<td>2</td>
<td>Osteosarcoma Ewing's sarcoma</td>
</tr>
<tr>
<td>PI3 kinase</td>
<td></td>
<td>SF1126</td>
<td>NCT02337309</td>
<td>1</td>
<td>Neuroblastoma</td>
</tr>
</tbody>
</table>

Table 4. Ongoing clinical trials for targeted therapies with no inclusion of genetic analysis in trial design.