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Abstract

Pavlos Evangelides

Analytic representations of quantum systems with Theta functions.

Keywords: Analytic functions, Theta functions, Bargmann functions, Finite

quantum systems.

Quantum systems in a d-dimensional Hilbert space are considered, where

the phase spase is Z(d)×Z(d). An analytic representation in a cell S in the

complex plane using Theta functions, is defined. The analytic functions have

exactly d zeros in a cell S. The reproducing kernel plays a central role in

this formalism. Wigner and Weyl functions are also studied.

Quantum systems with positions in a circle S and momenta in Z are also

studied. An analytic representation in a strip A in the complex plane is also

defined. Coherent states on a circle are studied. The reproducing kernel is

given. Wigner and Weyl functions are considered.
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Chapter 1

Introduction

In this thesis analytic representations for quantum systems with finite dimen-

sional Hilbert space and also for quantum systems on a circle are studied.

Various analytic representations [1–4] have been studied in quantum me-

chanics. The most popular analytic representation is the Bargmann repre-

sentation in the complex plane for the harmonic oscillator [5–7], which uses

the resolution of identity of coherent states [8–15].

There is a lot of work on finite quantum systems [16–23] where the phase

space is Z(d)× Z(d). An example of such systems, is a system with angular

momentum j [24] (in this case d = 2j− 1). Theta functions [25–30] are used

to study an analytic representation in these systems [31,32]. Theta functions

are very important since they are Gaussians when working on discretized

circle. Gaussians are important in quantum systems because they can be

noramalized easily. Also, theta functions have several properites.

An important tool in the theory of analytic functions are the zeros [33–41],

which are investigated in this thesis. In finite quantum systems, the zeros

1



CHAPTER 1. INTRODUCTION

define the state uniquely. As a result, when the zeros are known the state

of the quantum system can be found. The zeros of analytic functions in a

square cell S is equal to d and the zeros obey a constraint [42,43].

Our analytic representation is based on d2 coherent states. In this case we

assume that d is an odd number. The reproducing kernel [44] is also given.

The paths of the zeros [45] during time evolution are considered. In the

case of Hamiltonians with rational ratio of the eigenvalues (so that there

exists t with exp(itH) = 1) the system is periodic and the paths of the zeros

follow a closed curve.

A brief introduction on quantum systems on a circle [46–53] is also given,

where the phase space is [0, 2π]× Z. Basic concepts in this phase space are

described. Using Theta functions, an analytic representation on a circle is

defined. Coherent states on a circle [54–58] are studied. Finally, the Wigner

and Weyl functions [59] on these systems are discussed.

Our results can be used in order to describe a mathematical formalism

of qudits, based on the dimension of d. Qudits are the building blocks of

quantum mechanics. Moreover, our results can be used in order to study the

mesoscopic rings. Also, these results can be used in the theory of harmonic

analysis as well as in the theory of analytic functions.

1.1 Structure of the thesis

This thesis consists of ten chapters. The first chapter gives an introduction

to this thesis.

In chapter two the definition and some properties of theta functions are

2



CHAPTER 1. INTRODUCTION

considered.

In chapter three, some basic concepts of quantum mechanics in infinite

Hilbert space are considered. Two of the most important functions Wigner

and Weyl functions in phase space R× R are studied. Then, the Bargmann

functions and Bargmann operators are investigated in the same context.

In chapter four, a brief introduction to finite quantum systems is given.

Some important tools in the context of finite systems are examined. The

Wigner and Weyl functions in phase space Z(d)× Z(d) are considered.

In chapter five some basic concepts on quantum systems on a circle S are

introduced. The Wigner and Weyl functions on S are also considered.

Chapter six examines an analytic representation in finite quantum sys-

tems. An analytic representations in terms of coherent states is also defined.

We study some properties of this analytic representation. Also, the zeros

of analytic functions are considered. The novel part in this chapter is the

properties of the analytic representation based on coherent states and the

Wigner and Weyl functions.

In chapter seven, various examples of periodic systems in d−dimensional

Hilbert space are considered and the paths of their zeros are studied. The

novel part in this chapter is the behaviour of the paths of the zeros using

different Hamiltonians.

In chapter eight, an analytic representation for systems on a circle S is

defined. Also, an analytic representation using coherent states is studied.

Some important properties of this analytic representation is studied. The

novel part in this chapter is the properties of the analytic representation

based on coherent states as well as the Wigner and Weyl functions.

3



CHAPTER 1. INTRODUCTION

In chapter nine, a discussion of this thesis is given.

4



Chapter 2

Mathematical tools

2.1 Definition

The Jacobian theta function is given by

Θ3 [u; τ ] =
∞∑

n=−∞

exp
(
2inu+ iπτn2

)
(2.1)

2.1.1 Properties

Theta function obeys the following quasi-periodicity properties

Θ3[u; τ ] = Θ3[u+ π; τ ] (2.2)

Θ3[u; τ ] = Θ3[u+ πm+ πnτ ; τ ] exp
(
2inu+ iπτn2

)
(2.3)

5



CHAPTER 2. MATHEMATICAL TOOLS

and

Θ3[u; τ ] = (−iτ)−1/2 exp

(
u2

iπτ

)
Θ3

[
u

τ
;−1

τ

]
. (2.4)

Another important property of theta function is the following

Θ3[u; τ ] = Θ3[−u; τ ]. (2.5)

Also, since the τ in our analytic representation is imaginary then

[Θ3[u; τ ]]∗ = Θ3[u∗; τ ]. (2.6)

The last property is valid only when τ is imaginary number. In our case the

following theta function is considered

Θ3

[
πm

d
− z π

L
;
i

d

]
(2.7)

Using Eqs.(2.1), (2.7) it can be concluded that

Θ3 [u; τ ]∗ =
∞∑

n=−∞

exp
[
−2in

(πm
d
− z∗ π

L

)
− π

d
n2
]

=
∞∑

n=−∞

exp
(
−2in

πm

d
+ 2inz∗

π

L
− π

d
n2
)

(2.8)

Using Eq.(2.5) it can be proved that

6



CHAPTER 2. MATHEMATICAL TOOLS

Θ3 [u; τ ]∗ =
∞∑

n=−∞

exp
(

2in
πm

d
− 2inz∗

π

L
− π

d
n2
)

= Θ3

[
πm

d
− z∗ π

L
;
i

d

]
(2.9)

7



Chapter 3

Quantum systems on R

3.1 Introduction

Quantum mechanics [60–62] studies the behaviour of photons, electrons and

other atomics objects. The state of a particle is represented by the wave-

function, which is the solution of the Schrödinger equation. The Hamiltonian

operator H gives the energy of a system which corresponds to the wavefunc-

tion. The time independent Schrödinger equation is given by

HΨ(x) = EΨ(x) (3.1)

In Eq.(3.1) the energy E of the system is the eigenvalues of Hamiltonian H,

while the eigenvectors represent the wavefunction Ψ(x), where x is a position.

The momentum and position operators are denoted by P and X , respectively.

8



CHAPTER 3. QUANTUM SYSTEMS ON R

In the x-representation the momentum and position operators are given by

P = −i~ ∂
∂x

X = x. (3.2)

The commutator of two operators is defined by

[A,B] = AB − BA. (3.3)

The position and momentum operators obey the canonical commutation re-

lation. As a result, these operators do not commute

[X ,P ] = i~. (3.4)

The basic concepts of quantum mechanics, which will be used at later point

are described in this chapter. These include the position and momentum

operators as well as the Fourier transform, as reviewed in Sections 3.2 and

3.3, respectively. In Section 3.4 a brief introduction to the quantum harmonic

oscillator is provided, for the one dimensional case. Furthermore expressions

for special states are given, such as number states and coherent states. The

displaced and parity operators are discussed. In Section 3.5 the Wigner and

Weyl functions are defined. Finally, in Section 3.6 the Bargmann analytic

representations are introduced.

9



CHAPTER 3. QUANTUM SYSTEMS ON R

3.1.1 Dirac notation

The Dirac notation represents the quantum states and their properties. The

quantum state is represented by a ket vector as follows

f ≡ |f〉 (3.5)

and the complex conjugate by a bra vector as follows

f ∗ ≡ 〈f |. (3.6)

3.1.2 Position and momentum operators

Throughout this section, the position X and momentum P operators are

described in more detail. Position and momentum operators are defined in

Eq.(3.4).

Position and momentum operators are Hermitian, hence their eigenvalues are

real

X|a〉x = a|a〉x

P|b〉p = b|b〉p, a, b ∈ R. (3.7)

where |a〉x and |b〉p denotes position and momentum states, respectively.

From Eq.(3.7) the position and momentum operators can only take real val-

ues. As a result, the phase space is R× R.

The eigenstates |a〉x and |b〉p form improper orthogonal bases in Hilbert

10



CHAPTER 3. QUANTUM SYSTEMS ON R

space, therefore

x〈a|b〉x = δ(a− b)

p〈γ|δ〉p = δ(γ − δ). (3.8)

where δ(x) is the Dirac delta function.

The position and momentum eigenstates, have an important property called

as completeness, which is given by

∫ ∞

−∞
dx|x〉x x〈x| = 1

∫ ∞

−∞
dp|p〉p p〈p| = 1.

(3.9)

Using these resolutions of identity, an arbitrary state |f〉 can be written in

terms of position and momentum states as follows

|f〉 =

∫ ∞

−∞
dx|x〉x x〈x|f〉, (3.10)

and assuming that x〈x|f〉 = f(x), then

|f〉 =

∫ ∞

−∞
dx|x〉x f(x). (3.11)

The corresponding expression for momentum states are

|g〉 =

∫ ∞

−∞
dp|p〉p p〈p|g〉, (3.12)

11



CHAPTER 3. QUANTUM SYSTEMS ON R

assuming that p〈p|g〉 = g(p), then

|g〉 =

∫ ∞

−∞
dp|p〉p g(p). (3.13)

Since, the particle can be found anywere in the space, the probability to find

the particle in the space is calculated by

∫ ∞

−∞
dx|f(x)|2 = 1 (3.14)

where |f(x)|2 is the position probability density. The corresponding relation

for the momentum is given by

∫ ∞

−∞
dp|g(p)|2 = 1 (3.15)

where |g(p)|2 is the momentum probability density.

3.2 Fourier transform

The Fourier transform [63] is defined by

G(x) =

∫ ∞

−∞
dpF (p) exp(−2iπxp) (3.16)

G(x) is the Fourier transform of F (p), where p represents momentum and x

position, respectively. Also, for G(x), the inverse Fourier transform is

F (p) =

∫ ∞

−∞
dxG(x) exp(2iπxp). (3.17)

12



CHAPTER 3. QUANTUM SYSTEMS ON R

The Fourier transfrom can be written in terms of Fourier operator, which is

defined as

F =

∫ ∞

−∞
dη|η〉x p〈η| (3.18)

Then,

F|x〉x = |x〉p, F|x〉p = | − x〉x

F †XF = P , F †PF = −X (3.19)

and

F4 = 1. (3.20)

Based on Parseval’s theorem, the integral of the absolute value of the square

of a function F (x) is equal to the integral of the absolute value of the square

of the transform F(x),

∫ ∞

−∞
dx|F (x)|2 =

∫ ∞

−∞
dx|F(x)|2. (3.21)

The Fourier transform of position and momentum states is given by

|x〉x =
1√
2π

∫ ∞

−∞
dp exp(ixp)|p〉p

|p〉p =
1√
2π

∫ ∞

−∞
dx exp(−ixp)|x〉x. (3.22)

The inner product of these states is given by

x〈x|p〉p =
1

2π
exp(−ixp). (3.23)

13



CHAPTER 3. QUANTUM SYSTEMS ON R

The wavefunction of position states can be expressed in terms of the wave-

function of momentum states using Fourier transfrom and vice versa. These

equations are given by

f(x) =
1√
2π

∫ ∞

−∞
dp exp(ixp)f(p)

g(p) =
1√
2π

∫ ∞

−∞
dx exp(−ixp)g(x). (3.24)

3.3 Quantum Harmonic oscillator

The wavefunction of the system is evaluated by solving the Schrödinger equa-

tion, using the potential of the harmonic oscillator. Assuming an one dimen-

sional harmonic oscillator, the potential energy of the system in position x

is given by

U(x) =
1

2
x2. (3.25)

The Hamiltonian operator is given by

H =
1

2
P2 +

1

2
X 2 (3.26)

where ~ = m = ω = 1. Applying the potential energy of harmonic oscillator

Eq.(3.26) in time indepentent Schrodinger equation (Eq.(3.1)), leads to

[
−1

2

∂2

∂x2
+

1

2
x2

]
Ψ(x) = EΨ(x) (3.27)

14



CHAPTER 3. QUANTUM SYSTEMS ON R

The solution of Eq.(3.27) is

Ψn(x) =

(
2n
√
π

n!

)
Hn(x) exp

(
−1

2
x2

)
(3.28)

where Hn(x) is any Hermite polynomial and is given by

Hn(x) = (−1)n exp
(
x2
) ∂n

∂xn
exp

(
−x2

)
=

(
2x− ∂

∂x

)n
. (3.29)

At this point, using Eq.(3.26) the creation and destruction operators are

introduced and are given by

a† =

√
1

2
(X − iP)

a =

√
1

2
(X + iP) . (3.30)

There is a canonical communication relation between the creation and de-

struction operators which is

[a, a†] = 1. (3.31)

The state|0〉 is defined using the destruction operator in Eq.(3.30)

a|0〉 = 0; 〈0|0〉 = 1. (3.32)

The |0〉 is the vacuum state.

The number operator is defined, using the operators given in Eq.(3.30), as

follows

N = a†a. (3.33)

15
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Hence, the Hamiltonian operator is written, in terms of number operator as

follows

H =
1

2

(
aa† − a†a

)
= N +

1

2
1. (3.34)

3.3.1 Number states

The number operator is symbolized by N and is given in Eq.(3.33). The

number states are defined by

|n〉 = (a†)nn!−1/2|0〉

N |n〉 = n|n〉. (3.35)

When the creation and destruction operators act on number states, the result

is evaluated by

a|n〉 =
√
n|n− 1〉; a†|n〉 =

√
n+ 1|n+ 1〉. (3.36)

The scalar product of two number states |n〉, |m〉 is equal to δnm, which is

also equal to the Kronecker delta function,

〈n|m〉 = δnm. (3.37)

The number eigenstates form a complete set, therefore

∞∑

n=0

|n〉〈n| = 1. (3.38)
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3.4 Displacement and parity operators

The displacement operator of the harmonic oscillator in the x − p phase-

space is symbolized by D(z) and is defined as

D(z) = exp(za† − z∗a); z ∈ C. (3.39)

where z = zR + izI . A coherent state can be defined when the displacement

operator acts on the vacuum state, as follows

|z〉 = D(z)|0〉. (3.40)

The definition of the parity operator arround the origin is the following

P0 =

∫ ∞

−∞
dp| − p〉p p〈p| =

∫ ∞

−∞
dx| − x〉x x〈x|. (3.41)

When the parity operator acts on position or momentum states then

P0|x〉x = | − x〉x; P0|p〉p = | − p〉p. (3.42)

The displaced parity operator is symbolized by P(z) and is described as

P(z) = D(z)P0[D(z)]†. (3.43)
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3.4.1 Coherent states

The coherent states are functions of the z variable, which runs throughout the

entire complex plane. These coherent states are also called Glauber states,

which are given by the expressions

|z〉 = π−1/2 exp

(
1

2
|z|2
) ∞∑

n=0

an

(n!)−1/2
|n〉

= π−1/2 exp

(
1

2
|z|2
) ∞∑

n=0

(
aa†
)n

n!
|0〉

= π−1/2 exp

(
1

2
|z|2
)

exp
(
aa†
)
|0〉. (3.44)

Alternatively, the coherent state is defined as

a|z〉 = z|z〉. (3.45)

The resolution of unity for coherent states is given by

1

2π

∫

C
d2z|z〉〈z| = 1 (3.46)

where d2z = dzrealdzimag and C is the complex plane.

An arbitrary state |q〉 is given in terms of coherent state as

|q〉 =
1

2π

∫

C
d2z|z〉〈z|q〉. (3.47)
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The scalar product of two coherent states can be found using the definition

of coherent state

〈z|z1〉 = π−1 exp

(
z∗z1 −

1

2
|z|2 − 1

2
|z1|2

)
(3.48)

The scalar product of position and coherent states is equal to

x〈x|z〉 = π−1/4 exp

(
−1

2
x2 +

√
2zx− zzR

)
. (3.49)

The scalar product of coherent and momentum states can be found using

Fourier transform and is given by

p〈p|z〉 = π−1/4 exp

(
−1

2
p2 + i

√
2zp− zzR

)
. (3.50)

3.5 Wigner and Weyl functions

Wigner functions were found by E.Wigner in 1932. They are quasiprobabil-

ity distribution functions in the phase space. The Wigner function for the

density operator ρ is given by

W (ρ;x, p) = Tr[ρP(z)]. (3.51)
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Using this definition the following significant properties regarding the quan-

tum states can be derived

W (ρ;x, p) =
1

2π

∫ ∞

−∞
dX exp(ipX)〈x− 1

2
X|ρ|x+

X

2
〉

=
1

2π

∫ ∞

−∞
dP exp(iPx)〈p− 1

2
P |ρ|p+

P

2
〉 (3.52)

X and P are the position and the momentum variables, respectively. The

Weyl function is given in terms of displacement operator

W̃ (ρ;X,P ) = Tr[ρD(z)]. (3.53)

Moreover, Weyl functions can be defined by a density operator which is

described as

W̃ (ρ;X,P ) =

∫ ∞

−∞
dx exp(iPx)〈x− 1

2
X|ρ|x+

X

2
〉

=

∫ ∞

−∞
dp exp(−ipX)〈p− 1

2
P |ρ|p+

P

2
〉. (3.54)

The Weyl function is derived using the two dimensional Fourier transform

within the Wigner functions, as follows

W (x, p) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
dXdP W̃ (X,P ) exp [−i (Xp− Px)] . (3.55)

The Wigner function for a coherent state |z〉 is given in terms of

W (z;x, p) =
1

π
exp

[
−
(
x−
√

2zR

)
−
(
p−
√

2zI

)]
. (3.56)
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Eq.(3.56) is proved using Eq.(3.52).

The Weyl function for a coherent state |z〉 is given in terms of

W̃ (z;X,P ) = exp

[
−1

4

(
X2 + P 2

)
+ i
√

2 (XzI − PzR)

]
. (3.57)

Eq.(3.57) is proved using Eq.(3.54).

Fig.(2.1) shows the real part of Weyl function of the state |1+i〉. In Fig.(2.2),

the imaginary part of Weyl functions of the state |1 + i〉 is presented. In

Fig.(2.3) the absolute value of Weyl function of the same state is shown. In

Fig.(2.4) the Wigner function of this state, is plotted.
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Figure 3.1: Real part of Weyl function of state |1 + i〉 using Eq.(3.57)
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Figure 3.2: Imaginary part of Weyl function of state |1 + i〉 using Eq.(3.57)
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Figure 3.3: Absolute value of Weyl function of state |1 + i〉 using Eq.(3.57)
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Figure 3.4: Wigner function of state |1 + i〉 using Eq.(3.56)
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3.6 Bargmann analytic representation

In this section, the Bargmann analytic function in a complex plane is inves-

tigated, which is defined by a coherent state. The space of these functions

is defined as the space of the entire functions with no singularities. Further-

more, the kernel operator of a Bargmann function is discussed.

Let |r〉 be an arbitrary state

|r〉 =
∞∑

m=0

rm|m〉 (3.58)

and the normalization condition is shown below

∞∑

m=0

|rm|2 = 1. (3.59)

The following notation is used

〈r| =
∞∑

m=0

r∗m〈m|; |r∗〉 =
∞∑

m=0

r∗m|m〉. (3.60)

The state |r〉, can be expressed in terms of the Bargmann representation as

r(z) = exp

(
1

2
|z|2
)
〈z∗|r〉 =

∞∑

m=0

rnz
n

n!1/2
(3.61)

Using Eq.(3.46) an arbritrary state |r〉 can be expressed as follows

|r〉 =
1

2π

∫

C
d2z exp

(
−1

2
z2

)
r(z)|z∗〉 (3.62)

26



CHAPTER 3. QUANTUM SYSTEMS ON R

The scalar product of two states is given by

〈r1|r2〉 =
1

π

∫

C
d2zr∗1(z)r2(z) exp

(
−|z|2

)
(3.63)

which can be proved by using the resolution of identity of coherent states.

The creation and destruction operators in terms of Bargmann analytic rep-

resentation are represented by

a→ ∂z

a† → z. (3.64)

The Bargmann analytic function can be expressed in terms of the wavefunc-

tion of position states as

∫

C
dzIr(z) exp

(
−1

2
z2
I

)
= 21/2π3/4 exp

(
1

4
z2
R

)
rx

(
− 1√

2
zR

)
(3.65)

while in the case of the momentum wavefunction is equal to

∫

C
dzRr(z) exp

(
−1

2
z2
R

)
= 21/2π3/4 exp

(
1

4
z2
I

)
rp

(
− 1√

2
zI

)
(3.66)

3.6.1 Operators of Bargmann function

Operators in the Bargmann formalism are represented as

L(z, w∗;L) = exp

(
1

2
|z|2 +

1

2
|w|2

)
〈z∗|L|w∗〉 =

∞∑

m,n=0

Lmnzm(w∗)n (3.67)
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where L is an arbitrary operator with the matrix elements Lmn = 〈n|L|m〉.

The kernel L is an analytic function with repsect to z, w∗.

An arbritrary state L|r〉 can be expressed in terms of kernel as follows

L|r〉 =
1

2π

∫

C
d2w exp

(
−|w|2

)
L(z, w∗;L)r(w). (3.68)

When the arbitrary operator L is equal to 1, then the result of this kernel is

L(z, w∗,1) = exp(zw∗), (3.69)

and when L(z, w∗,1) acts on a state, the result is equal to the same state

r(z) =
1

2π

∫

C
d2w exp(−|w|2 + wz∗)r(w). (3.70)

3.7 Discussion and Conclusion

In this chapter, a brief introduction of the phase space methods on Hilbert

space for a particle on the real line R is given. The phase space in this

formalism is R × R. Therefore the position and momenta belongs to R.

Furthermore, the Fourier transform on the infinite-dimensional Hilbert space

is defined. Some special states such as number and coherent states, as well as

displaced and parity displaced operators are studied. Hence, two of the most

important functions in this phase space, which are the Wigner and Weyl

functions, are defined. Finally, Bargmann analytic representations and the

Hilbert space of Bargmann functions are considered in the complex plane, as

defined by Glauber coherent states.
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Chapter 4

Quantum systems on Z(d)

4.1 Introduction

In this chapter, finite systems in d-dimensional Hilbert space are introduced.

It is known that in d dimensional Hilbert space a different formalism is used

when d is an odd or even integer number. Here, it is assumed that d is

an odd integer, which means that the inverse modulo 2, (2−1), exists. The

existense of 2−1 is used in several formulae. Some basic definitions are given

in finite Hilbert space which will be used at a later point. Sections 4.2 and 4.3

introduce the Fourier transform and the position and momentum operators

in a toroidal lattice Z(d) × Z(d), where Z(d) is the set of integers modulo

d. Hence, the phase space in finite quantum systems is clearly the toroidal

lattice Z(d) × Z(d). In Section 4.4, the displacement and parity operators

in finite quantum systems are examined. Furthermore, in Section 4.5 the

Wigner and Weyl functions in d- dimensional Hilbert space are investigated.
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4.2 Position and momentum states

The position states are denoted by |m〉x where the values of m ∈ Z(d),

forming an orthonormal basis in L2(Z(d)). It obeys the following relations

x〈m|n〉x = δ(n,m);
d−1∑

n=0

|n〉x x〈n| = 1. (4.1)

The momentum states are stated by |m〉p and they form an orthonormal

basis in L2(Z(d)). The corresponding relations are

p〈m|n〉p = δ(n,m);
d−1∑

n=0

|n〉p p〈n| = 1 (4.2)

where δ(n,m) is the Kronecker delta. These identities are proved using the

following identity

1

d

d−1∑

m=0

ω[m(k − l)] = δ(k, l) (4.3)

where ω(b) = exp(2iπb
d

); b ∈ Z(d).

Position and momentum operatros in finite system are described as

Xf =
d−1∑

m=0

m|m〉x x〈m|

Pf =
d−1∑

m=0

n|n〉p p〈n|. (4.4)

The index ’f ’ denotes finite Hilbert space.
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4.3 Fourier Transform

The definition of finite Fourier transform is the following

Ff =
1√
d

d−1∑

m,n=0

ω(nm)|m〉x x〈n| (4.5)

and the finite Fourier operator obeys the following properties

FfF †f = F †fFf = 1

F4
f = 1. (4.6)

The relation between position and momentum states is calculated by ap-

plying the finite Fourier transform onto the position states, resulting in the

momentum states

|n〉p = Ff |n〉x =
1√
d

d−1∑

m=0

ω(nm)|m〉x. (4.7)

Subsequently, the position/momentum operators in terms of momentum/position

operators, respectively, are derived using the finite Fourier transform, as fol-

lows

−Xf = FfPfF †f

Pf = FfXfF †f . (4.8)

31



CHAPTER 4. QUANTUM SYSTEMS ON Z(D)

4.4 Displacement and parity operators

The position and momentum eigenvalues belongs to Z(d). As a result, the

phase space is the toroidal lattice Z(d) × Z(d). In this phase space the dis-

placemt operators are desccribed by

Xf = exp

[
i
2π

d
Uf
]

; Pf = exp

[
−i2π

d
Vf
]
. (4.9)

Operators Xf and Pf are parts of displacement operator between the X and

P axes in Z(d) × Z(d) phase space. There are two useful relations among

these operators

X d
f = Pdf = 1; X b

fPaf = PafX b
fω(−ab). (4.10)

where a, b ∈ Z(d).

When these operators act on position and momentum states, the result is

equal to

X b
f |m〉x = |m+ b〉x; Paf |m〉p = |m+ a〉p

Paf |m〉x = ω(am)|m〉x; X b
f |m〉p = ω(−mb)|m〉p. (4.11)

The definition of displacement operator in finite systems is

Df (a, b) = PafX b
fω
(
−2−1ab

)
= X b

fPafω(2−1ab) (4.12)
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where 2−1 is 2 inverse. The complex conjugate of displacement operator is

[Df (a, b)]† = Df (−a,−b).

When the displacement operator acts on position or momentum states, the

result is

Df (a, b)|m〉x = ω
(
2−1ab+ am

)
|m+ b〉x

Df (a, b)|m〉p = ω
(
−2−1ab− am

)
|m+ a〉p. (4.13)

The definitions of operators Xf and Pf can be used to prove that

Df (a, b)Df (c, d) = Df (a+ c, b+ d)ω
[
2−1(ad− bc)

]
. (4.14)

The displaced Fourier operator is defined as

Ff (a, b) = Df (a, b)FfD†f (a, b) = ω
[
2−1(a2 + b2)

]
FfDf (−a−b, a−b). (4.15)

Eq.(4.15) is proved using the following relation

FfDf (a, b)F †f = Df (b,−a). (4.16)

The parity operator around the origin is defined as

Pf (0, 0) = F2
f ; [Pf (0, 0)]2 = 1. (4.17)
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When the parity operator acts on position or momentum states then

Pf (0, 0)|m〉x = | −m〉x; Pf (0, 0)|m〉p = | −m〉p. (4.18)

The displaced parity operator is given in terms of the displacement operator

as follows

Pf (a, b) = Df (a, b)Pf (0, 0)Df (−a,−b) = Df (2a, 2b)Pf (0, 0)

= Pf (0, 0)Df (−2a,−2b). (4.19)

It is easily seen that

[Pf (a, b)]2 = 1. (4.20)

The marginal properties of the displacement operator in finite systems are

1

d

d−1∑

a=0

Df (a, b) = |2−1b〉x x〈−2−1b|

1

d

d−1∑

b=0

Df (a, b) = |2−1a〉p p〈−2−1a|

1

d

d−1∑

a,b=0

Df (a, b) = Pf (0, 0). (4.21)

The first two properties are proved by multiplying both sides by position and

momentum states, respectively. The third one is proved from the first with

the extra summation
∑d−1

b=0 .

Similarly, the marginal properties of the displacement parity operator in the
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d− dimensional Hilbert space are

1

d

d−1∑

a=0

Pf (a, b) = |b〉x x〈−b|

1

d

d−1∑

b=0

Pf (a, b) = |a〉p p〈−a|

1

d

d−1∑

a,b=0

Pf (a, b) = 1. (4.22)

The marginal properties of the displaced parity operator are proved in a sim-

ilar way to that of the marginal properties of the displacement operator.

The relation between the displaced parity operator in terms of the displace-

ment operator and vice versa, given by

Pf (γ, δ) =
1

d

d−1∑

a,b=0

Df (a, b)ω(bγ − aδ)

Df (a, b) =
1

d

d−1∑

a,b=0

Pf (γ, δ)ω(−bγ + aδ). (4.23)

4.5 Wigner and Weyl functions in finite

systems

The Wigner function is defined as

W (ρ; a, b) = Tr[ρPf (a, b)] (4.24)

where ρ is a density operator. When the operator ρ is Hermitian the Wigner

function can only take real values. In comparison, for a non-Hermitian op-
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erator the Wigner function can take complex values, as well.

Substituting the displaced parity operator into the definition of the Wigner

function it concluded

W (ρ; a, b) =
d−1∑

m=0

ω(−2am+ 2ab) x〈m|ρ|2b−m〉x. (4.25)

The Weyl function is defined as

W̃ (ρ; a, b) = Tr[ρDf (a, b)]

=
d−1∑

m=0

ω
(
am+ 2−1ab

)
x〈m|ρ|b+m〉x. (4.26)

As an example we consider the state in five dimensional Hilbert space

|q〉 =
1

3.09
[1|0〉x + (2− i)|1〉x + i|2〉x]

+
1

3.09
[(1 + 0.5i)|3〉x + (1.2 + 0.7i)|4〉x] . (4.27)

In Fig.(3.1) the real part of the Weyl function of the state |q〉 is demon-

strated. In Fig.(3.2), the imaginary part of the Weyl functions of this state

is presented. In Fig.(3.3) the absolute value of the Weyl function of the same

state is shown. In Fig.(3.4) the Wigner function of the pure state |q〉 when

d = 5 can be seen. Due to the fact that ρ is Hermitian, the Wigner function

can only take real values.

From the Figs.(4.1-4.4) it shows the fact that a, b ∈ Z. From the Fig.(4.4)

it can be observed that the Wigner function can get also negative values.
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Figure 4.1: Real part of Weyl function of a pure state in Eq.(3.27), for d = 5
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Figure 4.2: Imaginary part of Weyl function of a pure state in Eq.(3.27), for
d = 5
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Figure 4.3: Absolute value of Weyl function of a pure state in Eq.(3.27), for
d = 5
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Figure 4.4: Wigner function of a pure state in Eq.(3.27), for d = 5

40



CHAPTER 4. QUANTUM SYSTEMS ON Z(D)

4.5.1 Marginal properties of Weyl and Wigner func-

tions

The marginal properties of Wigner function are

1

d

d−1∑

b=0

W (ρ; a, b) = p〈a|ρ|a〉p

1

d

d−1∑

a=0

W (ρ; a, b) = x〈b|ρ|b〉x (4.28)

The marginal properties of the Weyl function are

1

d

d−1∑

b=0

W̃ (ρ; a, b) = p〈−2−1a|ρ| − 2−1a〉p

1

d

d−1∑

a=0

W̃ (ρ; a, b) = x〈−2−1b|ρ| − 2−1b〉x (4.29)

4.6 Discussion and Conclusion

In this chapter, the quantum systems in Z(d) are considered. The phase space

is the toroidal lattice Z(d)×Z(d), therefore the eigenvalues of the position and

mometum operators are integers modulo d. Moreover, the Fourier transform

and the displacement operator in the finite Hilbert space are defined. The

Wigner and Weyl functions in this phase space, are defined.
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Chapter 5

Quantum systems on S

5.1 Introduction

In this chapter, some basic concepts of quantum systems on a circle are

presented. The position and momentum eigenvalues belongs to [0, 2π] × Z,

respectively. Hence, the phase space is [0, 2π]×Z. In Section 5.1 the Fourier

transform and the position and momentum operators are introduced. In

Section 5.2 the displacement operators are considered. Finally, in the last

Section, 5.3, Wigner and Weyl functions on S are defined.
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5.2 Position and momentum operators on a

circle S

The wavefunction υ(x) on a circle S is periodic and is given by

υ(x+ 2π) = υ(x); x ∈ [0, 2π] (5.1)

with normalization condition

1

2π

∫ 2π

0

dx|υ(x)|2 = 1 (5.2)

assuming that the radius of a circle S is equal to 1.

The position and momentum operators on a circle are denoted by Xc and Pc,

respectively, and they are defined as

Xc =
1

2π

∫ 2π

0

dx x|x〉〈x|

Pc =
∞∑

N=−∞

N |N〉p p〈N |. (5.3)

The index ’c’ denotes systems on a circle S.

Using the Fourier transform, the wavefunction υ(x) can be written as

υ(x) =
∞∑

N=−∞

υN exp(iNx) (5.4)
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where N ∈ Z, and the inverse Fourier transform is given by

υN =
1

2π

∫ 2π

0

dx exp(−iNx)υ(x). (5.5)

Let υ(x) be the position representation of a state |υ〉, then Eq.(5.4) can be

written as

〈x|υ〉 =
∞∑

N=−∞

〈N |υ〉 exp(iNx) (5.6)

and υN be a momentum representation of the same state, then Eq.(5.5) can

be written as

p〈N |υ〉 =
1

2π

∫ 2π

0

〈x|υ〉 exp(−iNx)dx. (5.7)

Let |x〉 and |N〉p be position and momentum states on S, respectively, using

Eqs.(5.6), (5.7) it can be concluded that

|x〉 =
∞∑

N=−∞

exp(−iNx)|N〉p

|N〉p =
1

2π

∫ 2π

0

dx exp(iNx)|x〉. (5.8)

The scalar product of position states is equal to

〈x|ψ〉 = 2πδc(x− ψ) (5.9)
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where δc(x− ψ) is Dirac comb delta function and it is defined as follows

δc(x− ψ) =
1

2π

∞∑

N=−∞

exp [iN(x− ψ)] . (5.10)

The scalar product of the momentum states is given by

p〈K|N〉p = δKN . (5.11)

The resolution of identity for position and momentum states is given by

1

2π

∫ 2π

0

dx |x〉〈x| = 1

∞∑

N=−∞

|N〉p p〈N | = 1. (5.12)

5.3 Displacement and displaced parity oper-

ators on S

The displacement operator on S is denoted by Dc(α,N) and is given by

Dc(α,N) = exp

(
−iαN

2

)
exp (iNXc) exp (−iαPc) . (5.13)

where α ∈ [0, 2π] and N ∈ Z.

When the displacement operator acts on a position eigenstate the result is

Dc(α,N)|x〉 = exp
[
iN
(
x+

α

2

)]
|x+ α〉 (5.14)
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while when acting on momentum states the result is

Dc(α,N)|K〉p = exp

(
−iNα

2

)
exp(−iαK)|N +K〉p. (5.15)

The displacement operator obeys the following relations

[Dc(α,N)]∗ = Dc(−α,−N)

Dc(α,N)Dc(α1, K) = Dc(α + α1, K +N) exp

[
i

2
(Nα1 −Kα)

]

D(α + 2π,N) = (−1)NDc(α,N). (5.16)

The parity operator around the origin is denoted by Pc(0, 0) and it is defined

as follows

Pc(0, 0) =
1

2π

∫ 2π

0

dα | − α〉x x〈α|

Pc(0, 0) =
∞∑

N=−∞

| −N〉p p〈N |. (5.17)

The parity operator obeys the following relations

Pc(0, 0) = Pc(0, 0)†

Pc(0, 0)2 = 1. (5.18)

The parity operator can be written in terms of displacement operator as

follows

Pc(0, 0) =
1

2π

∞∑

N=∞

∫ 2π

0

dα Dc(α, 2N). (5.19)
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In order to prove Eq.(5.19), Eq.(5.20) is used

1

2π

∫ 2π

0

dα Dc(α,N) = | − 2N〉p p〈2N |. (5.20)

Using Eq.(5.17) and inserting an extra
∑

N into Eq.(5.20), Eq.(5.19) is de-

rived.

The displaced parity operator is denoted by Pc(α,N) and it is given by

Pc(α,N) = Dc(α,N)Pc(0, 0)

= Pc(0, 0)Dc(−α,−N). (5.21)

The displaced parity operator obey the following relation

Pc(α + 2π,N) = (−1)NPc(α,N). (5.22)

The displaced parity operator is related through the Fourier transform with

the displacement operator as follows

Pc(α,N) =
1

2π

∞∑

M=∞

∫ 2π

0

dβ Dc(β,N + 2M) exp

(
i

2
Nβ − iMα− i

2
αN

)

(5.23)

Eq.(5.23) is proved by multypling the left and right hand sides of Eq.(5.19)

by Dc(α,N) and using Eq.(5.21).
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5.4 Wigner and Weyl functions for systems

on a circle

The Wigner function [49] on a circle is defined as

W (ρ;α,N) = Tr[ρPc(α,N)]; α ∈ [0, 2π], N ∈ Z; (5.24)

where ρ is a density operator. It can be proved that the Wigner function can

get only real values. If ρ is not Hermitian then the Wigner function can get

complex values, as well. Using the definition of the parity displaced operator,

the Wigner function can be written as

W (ρ;x,N) =
1

2π

∫ 2π

0

dα〈x− α|ρ|x+ α〉 exp(2iNα)

=
1

2π

∞∑

K=−∞

〈N +K|ρ|K −N〉 exp(2ixN) (5.25)

where x ∈ [0, 2π], N ∈ Z.

The Weyl function is defined as

W̃ (ρ;α,N) = Tr[ρDc(α,N)] (5.26)

The Weyl function is also given by

W̃ (ρ;α,N) =
1

2π

∫ 2π

0

dx〈x− 1

2
α|ρ|x+

1

2
α〉 exp(iNx)

=
1

2π

∞∑

K=−∞
p〈N +K|ρ|N −K〉p exp

[
−iα

(
N − 1

2
K

)]
.

(5.27)
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The Wigner and Weyl functions are related through the 2−dimensional

Fourier transform as follows

W (α,N) =
1

2π

∞∑

K=∞

∫ 2π

0

dβW̃ (β,N + 2K) exp(−iKα +
i

2
iβN − i

2
αN)

(5.28)

5.5 Conclussion

Overall, the phase space methods on a circle S, are described. Also, the basic

formalism in quantum systems on S is introduced in this chapter. Moreover,

position and momentum states, as well as the Fourier transform on a cirle S

are defined. Lastly, displacement operators are examined, while the Wigner

and Weyl functions are also defined. The definitions which are given in this

chapter are used extensively in the chapter seven of this thesis.
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Chapter 6

Analytic representations for

quantum systems on Z(d) with

Theta functions

6.1 Introduction

An analytic representation of finite quantum systems in a cell S is given.

The number of zeros of the analytic function in a cell S is exactly d,where

the zeros obey the constraint defined in Eq.(6.19). Furthermore, an analytic

representation in terms of d2 coherent states for odd values of d. Wigner and

Weyl functions are also defined. In Section 6.2 the analytic representation in

cell S is presented. In Section 6.3, the zeros of the analytic representation are

considered. In Section 6.4, the analytic representation based on d2 coherent

states, together with their properties, are studied. Meanwhile, in Section

6.5, an analytic representation in terms of a fiducial state F|ψ〉 is defined. In
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Section 6.6, the entropic uncertainty relations for these coherent states are

given and in Section 6.7 Wigner and Weyl functions are given.

6.2 Analytic Representation on a torus

Let |φ〉 be a normalized pure state

|φ〉 =
d−1∑

m=0

φm|m〉x;
d−1∑

m=0

|φm|2 = 1. (6.1)

The following notation shall be used

|φ∗〉 =
d−1∑

m=0

φ∗m|m〉x; 〈φ| =
d−1∑

m=0

φ∗m x〈m|; 〈φ∗| =
d−1∑

m=0

φm x〈m|. (6.2)

The Fourier transform coefficients can be written as

φ̃m = p〈m|φ〉 = x〈m|F †f |φ〉

=
1√
d

d−1∑

m1,n=0

ω(−m1n) x〈m|m1〉x x〈n|φ〉

=
1√
d

d−1∑

n=0

ω(−mn) x〈n|φ〉 =
1√
d

d−1∑

n=0

ω(−mn)φn. (6.3)

The analytic representation of state |φ〉 is defined as follows,

Φ(z) = π−1/4

d−1∑

m=0

φmΘ3

[
2mπ2

L2
− z π

L
;
i2π

L2

]
; L =

√
2πd, (6.4)
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Θ3[u; τ ] is defined as

Θ3[u; τ ] =
∞∑

N=−∞

exp
(
2iNu+ iπτN2

)
(6.5)

and it has the following property

Θ3[u; τ ] = (−iτ)−1/2 exp

(
u2

πiτ

)
Θ3

[
u

τ
;−1

τ

]
. (6.6)

The quasiperiodicity condition of Φ(z) along the real axis is proved by the

use of Eq.(2.2)

Φ(z + L) = Φ(z). (6.7)

The quasiperiodicity condition of Φ(z) along the imaginary axis is proved

using Eq.(2.3)

Φ(z + iL) = Φ(z) exp

(
L2

2
− iLz

)
. (6.8)

The analytic function Φ(z) is defined on a square cell S = [ML, (M +1)L)×

[NL, (N + 1)L) where M, N are integers labelling the square cell S ∈ C.

The scalar product of these two states in terms of their analytic representa-

tions is equal to

〈φ∗1|φ2〉 =
2π

L3

∫

S
d2z exp

(
−z2

I

)
Φ1(z)Φ2(z∗) (6.9)
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and the coefficients φm are

φm =
2π3/4

L3

∫

S
d2z exp

(
−z2

I

)
Θ3

[
2mπ2

L2
− z π

L
;
i2π

L2

]
Φ(z∗)

φ̃m =
2π3/4

L3

d−1∑

n=0

ω(−mn)

∫

S
d2z exp

(
−z2

I

)
Θ3

[
2nπ2

L2
− z π

L
;
i2π

L2

]
Φ(z∗)

(6.10)

where φ̃m are the Fourier transform coefficients in terms of Φ(z).

The orthogonality relation proves the validity of Eq.(6.9) and (6.10), as given

by

2π1/2

L3

∫

S
d2z exp

(
−z2

I

)
Θ3

[
2nπ2

L2
− z π

L
;
i2π

L2

]

×Θ3

[
2mπ2

L2
− z∗ π

L
;
i2π

L2

]
= δ(m,n). (6.11)

Furthermore, the analytic representation of position eigenstates is given by

|m〉x → π−1/4Θ3

[
2mπ2

L2
− z π

L
;
i2π

L2

]
. (6.12)
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The momentum representation is proved according the following steps

|k〉p =

√
2π

L

d−1∑

m=0

ω(km)Θ3

[
2π2m

L2
− z π

L
;
2iπ

L2

]

=
L√
2π

∞∑

n=−∞

exp

(
−2inz

π

L
− 2π

L2
n2

)
2π

L2

d−1∑

m=0

ω(km+ nm)

=
L√
2π

∑

n=−k+dN

exp

(
−2inz

π

L
− 2π

L2
n2

)

=
L√
2π

∞∑

N=−∞

exp

[
2π2

L2
(−k +

L2

2π
N)2 + 2i(−k +

L2

2π
N)z

π

L

]

=
L√
2π

exp

(
−2π2k2

L2
+ 2ikz

π

L

)
Θ3

[
−iπk − zπL

2

4π
; i
L2

2π

]
(6.13)

Eqs.(6.6) and (6.13) are used to define the momentum representation

|k〉p → π−1/4 exp

(
−1

2
z2

)
Θ3

[
2kπ2

L2
− iz π

L
;
i2π

L2

]
. (6.14)

In the following example, assuming that d = 5, the graph of the analytic

function Φ(z) is plotted, using the following coefficients

φ0 = 0.6033− 0.2296i; φ1 = 0.3030 + 0.3469i; φ2 = 0.0854 + 0.0716i;

φ3 = 0.1438 + 0.2450i; φ4 = 0.0937− 0.5189i. (6.15)

In the first two graphs Figs.(5.1), (5.2) the real and the imaginary parts of

the function Φ(z) are demonstrated, respectively, while its absolute value is

shown in Fig.(5.3). From Figs.(5.1-5.3) it can be concluded that the theta

function is a periodic function.
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Figure 6.1: Using the coefficients of Eq.(6.15) the real part of function Φ(z)
is demonstrated, for d = 5
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Figure 6.2: Using the coefficients of Eq.(6.15) the imaginary part of function
Φ(z) is shown, for d = 5.
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Figure 6.3: Using the coefficients of Eq.(6.15) the absolute value of function
Φ(z) is illustrated, for d = 5.
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6.3 Zeros of analytic function

Let ζn be the zeros of analytic function G(z), such as G(ζn) = 0. The first

integral inside the contour γ gives the number of zeros of the function G(z),

while the second integral gives the sum of the zeros of the analytic function

I0 =
1

2πi

∮

γ

dz
G′(z)

G(z)
; I1 =

1

2πi

∮

γ

dz
G′(z)

G(z)
z (6.16)

where G(z) is analytic function and γ is a piecewise continuously differen-

tiable path. The proof has been given in [34,36,37].

The quasiperiodicity conditions are used to observe that the analytic func-

tion Φ(z) has exactly d zeros. This is proved using the following contour

integral inside the cell S

1

2πi

∮

S
dz

Φ′(z)

Φ(z)
= d. (6.17)

The sum of d zeros of Φ(z) obeys the following constraint which is proved

using the quasiperiodicity relations

1

2πi

∮

S
dz

Φ′(z)

Φ(z)
z =

L3

2π
(M + iN) +

L3

4π
(1 + i). (6.18)

As a result, the sum of zeros is given as

d−1∑

ν=1

ζν =
L3

2π
(M + iN) +

L3

4π
(1 + i) (6.19)
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where ζν are the zeros of analytic function Φ(z), such as Φ(ζν) = 0. The

proof has been given in [42,43,45,72].

6.3.1 Construction of the analytic representation from

the zeros

Given that the d zeros, of Φ(z) are denoted by ζν (where ν = 0, 1, 2, .., d−1),

obey the constraint of Eq.(6.19), it is concluded that, knowing d − 1 zeros,

the last zero can be found. A function which has ζν as zeros is considered

y(z) =
d∏

ν=1

Θ3

[
π

L
(z − ζν) +

π(1 + i)

2
; i

]
. (6.20)

It is evident that the entire function Φ(z)
y(z)

has no zeros. Therefore, the expo-

nential of this entire function is given as

Φ(z) = y(z) exp [q(z)] . (6.21)

The periodicity conditions of Φ(z) are used, resulting to

q(z + L) = q(z) + 2iπN

q(z + iL) = q(z) + 2πN + 2πiK (6.22)

where N has an equal value to that of the constraint of Eq.(6.19), K is an

arbitrary integer and q(z) is a polynomial of maximum second degree. This

can be explained by the fact that the order of growth of Φ(z) is equal to 2

and the order of y(z) is equal to 2.
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From the periodicity equation of q(z), it can be found that

q(z) = −π
L
Nzi+ σ. (6.23)

Substituting Eq.(6.23) into Eq.(6.21) and using Eq.(6.20) resulting in

Φ(z) = exp(σ) exp
(
−π
L
Nzi

)
y(z)

= exp(σ) exp
(
−π
L
Nzi

) d∏

ν=1

Θ3

[
π

L
(z − ζν) +

π(1 + i)

2
; i

]
(6.24)

where exp(σ) = C is normalization constant and N belongs to Z.

At this point, a numerical example is considered so that the coefficients φm

are identified and the analytic function is constructed.

In order to find the coefficients φm, d arbitrary numbers z0, z1, ....zd−1 are

inserted, solving one system with d equations and d unknowns. The assump-

tion that the coefficients are normalized is made in this procedure. This is

demonstrated by the equation below

Φ(zn) = π−1/4

d−1∑

m=0

φmΘ3

[
2π2m

L
− zn

π

L
; i

2π

L2

]
. (6.25)

An example when d = 3 is provided below

ζ0 = 2.96 + 2.33i; ζ1 = 2.15 + 2.32i; (6.26)

The third zero is equal to ζ2 = 1.4 + 1.85i, as calculated by the constraint in

Eq.(6.19).

Three arbitrary values 0, 1, 2 together with the values of zeros are substituted
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into Eq.(6.24) so that Φ(0), Φ(1), Φ(2) are calculated. When these values of

Φ(ζn) are inserted into Eq.(6.25), one system with three equations and three

unknowns is derived. In this particular case, the results after solving this

system is the following




φ0

φ1

φ2




=




0.8043 + 0.0899i

0.4188− 0.0281i

0.4073− 0.0542i




(6.27)

6.4 Coherent states for finite systems

Let Ψ(z) be the analytic representation of a fiducial state |ψ〉. At this point,

the analytic representation in terms of d2 states Df (a, b)|ψ〉 is considered. In

the case that the fiducial vector represents either a position or a momentum

state several of the Df (a, b)|ψ〉 differ by a phase factor, and represent the

same physical state. Let |a, b〉 = Df (a, b)|ψ〉 be coherent state for a finite

system.

The fiducial vector can be expanded as in Eq.(6.1), then the scalar product

is given by

〈−a1,−b1|a, b〉 = ω

[
1

2
(ab+ a1b1)− ba1

] d−1∑

n=0

ψ∗n+b−b1ψnω[(a− a1)n]

(6.28)
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Eq.(6.28) is proved according the following steps

〈−a1,−b1|a, b〉 =
d−1∑

m,n=0

ψmψ
∗
n x〈m|Df (a− a1, b− b1)|n〉x

= ω

[
1

2
(ab+ a1b1)− ba1

] d−1∑

n=0

ψ∗n+b−b1ψnω[(a− a1)n]

(6.29)

Definition 1. The analytic function F (z; a, b;ψ) in terms of Df (a, b)|ψ〉 is

defined as follows

F (z; a, b;ψ) = π−1/4

d−1∑

m=0

x〈m|Df (a, b)|ψ〉Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
(6.30)

where a, b ∈ Z(d).

Comparing Eq.(6.30) with Eq.(6.4) it can be concluded that

F (z; 0, 0;ψ) = Ψ(z). (6.31)

Using the properties of Theta functions Eq.(2.2), (2.3) it can be concluded

that this function obeys the quasi-periodicity relations in Eq.(6.7)

F (z + L; a, b;ψ) = F (z; a, b;ψ)

F (z + iL; a, b;ψ) = F (z; a, b;ψ) exp
(
L2 − iLz

)
. (6.32)

The relation between the analytic representation F (z; a, b;ψ) of the co-

herent state |a, b〉 and the analytic representation Ψ(z) of the fiducial vector

|ψ〉 is given by the next proposition.
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Proposition 1.

F (z; a, b;ψ) = exp

(
−2a2π2

L2
+ 2iza

π

L

)
ω
(
−2−1ab

)

×Ψ

(
z + ia

2π

L
− b2π

L

)
(6.33)

Proof. Using Definition 1 and changing M = m− b it can proved that

F (z; a, b;ψ) = π−1/4

d−1∑

M=0

ω
(
2−1ab+ aM

)
ψM

×Θ3

[
2π2(M + b)

L2
− z π

L
; i

2π

L2

]
(6.34)

Using Eq.(6.5) and changing M = m, Eq.(6.34) becomes

F (z; a, b;ψ) = π−1/4ω
(
2−1ab

) d−1∑

m=0

ψm

∞∑

n=−∞

exp

(
4iπ2mn

L2
+

4iπ2ma

L2

)

× exp

(
i4nπ2b

L2
− 2inz

π

L
− 2πn2

L2

)
. (6.35)

Letting N = n+ a, it follows that

F (z; a, b;ψ) = exp

(
−2a2π2

L2
+ 2iza

π

L

)
ω
(
−2−1ab

)

×Ψ

(
z + ia

2π

L
− b2π

L

)
. (6.36)

In Fig.(6.4) the real part of the analytic function F (z; 2, 1;ψ) is shown
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using the following coefficients [73]

ψ0 = 0.14 + 0.42i; ψ1 = 0.91 + 0.79i ψ2 = 0.95 + 0.65i;

ψ3 = 0.03 + 0.84i; ψ4 = 0.93− 0.67i. (6.37)

In Figs.(6.5), (6.6) the imaginary and the absolute value of analytic function

F (z; 2, 1;ψ) are plotted, respectively, using the same coefficients. From the

graphs it can be concluded that the period of the function F (z; 2, 1;ψ) and

the function Φ(z) is the same.
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Figure 6.4: The real part of F (z; 2, 1;ψ) using the coefficients of fiducial
vector in Eq.(6.37) is demonstrated, for d = 5
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Figure 6.5: The imaginary part of F (z; 2, 1;ψ) using the coefficients of fiducial
vector in Eq.(6.37) is presented, for d = 5
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Figure 6.6: The absolute value of F (z; 2, 1;ψ) using the coefficients of fiducial
vector in Eq.(6.37) is illustrated, for d = 5
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Proposition 2. The zeros ζν of analytic function Ψ(z) is related with the

zeros ζν(a, b) of F (z; a, b;ψ) as follows

ζν(a, b) = ζν − i
2πa

L
+

2πb

L
. (6.38)

Proof. Eq.(6.38) is immidiately consequens of Proposition 1.

Proposition 3. The F (z; γ, δ;ψ) is a two-dimensional Fourier transform of

F (−z; γ, δ;ψ)

F (z; γ, δ;ψ) =
2π

L2

d−1∑

a,b=0

ω
(
−2−1bγ + 2−1aδ

)
F (−z; a, b;ψ) (6.39)

Proof. The proof is given in Appendix

Proposition 4. The resolution of identity is given by

2π

L2

d−1∑

a,b=0

F (z; a, b;ψ)F (w; a, b;ψ)]∗ = K(z, w∗) (6.40)

and K(z, w∗) is the reproducting kernel which is equal to

K(z, w∗) = π−1/2

d−1∑

m=0

Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
Θ3

[
2π2m

L2
− w∗ π

L
; i

2π

L2

]

K(z, w∗) = K(w∗, z); K(z, w∗) = K(−z, w∗). (6.41)

K(z, w∗) does not depend on fiducial vector |ψ〉.

Proof. The resolution of identity is based on the following property

2π

L2

d−1∑

a,b=0

Df (a, b)|ψ〉〈ψ|Df (−a,−b) = 1. (6.42)
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Both sides of Eq.(6.42) are multiplied by Θ3[u; τ ] and |m〉x and x〈n|, then

Eq.(6.42) becomes

Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
2π

L2

d−1∑

a,b=0

x〈n|Df (a, b)|ψ〉〈ψ|Df (−a,−b)|n〉x

×Θ3

[
2π2n

L2
− w∗ π

L
; i

2π

L2

]

= Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
x〈n|1|m〉xΘ3

[
2π2n

L2
− w∗ π

L
; i

2π

L2

]
. (6.43)

Taking the summation over n,m leads to

2π

L2

d−1∑

a,b,n,m=0

Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
x〈n|Df (a, b)|ψ〉

×〈ψ|Df (−a,−b)|m〉xΘ3

[
2π2n

L2
− w∗ π

L
; i

2π

L2

]

=
d−1∑

m=0

Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
Θ3

[
2π2m

L2
− w∗ π

L
; i

2π

L2

]
(6.44)

Hence,

2π

L2

d−1∑

a,b=0

F (z; a, b;ψ)F (w; a, b;ψ)∗

= π−1/2

d−1∑

m=0

Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
Θ3

[
2π2m

L2
− w∗ π

L
; i

2π

L2

]
(6.45)

Proposition 5. The reproducing kernel property is

Φ(z) =
2π

L3

∫

S
dα(w)K(z, w∗)Φ(w); dα(w) = d2w exp(−w2

I ) (6.46)
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Proof. In order to prove Eq.(6.46), Eq.(6.41) is substituted into Eq.(6.46)

Φ(z) = π−1/2

d−1∑

m=0

Θ3

[
2π2m

L2
− z π

L
;
i

d

]

×2π

L3

∫

S
dα(w)Θ3

[
2π2m

L2
− w∗ π

L
;
i

d

]
Φ(w) (6.47)

Both sides of Eq.(6.47) are multiplied by 2π3/4

L3 and using Eq.(6.10) it can be

concluded that

Φ(z) = π−1/4

d−1∑

m=0

φmΘ3

[
2π2m

L2
− z π

L
;
i

d

]
= Φ(z). (6.48)

Proposition 6. Φ(z) can be expressed as

Φ(z) =
2π

L2

d−1∑

a,b=0

F (z; a, b;ψ)φ(a, b;ψ)

=
2π

L2

d−1∑

γ,δ=0

F (−z; γ, δ;ψ)φ̃(γ, δ;ψ) (6.49)

where φ(a, b;ψ) is given by

φ(a, b;ψ) = 〈ψ|Df (−a,−b)|φ〉 (6.50a)

=
2π

L3

∫

S
dα(w)[F (w; a, b;ψ)]∗Φ(w). (6.50b)
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and φ̃(γ, δ;ψ) is equal to

φ̃(γ, δ;ψ) = 〈ψ|Df (−γ,−δ)Pf (0, 0)|φ〉 (6.51a)

=
2π

L3

∫

S
dα(w)[F (−w; a, b;ψ)]∗Φ(w). (6.51b)

Proof. Inserting Eq.(6.50a) into Eq.(6.49) and using Eqs.(6.10), (6.42) leads

to

Φ(z) =
2π

L2
π−1/4

d−1∑

a,b,m=0

x〈m|Df (a, b)|ψ〉〈ψ|Df (−a,−b)|φ〉

×Θ3

[
2π2m

L2
− z π

L
;
2πi

L2

]

= π−1/4

d−1∑

m=0

x〈m|φ〉Θ3

[
2π2m

L2
− z π

L
;
2πi

L2

]
= Φ(z). (6.52)

Inserting Eq.(6.50b) into Eq.(6.49) and using Eq.(6.40), it follows that

Φ(z) =
2π

L2

d−1∑

a,b=0

F (z; a, b;ψ)
2π

L3

∫

S
dα(w)[F (w; a, b;ψ)]∗Φ(w)

=
2π

L3

∫

S
dα(w)K(z, w∗)Φ(w) = Φ(z). (6.53)

71



CHAPTER 6. ANALYTIC REPRESENTATIONS FOR QUANTUM
SYSTEMS ON Z(D) WITH THETA FUNCTIONS

Eq.(6.51a) inserting into Eq.(6.49) and changing the variables lead to

Φ(z) =
2π

L2
π−1/4

d−1∑

a,b,m=0

x〈m|Df (a, b)|ψ〉〈ψ|Df (−a,−b)Pf (0, 0)|φ〉

×Θ3

[
2π2m

L2
+ z

π

L
;
2πi

L2

]

= π−1/4

d−1∑

m=0

x〈m|φ〉Θ3

[
2π2m

L2
− z π

L
;
2πi

L2

]
= Φ(z). (6.54)

Inserting Eq.(6.51b) into Eq.(6.49) and using Eq.(6.40), it follows that

Φ(z) =
2π

L2

d−1∑

a,b=0

F (−z; a, b;ψ)
2π

L3

∫

S
dα(w)[F (−w; a, b;ψ)]∗Φ(w)

=
2π

L3

∫

S
dα(w)K(z, w∗)Φ(w) = Φ(z). (6.55)

Proposition 7. The φ̃(γ, δ;ψ) is a two-dimensional Fourier transform of

φ(a, b;ψ)

φ̃(γ, δ;ψ) =
2π

L2

d−1∑

a,b=0

φ(a, b;ψ)ω(−2−1bγ + 2−1aδ). (6.56)

Proof. Eq.(6.56) is proved by inserting Eq.(6.50b) into Eq.(6.56) and using

Eqs.(6.39), (5.57b)

φ̃(γ, δ;ψ) =
4π2

L6

d−1∑

a,b=0

ω(−2−1bγ + 2−1aδ)

∫

S
dα(w) [F (w; a, b;ψ)]∗Φ(w)

=
2π

L3

∫

S
dα(w) [F (−w; γ, δ;ψ)]∗Φ(w) = φ̃(γ, δ;ψ). (6.57)
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Proposition 8. The marginal properties are

2π

L2

d−1∑

a=0

F (z; a, 2b;ψ) = π−1/4ψ−bΘ3

[
2π2b

L2
− z π

L
; i

2π

L2

]

2π

L2

d−1∑

b=0

F (z; 2a, b;ψ) = π−1/4ψ̃−a exp

(
−z

2

2

)
Θ3

[
2π2a

L2
− iz π

L
; i

2π

L2

]

2π

L2

d−1∑

a,b=0

F (z; a, 2b;ψ) = Ψ(−z). (6.58)

where Θ3

[
2π2b
L2 − z πL ; i 2π

L2

]
represents position states and exp

(
− z2

2

)
Θ3

[
2π2a
L2 − iz πL ; i 2π

L2

]

represents momentum states (see Eqs.(6.12), (6.14)).

Proof. The first property can be proved using Eq.(6.34), after taking the

summation over a and applying it to both sides

2π

L2

d−1∑

a=0

F (z; a, 2b;ψ) = π−1/4

d−1∑

m=0

ψm
2π

L2

d−1∑

a=0

ω (ab+ am)

×Θ3

[
2π2 (m+ 2b)

L2
− z π

L
;
2πi

L2

]

2π

L2

d−1∑

a=0

ω (ab+ am) = δ (b,−m) (6.59)

2π

L2

d−1∑

a=0

F (z; a, 2b;ψ) = π−1/4

d−1∑

m=0

ψmΘ3

[
2π2 (m+ 2b)

L2
− z π

L
;
2πi

L2

]

×δ (b,−m)

= π−1/4ψ−bΘ3

[
2π2b

L2
− z π

L
;
2πi

L2

]
. (6.60)
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Applying the Fourier transform into Eq.(6.34), leads to

2π

L2

d−1∑

b=0

F (z; 2a, b;ψ) = π−1/4

d−1∑

k,m,b=0

ψ̃k
2π

L2
ω(ab+ 2am+mk)

×Θ3

[
2π2(m+ b)

L2
− z π

L
;
2πi

L2

]
(6.61)

Since there is a bijective map from Z(d)×Z(d) to Z(d)×Z(d), the variables

m, b are substituted by µ = m+b and λ = m−b. To prove this, it is assumed

that the subsitution is a bijective map for odd values of d, which allows the

use of 2−1. As a result,

2π

L2

d−1∑

b=0

F (z; 2a, b;ψ) = π−1/4 1

d3/2

d−1∑

k,µ=0

ψ̃kω
(
2−13aµ+ 2−1kµ

)

×
d−1∑

λ=0

ω
(
2−1aλ+ 2−1kλ

)
Θ3

[
2π2µ

L2
− z π

L
;
2πi

L2

]

(6.62)

2π

L2

d−1∑

b=0

F (z; 2a, b;ψ) = π−1/4 1

d3/2

d−1∑

k,µ=0

ψ̃kδ(a, k)ω
(
2−13aµ+ 2−1kµ

)

×Θ3

[
2π2µ

L2
− z π

L
;
2πi

L2

]

= π−1/4 1

d3/2
ψ̃−a

d−1∑

µ=0

ω(aµ)Θ3

[
2π2µ

L2
− z π

L
;
2πi

L2

]

= π−1/4 1

d3/2
ψ̃−a exp

(
−z

2

2

)
Θ3

[
2π2a

L2
− z π

L
;
2πi

L2

]
.

(6.63)
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The third property is proved with an extra summation
∑d−1

b=0 and then

2π

L2

d−1∑

a,b=0

F (z; a, 2b;ψ) = π−1/4

d−1∑

b=0

ψ−bΘ3

[
2π2b

L2
− z π

L
;
2πi

L2

]
(6.64)

Changing b = −B, then Eq.(6.64) becomes

2π

L2

d−1∑

a,B=0

F (z; a,−2B;ψ) = π−1/4

d−1∑

b=0

ψBΘ3

[
−2π2B

L2
− z π

L
;
2πi

L2

]

= Ψ(−z). (6.65)

6.5 Analytic representation in terms of co-

herent states using Ff |ψ〉 as a fiducial vec-

tor

Definition 2. The analytic representation of a fiducial vector Ff |ψ〉 is given

by

F(z; a, b;ψ) = π−1/4

d−1∑

m=0

x〈m|Ff (a, b)|ψ〉Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
(6.66)

Using a different fiducial vector, a different set of d2 coherent states is

expected, but in this case the result is the same set of d2 coherent states as

the next proposition indicates.
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Proposition 9.

F

[
z;−1

2
(a− b),−1

2
(a+ b);ψ

]
= ω

[
1

4

(
a2 + b2

)]
exp

(
−z

2

2

)

×F (iz; a, b;ψ). (6.67)

Proof. In order to prove Eq.(6.67), Eq.(3.15) is used

F(z; a, b; f) = π−1/4

d−1∑

m=0

x〈m|F(a, b)|f〉Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
(6.68)

Eq.(3.15) is inserted into Eq.(6.68), then Eq.(6.68) becomes

F(z; a, b;ψ) =

√
2π

L
π−1/4ω

[
2−1

(
a2 + b2

)] d−1∑

m,n=0

x〈n|Df (−a− b, a− b)|ψ〉

×ω(mn)Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
(6.69)

Using Eq.(6.14), it can be concluded that

F(z; a, b;ψ) = π−1/4ω
(
a2
)

exp

(
−1

2
z2
I

) d−1∑

n=0

x〈n− a+ b|ψ〉ω(−an− bn)

×Θ3

[
2π2n

L2
− iz π

L
; i

2π

L2

]

= π−1/4ω
(
a2
)

exp

(
−1

2
z2
I

) d−1∑

n=0

ψn−a+bω(−an− bn)

×Θ3

[
2π2n

L2
− iz π

L
; i

2π

L2

]
(6.70)
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Letting M = n− a+ b it can be concluded that

F(z; a, b;ψ) = π−1/4ω
(
b2
)

exp

(
−1

2
z2
I

) d−1∑

M=0

ψM exp

(
−4iπ2aM

L2

)

×
∞∑

n=−∞

exp

(
−4iπ2bM

L2

4iπ2nM

L2
+

4iπ2an

L2
− 4iπ2bn

L2

)

× exp

(
2zn

π

L
− 2π2

L2
n2

)
(6.71)

Letting N = −a− b+ n

F(z; a, b;ψ) = π−1/4ω
(
a2
)

exp

(
−1

2
z2
I + 2z

π

L
a+ 2z

π

L
b− π

d
(a+ b)2

)

×
d−1∑

M=0

ψM

∞∑

N=−∞

exp

(
4iπ2NM

L2
+

4iπ2aN

L2

)

× exp

(
−4iπ2bN

L2
+ 2z

π

L
N − 4

π2

L2
bN − 2π2

L2
N2 − 2π2

L2
aN

)

(6.72)

Letting a = 1
2
(a+ b) and b = −1

2
(a+ b)

F

[
z;−1

2
(a− b) ,−1

2
(a+ b) ;ψ

]
= ω

[
1

4

(
a2 + b2

)]
exp

(
−z

2

2

)

×F (iz; a, b;ψ). (6.73)
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6.6 Entropic uncertainty relations

The entropic uncertainty relation in a finite systems [65–67] of an arbitrary

state |φ〉 is given in terms of

Sx + Sp − log d ≥ 0 (6.74)

Sx and Sp are described by

Sx = −
d−1∑

m=0

|φm|2 log |φm|2; Sp = −
d−1∑

m=0

|φ̃m|2 log |φ̃m|2. (6.75)

A numerical example is considered, where d = 3. Given a fiducial vector

ψ0 = 0.1890 + 0.1094i; ψ1 = 0.3821− 0.0404i;

ψ2 = 0.4077− 0.0588i. (6.76)

Using this fiducial vector the entropic uncertainties Sx + Sp for the coherent

states Df (a, b)|ψ〉 can be calculated. The results are shown in the matrix

below (the base e was used for the logarithms):

Sx + Sp − ln(d)

a

0 1 2

0 0.1276 0.2845 0.4148

b 1 0.3286 0.3306 0.2613

2 0.1276 0.3305 0.6183
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In the case of Glauber coherent states, the result must be equal to the

minimum possible value. However, several generalized coherent states do not

obey this property, as it happens here.

6.7 Wigner and Weyl functions for finite quan-

tum systems

Wigner and Weyl functions can be represented for an arbitrary state |φ〉 as

W̃ (φ; a, b) = 〈φ|Df (a, b)|φ〉; W (φ; a, b) = 〈φ|Pf (a, b)|φ〉

W (φ; γ, δ) =
d−1∑

a,b=0

ω(βγ − aδ)W̃ (φ; a, b). (6.77)

The Wigner function is given in terms of φ(a, b;ψ) as

W (φ; a, b) =
2π

L2

d−1∑

γ,δ,ε,ζ=0

ω(aδ − bγ + 2−1ζγ − aζ − 2−1εδ + bε)

×φ(ε, ζ;ψ)φ∗(γ, δ;ψ). (6.78)

The Weyl function in terms of φ(a, b;ψ) can be expressed as

W̃ (φ; a, b) =
2π

L2

d−1∑

γ,δ=0

φ(γ, δ;ψ)φ∗(γ − a, δ − b;ψ)ω
[
2−1(aδ − bγ)

]
. (6.79)

Proof. The expression (6.78) for the Wigner function is proved by inserting
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Eq.(6.42) into Eq.(6.77), leading to

W (φ; a, b) =
2π

L2

d−1∑

γ,δ=0

〈φ|Df (γ, δ)|ψ〉〈ψ|Df (−γ,−δ)Pf (a, b)|φ〉 (6.80)

Using Eqs.(6.50a), (6.51a), (6.56), Eq.(6.80) can be written as

W (φ; a, b) =
2π

L2

d−1∑

γ,δ,ε,ζ=0

ω(aδ − bγ + 2−1ζγ − aζ − 2−1εδ + bε)

×φ(ε, ζ;ψ)φ∗(γ, δ;ψ). (6.81)

In order to prove Eq.(6.79) for the Weyl function, Eq.(6.42) is inserted

into Eq.(6.79)

W̃ (φ; a, b) =
2π

L2

d−1∑

γ,δ=0

〈φ|Df (γ, δ)|ψ〉〈ψ|Df (−γ,−δ)Df (a, b)|φ〉 (6.82)

Using Eq.(6.50a), Eq.(6.82) can be written as

W̃ (φ; a, b) =
2π

L2

d−1∑

γ,δ=0

φ(γ, δ;ψ)φ∗(γ − a, δ − b;ψ)ω
[
2−1(aδ − bγ)

]
(6.83)

An example with the following pure state |ψ〉 for d = 5 is considered.

|ψ〉 =
4∑

m=0

ψm|m〉x; ψ0 = 0.6822 + 0.2762i; ψ1 = 0.4959− 0.0323i;

ψ2 = 0.4016− 0.1597i ψ3 = 0.1016− 0.0921i; ψ4 = 0.044 + 0.0535i;

(6.84)
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Fig.(5.7) shows the real part of the Weyl function of the state of Eq.(6.84).

In Fig.(5.8), the imaginary part of the Weyl functions of the state of Eq.(6.84)

is presented. In Fig.(5.9) the absolute value of the Weyl function of the same

state is shown. In Fig.(5.10) the Wigner function for the state of Eq.(6.84),

is demonstrated.
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Figure 6.7: Real part of Weyl function of the coefficients of Eq.(6.84)
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Figure 6.8: Imaginary part of Weyl function of the coefficients of Eq.(6.84)

83



CHAPTER 6. ANALYTIC REPRESENTATIONS FOR QUANTUM
SYSTEMS ON Z(D) WITH THETA FUNCTIONS

1
2

3
4

5
1

2
3

4
5

0

1

2

αβ

|W̃ (α, β)|

Figure 6.9: Absolute value of Weyl function using the coefficients of Eq.(6.84)
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Figure 6.10: Wigner function using the coefficients of Eq.(6.84)
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6.8 Discussion and Conclusion

In this chapter, quantum systems with finite Hilbert space for odd values of

d are considered. The states of such systems are represented by the analytic

function in Eq.(6.4), which obeys the quasiperiodicity conditions of Eq.(6.7),

and therefore it is effectively defined on a torus. The scalar product is given

in Eq.(6.9). Using the theory of analytic functions it can be proved that the

scalar product of an arbitrary state in terms of coherent state is not zero

since the zeros of analytic functions are isolated .

The following results are the novel work in this chapter. An analytic

representation in terms of coherent states Df (a, b)|ψ〉 is given in Eq.(6.30).

The reproducing kernel Eq.(6.41) is important in this formalism since plays

the role of the resolution of identity in the language of analytic functions.

Wigner and Weyl functions are expanded in Eqs.(6.78), (6.79), respectively.
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Chapter 7

Finite quantum

systems:Periodic paths of zeros

7.1 Introduction

In this chapter, the time evolution of a finite quantum system is considered.

The paths of the zeros with Hamiltonians with a rational ratio of the eigen-

values (such that there exists t with exp(iHt) = 1) are studied. Using the

analytic represenation in Eq.(6.4) and the time evolution the zeros follows

closed paths. The paths of d zeros are investigated. In some cases, a number

N of the zeros follow the same path, and we say that the path has multiplic-

ity N . Some examples of the paths of d zeros using differents Hamiltonians

are used in order to analyse the behaviour of the paths of d zeros on a torus.

In Section 7.2 the time evolution operator in periodic systems is defined. In

Section 7.3 several examples are presented.
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7.2 Periodic systems using time evolution op-

erator

Let

|φ(0)〉 =
d−1∑

m=0

φm(0)|m〉x (7.1)

If Eq.(7.1) is time dependent then

|φ(t)〉 = exp(−itH)|φ(0)〉 =
d−1∑

m=0

φm(t)|m〉x (7.2)

where H is the Hamiltonian.

Φ(t; z) = π−1/4

d−1∑

m=0

φm(t)Θ3

[
2mπ2

L2
− z π

L
;
i2π

L2

]
(7.3)

When the ratio of eigenvalues of H is rational, the time evolution of quantum

system is periodic. That is, when the eigenvalues of H are denoted by Nj

(where j = 0, 1..d − 1) and
Nj

N0
is a rational number, then the system is

periodic.

In order to plot the paths of the zeros Eq.(7.3) is used. Given the zeros

the coefficients fm can be found using Eq.(6.25) and inserting into Eq.(7.3)

the zeros follows closed curve.

Using different Hamiltonians and different set of zeros of [73] the be-

haviour of the paths of the zeros is considered.
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7.2.1 Hamiltonians with rational ratio of the eigenval-

ues

Using the following Hamiltonian

H =




2 2 0

2 2 0

0 0 3




(7.4)

with eigenvalues 0, 3, 4 and period T = 2π.

Assuming that the paths of the zeros are denoted by ζ0(t), ζ1(t), ζ2(t), where

t = 0, the zeros of the analytic function are ζ0(0), ζ1(0), ζ2(0), respectively.

Using the same Hamiltonian with varying values of zeros, a different multi-

plicity of the paths of zeros is obtained.

The zeros are equal to [73]

ζ0(0) = 1.01 + 2i; ζ1(0) = 2.15 + 2.56i; ζ2(0) = 3.35 + 1.95i. (7.5)

In a period of 2π, using the zeros of Eq.(7.5) and Hamiltonian of Eq.(7.4),

the zeros follow their own path with a multiplicity equal to 1, (M=1). In

Fig.(6.1) the paths of these zeros are demonstrated.

ζ0(0) = 1.4 + 2.33i; ζ1(0) = 2.15 + 2.32i; ζ2(0) = 2.95 + 1.85i. (7.6)

In Fig.(6.2) the paths of the zeros of Eq.(7.6) using the same Hamiltonian

are illustrated. When multiplicity is equal to 2, (M=2), it is illustrated two

of the zeros follow the same path while the first is used in order to follow its
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own path such that ζ0(t)
2π−→ ζ0(t), ζ1(t)

2π−→ ζ2(t), ζ2(t)
2π−→ ζ1(t).

In Fig.(6.2) it can be observed that there is a loop of the paths of the

zeros during the period. Therefore,there are singular points for the zeros.

ζ0(0) = 1.56+2.49i; ζ1(0) = 1.99+2.16i; ζ2(0) = 2.95+1.85i. (7.7)

In Fig.(6.3) using the zeros of Eq.(7.7) with same Hamiltonian, it can be

observed that the zeros follow a closed path, resulting to ζ0(t)
2π−→ ζ1(t),

ζ1(t)
2π−→ ζ2(t), ζ2(t)

2π−→ ζ0(t). As a result, the multiplicity of the path of the

zeros equals to 3, (M=3).
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Figure 7.1: Paths of the zeros ζ0(t),ζ1(t),ζ2(t) of Eq.(7.4) using the Hamilto-
nian of Eq.(7.3)
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Figure 7.2: Paths of the zeros ζ0(t), ζ1(t), ζ2(t) of Eq.(7.5) using the Hamil-
tonian of Eq.(7.3)
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Figure 7.3: Paths of the zeros ζ0(t), ζ1(t), ζ2(t) of Eq.(7.6) using the Hamil-
tonian of Eq.(7.3)
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Also, the following Hamiltonian is considered

H =




2 −3i 0

3i 2 0

0 0 3




(7.8)

with eigenvalues −1, 3, 5 and period T = 2π.

Using the zeros of Eqs.(7.5), (7.6), (7.7) and the Hamiltonian of Eq.(7.8)

after a period T = 2π, two of the zeros exchange their positions and the

third return to its initial position, leading to ζ0(t)
2π−→ ζ1(t), ζ1(t)

2π−→ ζ0(t),

ζ2(t)
2π−→ ζ2(t), therefore, the paths of the zeros has a multiplicity of 2, (M=2).

The paths of these zeros is presented in Figs.(7.4),(7.5) (7.6), respectively.
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Figure 7.4: Paths of the zeros ζ0(t), ζ1(t), ζ2(t) of Eq.(7.4) using the Hamil-
tonian of Eq.(7.7)
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Figure 7.5: Paths of the zeros ζ0(t), ζ1(t), ζ2(t) of Eq.(7.5) using the Hamil-
tonian of Eq.(7.7)
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Figure 7.6: Paths of the zeros ζ0(t), ζ1(t), ζ2(t) of Eq.(7.6) using the Hamil-
tonian of Eq.(7.7)
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After, comparing the result of two Hamiltonians in Eqs.(6.3) and (6.7) it

can be concluded that:

1) Using the zeros of Eqs.(7.6) with the Hamiltonians of Eqs.(6.3) and

(6.7), the multiplicity of the path of the zeros remains constant.

2) Using the Hamiltonian of Eq.(6.3) and the zeros of Eq.(7.7), it is con-

cluded that the multiplicity of the path of the zeros is equal to 3, while

using the same zeros with different Hamiltonian in Eq.(6.7) the multi-

plicity of the path of the zeros is equal to 2.

3) Using the Hamiltonian of Eq.(6.3) and the zeros of Eq.(7.5), it is con-

cluded that the multiplicity of the path of the zeros is equal to 1, while

using the same zeros with different Hamiltonian in Eq.(6.7) the multi-

plicity of the path of the zeros is equal to 2.

4) It can be observed that when M=2 the period of the zeros in order to

return to their initial positions is equal to 2T .

5) It can be observed that when M=3 the period of the zeros in order to

return to their initial positions is equal to 3T .

7.3 Discussion

In this chapter, the paths of the zeros is studied. The two cases under

consideration are firstly when the d zeros return to their initial position and

secondly, when they exchange positions where the multiplicity of the paths
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of the zeros is equal to 1 and d, respectively. Some examples of the paths of

the zeros are provided in order to explore their behaviour.
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Chapter 8

Analytic representation of

quantum systems on S using

Theta functions

8.1 Introduction

This chapter begins by defining an analytic representation of an arbitrary

state |υ〉 on a stripA. Coherent state on a circle are also studied. An analytic

representation in space A in terms of these coherent states is studied. Wigner

and Weyl functions are considered. In Section 8.2, an analytic representation

on a circle is defined. Furthermore, coherent states on a circle as well as

Wigner and Weyl functions in terms of an arbitrary state |υ〉 are examined

in Sections 8.3 and 8.4, respectively.
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8.2 Analytic representation for quantum sys-

tems on a circle

Let |υ〉 be an arbitrary normalized state on a circle S

|υ〉 =
1

2π

∫ 2π

0

dx υ(x)|x〉; υ(x) = 〈x|υ〉 (8.1)

with the following normalization condition

1

2π

∫ 2π

0

dx|υ(x)|2 = 1. (8.2)

The analytic representation of a state |υ〉 is defined as

Υ(z) =

∫ 2π

0

dx υ(x)Θ3

[
x− z

2
;
i

2π

]
(8.3)

with periodicity relation

Υ (z + 2π) = Υ(z). (8.4)

Υ(z) is defined on a strip A = [0, 2π]× R

Proof. The periodicity can be proved using Eq.(2.2). The analytic function

Υ(z) can be shown to be periodic along the real axis as follows

Υ (z + 2π) =

∫ 2π

0

dx υ(x)Θ3

[
x

2
− 1

2
(z + 2π);

i

2π

]

Υ(z) =

∫ 2π

0

dx υ(x)Θ3

[
x− z

2
;
i

2π

]
(8.5)

101



CHAPTER 8. ANALYTIC REPRESENTATION OF QUANTUM
SYSTEMS ON S USING THETA FUNCTIONS

Therefore, Υ(z) is defined on a strip A = [0, 2π]× R.

The following states are considered

|x〉 → 2πΘ3

[
x− z

2
;
i

2π

]

|N〉p → 2π exp

(
iNz − 1

2
N2

)
(8.6)

Proof. Using Eqs.(8.1), (8.3) the position representation is given by

|x〉 → 2πΘ3

[
x− z

2
;
i

2π

]
(8.7)

In order to prove the momentum representation Eq.(5.8) is used

|N〉p =

∫ 2π

0

dx exp(iNx)Θ3

[
x− z

2
;
i

2π

]

=

∫ 2π

0

dx exp(iNx)
∞∑

M=−∞

exp

(
iMx− iMz − 1

2
M2

)

= 2πδ(N +M, 0)
∞∑

M=−∞

exp

(
−iMz − 1

2
M2

)

= 2π exp

(
iNz − 1

2
N2

)
. (8.8)

Proposition 8.2.1. Orthogonality relation

∫

A
dmc(z)Θ3

[
x− z

2
;
i

2π

]
Θ3

[
y − z∗

2
;
i

2π

]
= δc(x− y) (8.9)

where dmc(z) = 1
4π5/2 exp (−z2

I ) d
2z.
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Proof. Using Eq.(6.5), Eq.(8.9) can be written as follows

=
1

4π5/2

∞∑

N,K=−∞

exp (iNx+ iKy) exp

[
−1

2

(
N2 +K2

)]

×
∫ ∞

−∞
dzI exp

(
−z2

I +NzI −KzI
)

×
∫ 2π

0

dzR exp (−iKzR − iNzR) (8.10)

Calculating the integral over dzR in Eq.(8.10)

=
1

2π3/2

∞∑

N,K=−∞

exp(iNx+ iKy)

×
∫ ∞

−∞
dzI exp

(
−z2

I +NzI −KzI
)

× exp

[
−1

2

(
N2 +K2

)]
δ(K,−N). (8.11)

Let N = −K into Eq.(8.11)

=
1

2π3/2

∞∑

K=−∞

exp (−iKx+ iKy)

×
∫ ∞

−∞
dzI exp

(
−z2

I +KzI +K2
)
. (8.12)

The integral over dzI is a gaussian integral, therefore Eq.(8.12) becomes

=
1

2π

∞∑

K=−∞

exp(−iKx+ iKy)

= δc(x− y). (8.13)
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The scalar product of two states in terms of the analytic representations

of these states is given by

〈υ∗1|υ2〉 =
1

2π

∫

A
dmc(z)Υ1(z∗)Υ2(z). (8.14)

Proof. Using Eq.(8.9), and multiplying both sides by integrals over dxdy and

the wave functions υ1(x)υ2(y)∗ it can be concluded that

1

2π

∫

A
dmc(z)

∫ 2π

0

∫ 2π

0

dxdy υ1(x)υ2(y)∗Θ3

[
x− z

2
;
i

2π

]
Θ3

[
y − z∗

2
;
i

2π

]

=
1

2π

∫ 2π

0

dx υ1(x)υ∗2(x) (8.15)

Hence, the scalar product is given by

〈υ1|υ2〉 =
1

2π

∫

A
dmc(z)Υ1(z)Υ2(z)∗. (8.16)

The wave function υ(x) in terms of analytic function Υ(z) is given by

υ(x) =

∫

A
dmc(z)Θ3

[
x− z∗

2
;
i

2π

]
Υ(z) (8.17)

Proof. By the use of Eq.(8.9) and multiplying both sides by Theta function
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and integrating over dmc(z) it following that

∫

A
dmc(z)Θ3

[
y − z∗

2
;
i

2π

]
Υ(z) =

∫ 2π

0

dx υ(x)

∫

S
dmc(z)

×Θ3

[
x− z

2
;
i

2π

]
Θ3

[
y − z∗

2
;
i

2π

]

=

∫ 2π

0

dx υ(x)δ(x− y) = υ(y)

(8.18)

8.3 Coherent states on a circle

Let Dc(α,N)|λ〉 be the definition of coherent state |α,N〉 [54–58]. The fidu-

cial vector can be expressed as in Eq.(8.1), then the overlap is the following

〈β,M |α,N〉 =

∫ 2π

0

dxλ(x)λ∗(x+ α− b) exp

[
i(N −M)

(
x+

α− β
2

)]

× exp

(
i

2
Nβ − i

2
Ma

)
. (8.19)

Proof. Using Eq.(5.14) it can be concluded that

〈β,M |α,N〉 =

∫ 2π

0

dx

∫ 2π

0

dy〈y|Dc(α− β,N −M)|x〉r∗(y)r(x)

× exp

(
i

2
Nβ − i

2
Ma

)

=

∫ 2π

0

dxr∗(x+ α− β)r(x) exp

[
i(N −M)

(
x+

α− β
2

)]

× exp

(
i

2
Nβ − i

2
Ma

)
. (8.20)
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Proposition 8.3.1. Resolution of identity

1

2π

∞∑

N=−∞

∫ 2π

0

dαDc(α,N)|λ〉〈λ|Dc(−α,−N) = 1. (8.21)

Proof. In order to prove Eq.(8.21), both sides are multiplied by position

states, resulting in

1

2π

∞∑

N=−∞

∫ 2π

0

dα〈x1|Dc(α,N)|λ〉〈λ|Dc(−α,−N)|y1〉 = 2πδ(x1 − y1).(8.22)

Using Eqs.(5.9), (5.14), (8.1) we get

=
1

8π3

∞∑

N=−∞

∫ 2π

0

dα

∫ 2π

0

dx

∫ 2π

0

dy 〈x1|x+ a〉〈y + α|y1〉

× exp(iNx− iNy)λ(x)λ(y)∗

=

∫ 2π

0

dα

∫ 2π

0

dx

∫ 2π

0

dy δ(x1, x+ α)δ(y1, y + α)

×λ(x)λ(y)∗δc(x− y)

= δ(x1 − y1)

∫ 2π

0

dx λ(x)λ(x)∗ = 2πδ(x1 − y1). (8.23)

Given a ‘fiducial state’ |λ〉, let Λ(z) be its analytic representation.

Definition 1. The analytic function G(z;α,N ;λ) based on Dc(α,N)|λ〉 is

defined as

G(z;α,N ;λ) =

∫ 2π

0

dx〈x|Dc(α,N)|λ〉Θ3

[
x− z

2
;
i

2π

]
. (8.24)
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It is easily to proved that

G(z; 0, 0;λ) = Λ(z)

G (z;α + 2π,N ;λ) = (−1)NG(z;α,N ;λ). (8.25)

The periodicity relation of Eq.(8.24) is analogous of Eq.(8.4) and is given by

G (z + 2π;α,N ;λ) = G(z;α,N ;λ). (8.26)

The relation between the analytic representation G(z;α,N ;λ) of the co-

herent states |α,N〉 and the analytic representation Λ(z) of the fiducial vector

|λ〉 is given in the next proposition.

Proposition 1.

G(z;α,N ;λ) = exp

(
−1

2
iNα + iNz − 1

2
N2

)
Λ (z + iN − α) . (8.27)

Proof. Using Eqs.(8.24), (5.14), leads to

G(z;α,N ;λ) =

∫ 2π

0

dx exp

(
iNx− 1

2
iNα

)
〈x− α|λ〉

×Θ3

[
x− z

2
;
i

2π

]
(8.28)

Let x− α = X in Eq.(8.28)

G(z;α,N ;λ) =

∫ 2π

0

dX λ(X) exp

(
iNX +

1

2
iNα

)

×Θ3

[
X + α− z

2
;
i

2π

]
(8.29)
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Using the definition of the Theta function and changing variables as N+M =

K in Eq.(8.29) leads to

G(z;α,N ;λ) = exp

(
−1

2
iNα + iNz − 1

2
N2

)∫ 2π

0

dX λ(X)

×
∞∑

K=−∞

exp (iKX) exp

(
iKα− 1

2
K2 +KN − iKz

)

(8.30)

From Eq.(8.30) it can be concluded that

G(z;α,N ;λ) = exp

(
−1

2
iNα + iNz − 1

2
N2

)
Λ (z + iN − α) . (8.31)

Proposition 2. The zeros ζκ of Λ(z) are related to the zeros ζκ(α,K) of the

G(z;α,N ;λ) as follows

ζκ(α,N) = ζκ − iN + α. (8.32)

Proof. Eq.(8.32) is a direct consequense of the Proposition 1

Proposition 3. G(z;α,N ;λ) is the two-dimensional Fourier transform of

the G(−z; β,M ;λ)

G(z;α,N ;λ) =
1

2π

∞∑

M=∞

∫ 2π

0

dβG(−z; β,−N + 2M ;λ)

× exp

[
iMα− i

2
Nβ − i

2
αN

]
. (8.33)
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Proof. In order to prove Proposition 3, it should first be defined that

P(z;α,N ;λ) =

∫ 2π

0

dx〈x|Pc(α,N)|λ〉Θ3

[
x− z

2
;
i

2π

]
(8.34)

where Pc(a,K) is the displaced parity operator.

〈x|Pc(α,N) = exp (iNx− iNα) 〈−x+ α|

〈x|Dc(α,N) = exp

(
iNx− 1

2
iNα

)
〈x− α|. (8.35)

Using Eqs.(8.24), (8.34), (8.35), it can be proved that

P(z;α,N ;λ) = G(−z;−α,−N ;λ) (8.36)

Using Eq.(5.23), including the variable z, it can be concluded that

P(z;α,N ;λ) =
1

2π

∞∑

M=∞

∫ 2π

0

dβ G(−z; β,N + 2M ;λ)

× exp

[
i

2
Nβ − iMα− i

2
αN

]
(8.37)

Substituting Eq.(8.36) into Eq.(8.37)

G(z;α,N ;λ) =
1

2π

∞∑

M=∞

∫ 2π

0

dβG(−z; β,−N + 2M ;λ)

× exp

[
iMα− i

2
Nβ − i

2
αN

]
. (8.38)
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Proposition 4. Resolution of identity

1

4π2

∞∑

N=−∞

∫ 2π

0

dα G(z;α,N ;λ)[G(w;α,N ;λ)]∗ = k(z, w∗) (8.39)

where

k(z, w∗) =

∫ 2π

0

dx Θ3

[
x− z

2
;
i

2π

]
Θ3

[
x− w∗

2
;
i

2π

]

k(z, w∗) = k(−z,−w∗). (8.40)

Proof. In order to prove the resolution of identity, Eq.(8.24) is used

∞∑

N=−∞

∫ 2π

0

dα G(z;α,N ;λ)G(w∗;α,N ;λ)

=
∞∑

N=−∞

∫ 2π

0

dα

∫ 2π

0

dx〈x|Dc(α,N)|λ〉Θ3

[
x− z

2
;
i

2π

]

×
∫ 2π

0

dy〈λ|Dc(−α,−N)|y〉Θ3

[
y − w∗

2
;
i

2π

]

=

∫ 2π

0

dx

∫ 2π

0

dy
∞∑

N=−∞

∫ 2π

0

dα〈x|Dc(α,N)|λ〉Θ3

[
x− z

2
;
i

2π

]

×〈λ|Dc(−α,−N)|y〉Θ3

[
y − w∗

2
;
i

2π

]
(8.41)

Using Eq.(8.22) we get

=

∫ 2π

0

dx

∫ 2π

0

dy4π2δ(x, y)Θ3

[
x− z

2
;
i

2π

]
Θ3

[
y − w∗

2
;
i

2π

]
(8.42)
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Finally, the resolution of identity of these states is given by

1

4π2

∞∑

N=−∞

∫ 2π

0

dα G(z;α,N ;λ)G(w∗;α,N ;λ)

=

∫ 2π

0

dx Θ3

[
x− z

2
;
i

2π

]
Θ3

[
x− w∗

2
;
i

2π

]
. (8.43)

Proposition 5. Reproducing Kernel relation

Υ(z) =

∫

A
dmc(w) k(z, w∗)Υ(w). (8.44)

where Υ(z) is given in Eq.(8.3).

Eq.(8.44) can be written as

Υ(z) =
1

2π

∞∑

N=−∞

∫ 2π

0

dα G(z;α,N ;λ)υ(α,N ;λ) (8.45)

and

Υ(z) =
1

2π

∞∑

M=∞

∫ 2π

0

dβ G(−z; β,M ;λ)υ̃(β,M ;λ) (8.46)

where

υ(α,N ;λ) = 〈λ|Dc(−α,−N)|υ〉. (8.47)

The υ(α + 2π,N ;λ) is periodic and is given by

υ(α + 2π,N ;λ) = (−1)Nυ(α,N ;λ). (8.48)
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and υ̃(β,M ;λ) is given by

υ̃(β,M ;λ) = 〈λ|Dc(−β,−M)Pc(0, 0)υ〉 = 〈λ|Pc(−β,−M)|υ〉.(8.49)

The υ̃(β,M ;λ) is periodic and is given by

υ̃(β + 2π,M ;λ) = (−1)M υ̃(β,M ;λ). (8.50)

υ(α,N ;λ) is also given by

υ(α,N ;λ) =
1

2π

∫

A
dmc(w)G(w;α,N ;λ)∗Υ(w) (8.51)

and υ̃(β,M ;λ) is also equal to

υ̃(β,M ;λ) =
1

2π

∫

A
dmc(w) G(−w; β,M ;λ)∗Υ(w). (8.52)

Proof. Eq.(8.44) is proved by inserting Eq.(8.40) into Eq.(8.44) and using

Eq.(8.18)

Υ(z) =

∫

A
dmc(w)Υ(w)

∫ 2π

0

dx Θ3

[
x− z

2
;
i

2π

]

×Θ3

[
x− w∗

2
;
i

2π

]

=

∫ 2π

0

dx

∫

A
dmc(w)Θ3

[
x− w∗

2
;
i

2π

]
Υ(w)

×Θ3

[
x− z

2
;
i

2π

]
= Υ(z). (8.53)
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Eq.(8.45) is proved by inserting Eq.(8.47) into Eq.(8.45) and using Eq.(8.24)

Υ(z) =
1

2π

∞∑

N=−∞

∫ 2π

0

dα

∫ 2π

0

dx〈x|Dc(α,N)|λ〉〈λ|Dc(−α,−N)|υ〉

×Θ3

[
x− z

2
;
i

2π

]
(8.54)

Based on Eq.(8.21), it can be concluded that

=

∫ 2π

0

dx〈x|υ〉Θ3

[
x− z

2
;
i

2π

]
= Υ(z). (8.55)

In order to prove Eq.(8.51), Eq.(8.51) is inserted into Eq.(8.45)

Υ(z) =
1

4π2

∞∑

N=−∞

∫ 2π

0

da G(z;α,N ;λ)

∫

A
dmc(w)G(w;α,N ;λ)∗Υ(w)

(8.56)

Using Eq.(8.39) it can be easily proved that

=

∫

A
dmc(w)kc(z, w

∗)Υ(w) = Υ(z). (8.57)

Eq.(8.46) is proved using Eqs.(8.24), (8.49)

Υ(z) =
∞∑

M=−∞

∫ 2π

0

dβ

∫ 2π

0

dx〈x|Dc(β,M)|λ〉〈λ|Dc(−β,−M)Pc(0, 0)|υ〉

×Θ3

[
x+ z

2
;
i

2π

]
(8.58)
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Therefore, using Eq.(8.21)

=

∫ 2π

0

dx υ(−x)Θ3

[
x+ z

2
;
i

2π

]
(8.59)

Let X = −x into Eq.(8.59)

=

∫ 2π

0

dX υ(X)Θ3

[
x− z

2
;
i

2π

]
= Υ(z). (8.60)

In order to prove Eq.(8.52), Eq.(8.52) is substituted into Eq.(8.46)

Υ(z) =
1

4π2

∫

A
dmc(w) Υ(w)

∞∑

M=−∞

∫ 2π

0

dβ G(−z; β,M ;λ) G(−w; β,M ;λ)∗

=

∫

A
dmc(w) Υ(w)Kc(z, w

∗) = Υ(z). (8.61)

Proposition 6. υ̃(β,M ;λ) is the two-dimensional Fourier transform of υ(α,N ;λ)

υ̃(β,M ;λ) =
1

2π

∞∑

N=∞

∫ 2π

0

dα υ(−α,M − 2N ;λ)

× exp

[
− i

2
Mα + 2iNβ − i

2
βM

]
(8.62)

Proof. Multypling both sides Eq.(5.23) by 〈λ| and |υ〉 it can be proved that

〈λ|Pc(α,N)|υ〉 =
1

2π

∞∑

M=∞

∫ 2π

0

dβ〈λ|Dc(β,N + 2M)|υ〉

× exp

[
i

2
Nβ − iMα− i

2
αN

]
(8.63)
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Using Eqs.(8.47), (8.49) it can be concluded that

υ̃(α,N ;λ) =
1

2π

∞∑

M=∞

∫ 2π

0

dβ|υ(−β,−N − 2M ;λ)

× exp

[
i

2
Nβ − iMα− i

2
αN

]
(8.64)

Let α = β and N = M then

υ̃(β,M ;λ) =
1

2π

∞∑

K=∞

∫ 2π

0

dα υ(−α,M − 2N ;λ)

× exp

(
− i

2
Mα + 2iNβ − i

2
βM

)
. (8.65)

Proposition 7. Marginal properties

∞∑

N=−∞

G(z;α,N ;λ) = 2π λ

(
−1

2
α

)
Θ3

[
2−1α− z

2
;
i

2π

]

∫ 2π

0

dα G(z;α,−2N ;λ) = 4π2λN exp

(
−izN − 1

2
N2

)
. (8.66)

where 2πΘ3

[
2−1α−z

2
; i

2π

]
represents position states and 2π exp

(
−izN − 1

2
N2
)

represents momentum states (see Eq.(8.6)).

Proof. Using Eq.(8.29) with an extra
∑∞

N=−∞ leads to

∞∑

N=−∞

G(z;α,N ;λ) =

∫ 2π

0

dxλ(x)
∞∑

N=−∞

exp

(
iNx+

1

2
iNα

)

×Θ3

[
x+ α− z

2
;
i

2π

]
(8.67)
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∑∞

N=−∞ exp
(
iNx+ 1

2
iNα

)
= δc

(
x+ 1

2
α
)
. Therefore,

∞∑

N=−∞

G(z;α,N ;λ) = 2π

∫ 2π

0

dxλ(x)δc

(
x+

1

2
α

)

×Θ3

[
x+ α− z

2
;
i

2π

]

(8.68)

Using the dirac comb delta function it can be concluded that

∞∑

N=−∞

G(z;α,N ;λ) = 2π λ

(
−1

2
α

)
Θ3

[
2−1α− z

2
;
i

2π

]
. (8.69)

Integrating both sides of Eq.(8.29) by
∫ 2π

0
dα leads to

∫ 2π

0

dαG(z;α,−2N ;λ) =

∫ 2π

0

dx

∫ 2π

0

dα λ(x) exp (−i2Nx− iNα)

×Θ3

[
x+ α− z

2
;
i

2π

]

=
∞∑

K=−∞

∫ 2π

0

dα exp

(
iKα− iNα− iKz − 1

2
K2

)

×
∫ 2π

0

dx λ(x) exp (iKx− 2iNx) (8.70)
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The integral over dα is equal to Dirac comb delta function, therefore

= 2π
∞∑

K=−∞

δ (K −N, 0) exp

(
−iKz − 1

2
K2

)

×
∫ 2π

0

dx λ(x) exp (iKx− 2iNx)

= 2π

∫ 2π

0

dx λ(x) exp (iNx− 2iNx)

× exp

[
−izN − 1

2
(N)2

]
. (8.71)

Using Eq.(5.5) it can be concluded that

∫ 2π

0

dα G(z;α,−2N ;λ) = 4π2λN exp

[
−izN −

(
−1

2
N

)2
]
. (8.72)

8.4 Wigner and Weyl functions for systems

on a circle

The Wigner function of a state |υ〉 on a cirlce is given by

W (α,N ; υ) = 〈υ|Pc(α,N)|υ〉 (8.73)

and the Weyl function on a circle is equal to

W̃ (α,N ; υ) = 〈υ|Dc(α,N)|υ〉. (8.74)
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The Wigner function in terms of υ(a,N ;λ) is written as

W (α,N ; υ) =
1

4π2

∞∑

M,K=−∞

∫ 2π

0

dχ

∫ 2π

0

dβ υ(−χ,−N +M − 2K;λ)

×υ(β,M ;λ)∗ exp

(
i

2
χN − i

2
Mχ+ iNβ

)

× exp

(
− i

2
βM − iKα + iβK

)
. (8.75)

The Weyl function in terms of υ(a,N ;λ) is given by

W̃ (α,N ; υ) =
1

2π

∞∑

M=−∞

∫ 2π

0

dβ υ∗(α,M ;λ)υ(−α + β,−N +M ;λ)

× exp

[
1

2
(−αM +Nβ)

]
. (8.76)

Proof. In order to prove the Wigner function Eq.(8.21) is inserted into Eq.(8.73)

W (α,N ; υ) =
∞∑

M=−∞

∫ 2π

0

dβ〈υ|Dc(β,M)|λ〉

×〈λ|Dc(−β,−M)Dc(α,N)Pc(0, 0)|υ〉 (8.77)

Using Eq.(8.47), the Wigner function can be expanded as

W (α,N ; υ) =
∞∑

M=−∞

∫ 2π

0

dβ υ(β,M ; r)∗〈λ|Dc(−β,−M)Dc(α,N)Pc(0, 0)|υ〉

(8.78)
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Using the Eqs.(8.78), (8.49) it can be proved that

W (α,N ; υ) =
∞∑

M=−∞

∫ 2π

0

dβ υ(β,M ;λ)∗υ̃(−α + β,−N +M)

× exp

[
i

2
(−Mα +Nβ)

]
(8.79)

Using Eq.(8.62), Eq.(8.79) becomes Eq.(8.75).

The Weyl function is proved by inserting Eq.(8.21) into Eq.(8.74)

W̃ (α,N ; υ) =
∞∑

M=−∞

∫ 2π

0

dβ 〈υ|Dc(β,M)|λ〉〈λ|Dc(−β,−M)Dc(α,N)|υ〉

(8.80)

Using the Eq.(8.80), (8.47) it can be concluded that

W̃ (α,N ; υ) =
1

2π

∞∑

M=−∞

∫ 2π

0

dβ υ∗(α,M ;λ)υ(−α + β,−N +M ;λ)

× exp

[
1

2
(−αM +Nβ)

]
. (8.81)

8.5 Discussion and Conclusion

An analytic representation of an arbitrary state |υ〉 on a strip A is defined in

Eq.(8.3). The novel part of this chapter is the following. The resolution of

identity of the coherent states when displacement operator acts on fiducial

vector |λ〉 is given in Eq.(8.21). An analytic representation corresponding to

the coherent states Dc(a,N)|λ〉 is also given in Eq.(8.24), which is part of
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the novel work. We also study some properties of this analytic represenation

such as the reproducing kernel in Eq.(8.40), which plays a central role in

this formalism. The reproducing kernel relations are defined in Eq.(8.44).

Wigner and Weyl functions are given in Eqs.(8.75) and (8.76), respectively.
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Conclusion

In this work, quantum systems with d dimensional Hilbert space are stud-

ied. An analytic representation on a torus in terms of Theta functions is

considered. The quantum states of Eq.(6.1) are represented by the analytic

function in Eq.(6.4) on a torus. In finite quantum systems, the number of

zeros of this analytic function is equal to d, Eq.(6.17) and the zeros obey the

constraint of Eq.(6.19). In d dimensional Hilbert space the zeros define the

state uniquely.

The novel work in this thesis is described by the following paragraphs.

An analytic representation based on d2 coherent states is given in Eq.(6.30).

The reproducing kernel of Eq.(6.41) plays a central role in this formalism.

An arbitrary state |φ〉 can be expanded in terms of d2 coherent states as in

Eq.(6.49), and can be represented by the φ(a, b;ψ). The Wigner and Weyl

functions for this state can be calculated from the coefficients φ(a, b;ψ), as

in Eqs.(6.78), (6.79), respectively.

The d zeros are used to describe the time evolution of these systems. The
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d paths of the zeros define completely the state. The time evolution operator

of the system in Eq.(7.2), as well as, the motion of the d zeros on a torus are

examined. For the time dependent system, the d zeros follow closed paths

on a torus, which define the Hamiltonian. Some examples of the paths of the

zeros using different Hamiltonians are given.

Also, the analogous formalism for systems with positions in a circle S

and momenta in Z defined. The quantum states on a circle Eq.(8.1) are

represented by the analytic function of Eq.(8.3) on a strip A and obey the

periodicity relation Eq.(8.4). The scalar product is given in Eq.(8.14).

Coherent states on a circle S are also considered. An analytic representa-

tion based on these coherent states in Eq.(8.24) is studied. The reproducing

kernel in this language is given in Eq.(8.44). An arbitrary state |υ〉 can be

written in terms of these coherent states as in Eq.(8.45), which is defined as

υ(α,N ;λ). Using these coefficients, Wigner and Weyl functions can be also

calculated as in Eqs.(8.75), (8.76), respectively.

9.1 Future work

The work may be extended in order to study the behaviour of the paths

of the zeros using quantum systems which is not periodic. The work may

be also extend to consider the analytic representations using entaglament,

symplectic transformations and various unitary transformations.
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Chapter 10

Appendix

In order to prove Eq.(6.39), it should be first defined that

Y (z; a, b;ψ) = π−1/4

d−1∑

m=0

x〈m|Pf (a, b)|ψ〉

×Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]

= π−1/4

d−1∑

m=0

ω(−2ab+ 2am)ψ−m+2b

×Θ3

[
2π2m

L2
− z π

L
; i

2π

L2

]
(10.1)

Substituting the variable m in Eq.(10.1) with M = −m + 2b, Eq.(10.1)

becomes

Y (z; a, b;ψ) = π−1/4

d−1∑

M=0

ω (2ab− 2aM)ψM

×Θ3

[
2π2(−M + 2b)

L2
− z π

L
; i

2π

L2

]
(10.2)
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Using Eq.(6.5), Eq.(6.34) becomes

Y (z; a, b;ψ) = π−1/4ω (2ab)
d−1∑

M=0

ψM

∞∑

n=−∞

exp

(
−4iπ2Mn

L2
− 8iπ2Ma

L2

)

× exp

(
i8nπ2b

L2
− 2inz

π

L
− 2π2n2

L2

)
. (10.3)

Letting n = N − 2a, it follows that

Y (z; a, b;ψ) = π−1/4ω (2ab)
d−1∑

M=0

ψM exp

(
−4iπ2M

L2

)

×
∞∑

N=−∞

exp

[
i8(N − 2a)π2b

L2

]

× exp

[
−2i(N − 2a)z

π

L
− 2π2(N − 2a)2

L2

]
(10.4)

Y (z; a, b;ψ) = π−1/4ω (2ab) exp

(
−4iaz

π

L
− i16Nπ2ab

L2
+

8π2a2

L2

)

×
∞∑

N=−∞

d−1∑

M=0

ψM exp

(
−4iπ2M

L2
− 2iNz

π

L

)

× exp

(
i8Nπ2b

L2
− 2π2N2

L2
+

8π2Na

L2

)
(10.5)

Using Eq.(2.1), Eq.(10.5) becomes

Y (z; a, b;ψ) = π−1/4ω (−2ab) exp

(
−4iaz

π

L
+

8πa2

L2

)

×
d−1∑

M=0

ψMΘ3

[
−2π2m

L2
− z π

L
+ b

4π2

L2
− ia4π2

L2
; i

2π

L2

]
(10.6)
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Using Eq.(2.5), Eq.(10.6) becomes

Y (z; a, b;ψ) = π−1/4ω (−2ab) exp

(
−4iaz

π

L
+

8πa2

L2

)

×
d−1∑

M=0

ψMΘ3

[
2π2m

L2
+ z

π

L
− b4π2

L2
+ ia

4π2

L2
; i

2π

L2

]
(10.7)

Y (z; a, b;ψ) = exp

(
8a2π2

L2
− 4iza

π

L

)
ω (−2ab)

×Ψ

(
−z − ia4π

L
+ b

4π

L

)
= F (−z;−2a;−2b;ψ) .(10.8)

In this case the Eq.(3.23) is used, including the variable z and fiducial state

|ψ〉

F (z; a, b;ψ) =
2π

L2

d−1∑

γ,δ=0

Y (z; γ, δ;ψ)ω(−bγ + aδ). (10.9)

Taking into account Eqs.(10.8), (10.9) and changing variables then

F (z; a, b;ψ) =
2π

L2

d−1∑

γ,δ=0

F (−z;−2γ,−2δ;ψ)ω(−bγ + aδ)

=
2π

L2

d−1∑

γ,δ=0

F (−z; γ, δ;ψ)ω
(
2−1bγ − 2−1aδ

)
. (10.10)
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