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A total set of states for which we have no resolution of the identity (a ‘pre-basis’), is considered
in a finite dimensional Hilbert space. A dressing formalism renormalizes them into density matrices
which resolve the identity, and makes them a ‘generalized basis’, which is practically useful. The
dresssing mechanism is inspired by Shapley’s methodology in cooperative game theory, and it uses
Möbius transforms. There is non-independence and redundancy in these generalized bases, which is
quantified with a Shannon type of entropy. Due to this redundancy, calculations based on generalized
bases, are sensitive to physical changes and robust in the presence of noise. For example, the
representation of an arbitrary vector in such generalized bases, is robust when noise is inserted in
the coefficients. Also in a physical system with ground state which changes abruptly at some value
of the coupling constant, the proposed methodology detects such changes, even when noise is added
to the parameters in the Hamiltonian of the system.

I. INTRODUCTION

Redundancy is important for error correction. Without redundancy in our language (quantified by Shannon
[1] and later by many others) we would not be able to communicate because a minor spelling mistake would
change completely the meaning. The analogue of this in the context of Hilbert spaces is that calculations based
on orthonormal bases are sensitive to noise. In contrast, calculations based on total (or overcomplete) sets of
vectors that can be used as generalized bases, are much less sensitive to noise. A set Σ of vectors is called total,
if there is no vector in the Hilbert space which is orthogonal to all vectors in Σ.

A total set of vectors can be used as a generalized basis, only if there is a resolution of the identity in terms
of them, which can be used to expand an arbitrary vector in terms of the vectors in the total set. In the present
paper we consider a d-dimensional Hilbert space Hd, and an arbitrary total set of n > d vectors (for which
in general we have no resolution of the identity). We renormalize them into a set of n mixed states (density
marices), that resolve the identity.

The renormalization formalism is analogous to the Shapley methodology in cooperative game theory[2–5]. In
a recent paper [6] we have used this methodology mainly with the set of n = d2 coherent states (which is a
special case of a total set), and we only discussed briefly the application of the formalism to an arbitrary total
set. In the present paper we expand the use of the formalism with an arbitrary total set, as follows:

• The formalism is presented directly in a quantum context. The analogy between the Shapley methodology
in cooperative game theory and our approach in a quantum context, has been discussed in detail in [6]
and is not discussed here. We note that cooperative game theory uses scalar quantities, while quantum
mechanics uses matrices.

• The formalism leads to n > d density matrices σ(i), which resolve the identity and which can be used as
a generalized basis. The term ‘generalized basis’, reflects:

– the fact that it consists of density matrices (i.e., vectors with probabilities attached to them)

– their non-independence (the number of them is greater than the dimension of the space). The
non-independence and redundancy in this generalized basis, is quantified with a Shannon type of
entropy which is shown to take values in the interval (log n− log d, log n). The merit of having this
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redundancy, is that it makes calculations with generalized bases, sensitive to physical changes and
immune to noise.

• Coherent states are uniformly distributed in phase space, and the corresponding renormalized density
matrices σ(i) (studied in [6]) have strong properties related to coherence, e.g., they are related to each
other through displacement transformations. However from a practical point of view, for large dimension
d the calculation is tedious (in a d-dimensional space, there are d2 coherent states, which lead to d2

renormalized density matrices σ(i)). The formalism discussed in this paper is general, and we can take n
slightly larger than d, so that we have the merits of redundancy with fewer renormalized density matrices
σ(i), and a simpler calculation. Of course, in this general case the renormalized density matrices σ(i),
have weaker properties than in the case of coherent states.

• The emphasis in this paper is in the applications of the formalism, as follows:

– It is shown that the representation of a vector in our generalized bases is robust in the presence of
noise, in the sense that addition of random numbers in the coefficients does not change the vector
significantly.

– The formalism is applied to the study of the ground state (i.e., the eigenstate corresponding to the
lowest eigenvalue), of physical systems. We consider a system in which the ground state changes
abruptly at some value of the coupling constant. We show that our generalized bases can detect such
changes even in the presence of noise. In large (ideally infinite) systems, such an abrupt change of
the ground state is associated with a phase transition.

The whole area of coherent states, POVMs (positive operator valued measures) and frames and wavelets (e.g.,
[7–9]), are a kind of generalized bases, and calculations that use them are robust in the presence of noise, due to
redundancy. An arbitrary state can be expanded in terms of coherent states or POVMs, because of a resolution
of the identity. In frames we have no exact resolution of the identity, but we have lower and upper bounds to
it. In our case we start from a total set of n > d states, which we renormalize and we get n density matrices
{σ(i)}, that resolve the identity. They can be used as a generalized basis, which is robust in the presence of
noise.

In section 2 we define various quantities and explain the notation. In section 3, we present briefly the Möbius
transforms. We discussed them in a different context in [10, 11] and here we only give briefly the relevant
formulas, together with a new proposition on the trace of these operators (proposition III.1), which is used
later.

In section 4, we show how to renormalize a total set of vectors into a generalized basis, which resolves the
identity. The starting point is a resolution of the identity that contains projectors associated with the vectors
in the total set, and Möbius operators. Using an approach inspired by the Shapley methodology in cooperative
game theory, we assign the Möbius operators to the projectors, and convert them into density matrices that
resolve the identity.

In section 5, the redundancy in the generalized bases, is quantified with a Shannon type of entropy. In section
6, we use the generalized bases, to represent a vector in Hd, with n components. We then add noise to these
components, and reconstruct the original vector. It is shown that the error in this reconstruction, is smaller in
the case of our generalized bases, than in the case of orthonormal bases.

In section 7, we consider a physical system with two-dimensional Hilbert space and with Hamiltonian θ(λ),
whose ground state changes abruptly at some value of the coupling constant λ. Such a system is often used
as an approximation to an infinite-dimensional system, which due to low energy, operates in the subspace of
the lowest two states. Many of the experimentally available qubits are of this type (e.g., the superconducting
qubits). We define the concept of location index L[θ(λ)] of θ(λ), with respect to a generalized basis {σ(i)}.
We then define comonotonicity intervals of the coupling parameter λ, within which the location index L[θ(λ)]
remains constant, and associate them with mild changes in the physical system. Crossing points from one
comonotonicity interval to another, indicate a possible drastic change in the ground state of the system. We
show that the method works well, even when we add noise in the parameters of the Hamiltonian.
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We conclude in section 8, with a discussion of our results.

II. PRELIMINARIES

We consider a d-dimensional Hilbert space Hd, and an orthonormal basis of ‘position states’ which we denote
as |X;α〉. Here a ∈ Z(d) (the integers modulo d), and the X in the notation is not a variable but it simply
indicates position states. The Fourier transform is defined as

F =
1√
d

∑
ω(αβ)|X;α〉〈X;β|; ω(α) = exp

(
i
2πα

d

)
. (1)

Definition II.1. A ‘pre-basis’ in the d-dimensional Hilbert space Hd, is a set of n > d states

Σ = {|i〉 | i ∈ Ω}; Ω = {1, ..., n} (2)

such that:

• Any subset of d of these states, are linearly independent.

• Σ and also any of its subsets with r ≥ d of these states, are total sets.

• In general, we have no resolution of the identity in terms of these n states.

We call the

R =
n− d
d

> 0, (3)

redundancy index. For coherent states R = d− 1, and for large d this is a large redundancy. The formalism in
this paper is general, but from a practical point of view it should be used with positive but small values of R.

Let H(A) = H(i1, ..., ir) be the subspace of Hd spanned by the states |i1〉, ...|ir〉:

H(A) = H(i1, ..., ir) = span{|i1〉, ...|ir〉}; A = {i1, ..., ir} ⊆ Ω. (4)

If r < d then H(A) is an r-dimensional subspace of Hd. If r ≥ d, then H(A) = Hd. We call Π(A) = Π(i1, ..., ir)
the projector to the subspace H(A). In general

Π(i1, ..., ir) 6= Π(i1) + ...+ Π(ir). (5)

Only if the kets |i1〉, ...|ir〉 are orthogonal to each other, we get equality in this equation. Also, in general there
is no constant µ such that

µ[Π(i1) + ...+ Π(ir)] 6= 1. (6)

In special cases (e.g., with the total set of n = d2 coherent states), we might get equality in Eq.(6).
Cooperative game theory renormalizes the individual contribution of a player, by adding his contribution to

aggregations of players. Similarly, we renormalize Π(i) = |i〉〈i| by adding to it the contributions of the state i,
to aggregations of states described with projectors Π(A) where i ∈ A.
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III. MÖBIUS TRANSFORMS

Möbius transforms have been introduced by Rota[12, 13]. They are a generalization of the ‘inclusion-exclusion’
principle in set theory, which gives the cardinality of the union of overlapping sets. Möbius transforms find
the overlaps between sets, and thus avoid the double-counting. Rota generalized them to partially ordered
structures, and here we use them with projectors to Hilbert spaces.

In refs[10, 11] we have discussed Möbius transforms in a different context, and in this section we only give
briefly the relevant formulas. The Möbius transform of the coherent projectors Π(A), is given by:

D(B) =
∑
A⊆B

(−1)|A|−|B|Π(A); A,B ⊆ Ω. (7)

The inverse Möbius transform is

Π(A) =
∑
B⊆A

D(B). (8)

Some examples are:

D(1) = Π(1); D(1, 2) = Π(1, 2)−Π(1)−Π(2)

D(1, 2, 3) = Π(1, 2, 3)−Π(1, 2)−Π(1, 3)−Π(2, 3) + Π(1) + Π(2) + Π(3), (9)

and then

Π(1, 2) = D(1, 2) + D(1) + D(2)

Π(1, 2, 3) = D(1, 2, 3) + D(1, 2) + D(1, 3) + D(2, 3) + D(1) + D(2) + D(3). (10)

We note that if the total set Σ consists of an orthonormal set of d states, then all the D(B) with |B| ≥ 2, are
zero.

Proposition III.1. The trace of D(B) is given by

Tr[D(B)] = 1; if |B| = 1

Tr[D(B)] = 0; if 2 ≤ |B| ≤ d

Tr[D(B)] = (−1)d−|B|
(
|B| − 2
d− 1

)
; if |B| ≥ d+ 1. (11)

Proof. We first point out that

Tr[Π(A)] = |A|; if |A| ≤ d
Tr[Π(A)] = d; if |A| > d (12)

In the sum of Eq.(7), there are

(
|B|
k

)
sets A with the same cardinality |A| = k. Therefore if 2 ≤ |B| ≤ d we

get [14]

Tr[D(B)] = (−1)−|B|
|B|∑
k=1

(−1)k
(
|B|
k

)
k = (−1)−|B|+1|B|

|B|∑
k=1

(−1)k−1

(
|B| − 1
k − 1

)

= (−1)−|B|+1|B|
|B|−1∑
k=0

(−1)k
(
|B| − 1
k

)
= (1− 1)|B|−1 = 0. (13)
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In the case |B| ≥ d+ 1 we get

Tr[D(B)] = (−1)−|B|
d∑
k=1

(−1)k
(
|B|
k

)
k + d(−1)−|B|

|B|−1∑
k=d+1

(−1)k
(
|B|
k

)
+ d (14)

But

(−1)−|B|
d∑
k=1

(−1)k
(
|B|
k

)
k = (−1)−|B||B|

d∑
k=1

(−1)k
(
|B| − 1
k − 1

)
= (−1)d−|B||B|

(
|B| − 2
d− 1

)
(15)

Also (use formula 0.151.4 in [14])

|B|−1∑
k=0

(−1)k
(
|B|
k

)
= (−1)|B|−1;

d∑
k=0

(−1)n
(
|B|
k

)
= (−1)d

(
|B| − 1
d

)
(16)

Combining these results we prove that

d(−1)−|B|
|B|−1∑
k=d+1

(−1)k
(
|B|
k

)
= −d− d(−1)d−|B|

(
|B| − 1
d

)
= −d− (−1)d−|B|(|B| − 1)

(
|B| − 2
d− 1

)
(17)

and then prove the last relation in the proposition.

Möbius transforms are intimately related to commutators that involve the projectors, e.g.[10, 11],

[Π(i),Π(j)] = D(i, j)[Π(i)−Π(j)]

[[Π(i),Π(k)],Π(j)] = Π(j)D(i, j, k)[Π(i)−Π(k)] + [Π(i)−Π(k)]D(i, j, k)Π(j). (18)

Working with Möbius operators is equivalent to taking into account the non-commutativity of the projectors
Π(i).

IV. RENORMALIZATION OF A PRE-BASIS INTO A GENERALIZED BASIS

Definition IV.1. A generalized basis in Hd is a set of n > d density matrices {σ(i)} which obey the relation∑
σ(i) = λ1, (19)

where λ, is a constant.

In this section we renormalize an arbitrary pre-basis into a generalized basis, using Möbius transformations.
If A in Eq.(8) is the total set Ω of Eq.(2), then Π(Ω) = 1 and we get∑

B⊆Ω

D(B) =
∑
i∈Ω

Π(i) +
∑
i,j

D(i, j) +
∑
i,j,k

D(i, j, k) + ... = 1. (20)

This is a resolution of the identity that involves not only the projectors Π(i), but also the Möbius operators
D(i, j), D(i, j, k), etc. The D(i, j) = Π(i, j)− Π(i)− Π(j) ‘belongs’ to both states i, j, and Eq.(18) shows that
it is related to the commutator [Π(i),Π(j)]. We divide this ‘joint property’ equally to all its ‘owners’: half of it
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to i and the other half to j. Similarly, the D(i, j, k) ‘belongs’ to the states labeled with i, j, k, and we allocate
a third of it to each of these three states; etc. So we resolve the identity in Eq.(20) as∑

i∈Ω

τ(i) = 1; τ(i) =
∑

B⊆Ω\{i}

D(B ∪ {i})
|B ∪ {i}|

= Π(i) +
1

2

∑
j

D(i, j) +
1

3

∑
j,k

D(i, j, k) + ... (21)

In τ(i) the summations are over all aggregations that involve the state i. We will show that the τ(i) with
appropriate normalization are density matrices.

The following lemma expresses τ(i) as a sum of projectors, and will be used below to prove that the τ(i) are
positive semidefinite operators. It has been proved indirectly in ref[6], through analogy with similar results in
cooperative game theory. Below we give a direct combinatorial proof.

Lemma IV.2. Let $(i|A) be the projectors

$(i|A) = Π({i} ∪A)−Π(A); A ⊆ Ω \ {i}. (22)

The τ(i) can be expressed as

τ(i) =
1

n

∑
A⊆Ω\{i}

(
n− 1
|A|

)−1

$(i|A) (23)

Proof. We count the number of projectors Π(A) with A ⊆ Ω \ {i}, in the right hand side of Eq.(21). There are(
n− 1− |A|

k

)
Mobius operators D(B ∪ {i}), with A ⊆ B ⊆ Ω \ {i}, and |B| = |A|+ k. Each of them contains

Π(A) with sign (−1)k+1, and also Π(A∪ {i}) with sign (−1)k. Therefore the number of projectors Π(A) in the
right hand side of Eq.(21), is

−
n−1−|A|∑
k=0

(−1)k
(
n− 1− |A|

k

)
1

|A|+ k + 1
= − 1

n

(
n− 1
|A|

)−1

(24)

We used here the combinatorial relation

N∑
i=1

(−1)i−1

(
N − 1
i− 1

)
1

w + i
=
w!(N − 1)!

(w +N)!
(25)

The number of projectors Π(A ∪ {i}) is also given by Eq.(24), but with a plus sign. This proves Eq.(23).

Remark IV.3. For a given A, the projectors $(i|A), Π({i}∪A), Π(A) commute with each other. Measurement
with $(i|A) will give the result ‘yes’, if the measurement Π({i} ∪ A) gives ‘yes’, and the measurement Π(A)
gives ‘no’. Measurement with $(i|A) = Π({i} ∪ A) − Π(A) gives the probability that the state of the system
belongs to the space H({i} ∪A) but does not belong to the space H(A).

Proposition IV.4. (1) The τ(i) are positive-semidefinite Hermitian matrices.

(2) The σ(i) given by

σ(i) =
n

d
τ(i);

d

n

∑
i∈Ω

σ(i) = 1, (26)

are density matrices which resolve the identity.
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(3) If the total set Σ consists of an orthonormal set of d states, then σ(i) = Π(i).

Proof. (1) τ(i) is given in Eq.(23), as a sum of projectors with positive coefficients, and this proves that they
are positive semidefinite Hermitian matrices.

(2) There are

(
n− 1
|A|

)
projectors $(i|A) with the same cardinality |A| of A. Therefore

Tr[τ(i)] =
1

n

∑
A⊆Ω\{i}

(
n− 1
|A|

)−1(
n− 1
|A|

)
=

1

n

d−1∑
|A|=0

1 =
d

n
. (27)

An alternative proof will be to use Eq.(21) and proposition III.1. It is seen that the trace of τ(i) does not
depend on i. It follows that the σ(i) = n

d τ(i), are density matrices.

(3) We have explained earlier, that if the total set Σ consists of an orthonormal set of d states, then the
Mobius operators D(B) = 0 for |B| ≥ 2. Therefore in this case σ(i) = Π(i).

Proposition IV.5. Let {Π(i)} be a pre-basis , {σ(i)} the corresponding generalized basis, and U a unitary
transformation. Then, the generalized basis corresponding to the pre-basis {ΠU (i) = UΠ(i)U†} is {σU (i) =
Uσ(i)U†}, and obeys the resolution of the identity

d

n

∑
i∈Ω

σU (i) = 1. (28)

In particular, if F is the Fourier transform, the generalized basis corresponding to the pre-basis {Π̃(i) =
FΠ(i)F †} is {σ̃(i) = Fσ(i)F †}, and obeys the resolution of the identity

d

n

∑
i∈Ω

σ̃(i) = 1. (29)

Proof. Eq.(7) shows that if D(B) are the Möbius transforms of the projectors Π(A), then the UD(B)U† are the
Möbius transforms of the projectors UΠ(A)U†. Then from Eq.(21), follows the statement in the proposition.
Acting with U and U† on both sides of Eq.(26), we prove the resolution of the identity in Eq.(28).

The Fourier transform is a special case of a unitary transformation.

A. Example I

In H2 we consider the total set of states:

Σ =

{
|X; 0〉, 1√

5
(|X; 0〉+ 2i|X; 1〉), 1√

2
(|X; 0〉+ |X; 1〉)

}
. (30)

In this case n = 3, and

D(1, 2) =
1

5

(
−1 2i
−2i 1

)
; D(1, 3) =

1

2

(
−1 −1
−1 1

)
; D(2, 3) =

1

10

(
3 −5 + 4i

−5− 4i −3

)
D(1, 2, 3) =

1

10

(
−3 5− 4i

5 + 4i −7

)
(31)
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Then

2

3
σ(1) = Π(1) +

1

2
[D(1, 2) + D(1, 3)] +

1

3
D(1, 2, 3) (32)

and similarly for σ(2), σ(3). Therefore

Π(1) =

(
1 0
0 0

)
→ σ(1) =

(
0.825 −0.125 + 0.100i

−0.125− 0.100i 0.175

)
;

Π(2) =
1

5

(
1 −2i
2i 4

)
→ σ(2) =

(
0.225 −0.125− 0.200i

−0.125 + 0.200i 0.775

)
Π(3) =

1

2

(
1 1
1 1

)
→ σ(3) =

(
0.450 0.250 + 0.100i

0.250− 0.100i 0.550

)
(33)

The resolution of the identity is

2

3
[σ(1) + σ(2) + σ(3)] = 1. (34)

We also give the Fourier transform of this generalized basis:

Π̃(1) =
1

2

(
1 1
1 1

)
→ σ̃(1) =

(
0.375 0.325− 0.100i

0.325 + 0.100i 0.625

)
;

Π̃(2) =

(
0.5 −0.3 + 0.4i

−0.3− 0.4i 0.5

)
→ σ̃(2) =

(
0.375 −0.275 + 0.200i

−0.275− 0.200i 0.625

)
Π̃(3) =

1

2

(
1 0
0 0

)
→ σ̃(3) =

(
0.750 −0.050− 0.100i

−0.050 + 0.100i 0.250

)
. (35)

The resolution of the identity in this case is

2

3
[σ̃(1) + σ̃(2) + σ̃(3)] = 1. (36)

B. Example II

In H2 we consider the total set of states:

Σ =

{
|X; 0〉, 1√

5
(|X; 0〉+ 2i|X; 1〉), 1√

2
(|X; 0〉+ |X; 1〉), 1√

5
(|X; 0〉+ 2|X; 1〉)

}
. (37)

In comparison to the previous example, we added here the fourth vector. In this case n = 4. The D(1, 2),
D(1, 3), D(2, 3), and D(1, 2, 3), are the same as in Eq.(31). In addition to them, we have here the

D(1, 4) =
1

5

(
−1 −2
−2 1

)
; D(2, 4) =

1

5

(
3 −2 + 2i

−2− 2i −3

)
; D(3, 4) =

1

10

(
3 −9
−9 −3

)
D(1, 2, 4) =

1

5

(
−3 2− 2i

2 + 2i −2

)
; D(1, 3, 4) =

1

10

(
−3 9
9 −7

)
D(2, 3, 4) =

1

10

(
−11 9− 4i

9 + 4i 1

)
; D(1, 2, 3, 4) =

1

10

(
11 −9 + 4i

−9− 4i 9

)
(38)
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Then

1

2
σ(1) = Π(1) +

1

2
[D(1, 2) + D(1, 3) + D(1, 4)] +

1

3
[D(1, 2, 3) + D(1, 2, 4) + D(1, 3, 4)]

+
1

4
D(1, 2, 3, 4) (39)

and similarly for σ(2), σ(3), σ(4). Therefore

Π(1) =

(
1 0
0 0

)
→ σ(1) =

(
0.850 −0.150 + 0.066i

−0.150− 0.066i 0.150

)
;

Π(2) =
1

5

(
1 −2i
2i 4

)
→ σ(2) =

(
0.316 −0.150− 0.200i

−0.150 + 0.200i 0.684

)
Π(3) =

1

2

(
1 1
1 1

)
→ σ(3) =

(
0.516 0.183 + 0.067i

0.183− 0.066i 0.484

)
;

Π(4) =

(
0 0
0 1

)
→ σ(4) =

(
0.316 0.117 + 0.067i

0.117− 0.066i 0.684

)
(40)

The resolution of the identity is

1

2
[σ(1) + σ(2) + σ(3) + σ(4)] = 1. (41)

V. NON-INDEPENDENCE AND REDUNDANCY IN THE GENERALIZED BASES

A. The coefficients sθ(i) of Hermitian operators with respect to a generalized basis

We consider a Hermitian operator θ and the n real numbers

sθ(i) =
d

n
Tr[θσ(i)];

n∑
i=1

sθ(i) = Tr(θ). (42)

Using the notation

θαβ = 〈X;α|θ|X;β〉; σαβ(i) = 〈X;α|σ(i)|X;β〉; α, β ∈ Z(d), (43)

we get

sθ(i) =
d

n

∑
α,β

θαβσβα(i). (44)

We assume that the n values of sθ(i) are known, and the d2 values of θαβ are unknown. Then this is a system
of n equations with d2 unknowns. There are three cases:

• If n = d2, we can calculate θαβ (i.e., the operator θ) from sθ(i). This is the case if we consider projectors
Π(i) associated to coherent states. We have studied this case in [6].

• If n > d2, and the values of sθ(i) are accurate, the n equations are compatible, and the system has an exact
solution. If the values of sθ(i) are ‘noisy’, we can still find an ‘optimum solution’. All computer libraries
can solve systems with more equations than unknowns, by minimizing the error, i.e., by minimizing the
incompatibility between the equations.
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• In the case d < n < d2, we cannot calculate the θαβ . However, the information contained in [sθ(1), ..., sθ(n)]
might be enough for certain physical conclusions. In particular we show that change in the order of these
numbers, might be linked to drastic physical changes in the system. It is this case, with d < n < d2, that
we study in this paper.

B. The sρ(i) as pseudo-probabilities for density matrices

If θ is a density matrix ρ, the sρ(i) are results of measurements on ρ with the Hermitian operators σ(i). A
given σ(i), is measurements with all its eigenprojectors |Eα(i)〉〈Eα(i)| (each of which gives a ‘yes-no’ outcome),
with weights its eigenvalues eα(i):

sρ(i) =
d

n
Tr[ρσ(i)] =

d

n

d∑
α=1

eα(i)〈Eα(i)|ρ|Eα(i)〉 (45)

Measurements with different σ(i) are incompatible (they do not commute), and they need to be performed
on different ensembles describing the same density matrix ρ. The n outcomes of such measurements are non-
independent, but obey the relations

0 ≤ sρ(i) ≤
d

n
M[σρ(i)] <

d

n
< 1;

n∑
i=1

sρ(i) = 1. (46)

Here M[σρ(i)] is the maximum eigenvalue of the density matrix σ(i). The sρ(i) ≤ d
nM[σρ(i)] follows from

Eq.(45), if we replace all eigenvalues with the maximum eigenvalue.
We call the sρ(i) pseudo-probabilities, where the ‘probabilities’ indicates that they obey Eq.(46), and the

‘pseudo’ indicates that they correspond to non-independent alternatives. Independent alternatives in the present
context, correspond to orthonormal bases. Since sρ(i) <

d
n , the case

sρ(i) = 1 if i = i0

sρ(i) = 0 otherwise, (47)

is not allowed for pseudo-probabilities. This shows clearly the non-independence in the generalized bases.

C. Use of Shannon entropy to quantify the non-independence and redundancy in generalized bases

An entropic quantity [15, 16] that involves n probabilities, takes values between 0 and log n. We show that
the entropy of our n pseudo-probabilities, takes values between (log n − log d) and log n. The lower bound is
intimately related to the fact that sρ(i) ≤ d

n .

Definition V.1. The Shannon entropy of a density matrix ρ with respect to our generalizes bases, is given by:

En(ρ) = −
n∑
i=1

sρ(i) log[sρ(i)]. (48)

Proposition V.2. The Shannon entropy of a density matrix ρ with respect to a generalized basis, is bounded
as follows:

log n− log d < En(ρ) ≤ log n. (49)
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Proof.

En(ρ) = −
n∑
i=1

{
d

n
Tr[ρσ(i)]

}
log

{
d

n
Tr[ρσ(i)]

}

= − log

(
d

n

) n∑
i=1

{
d

n
Tr[ρσ(i)]

}
− d

n

n∑
i=1

Tr[ρσ(i)] log Tr[ρσ(i)] (50)

Taking into account Eq.(42), and the fact that 0 ≤ Tr[ρσ(i)] ≤ 1, we get

En(ρ) = − log

(
d

n

)
− d

n

n∑
i=1

Tr[ρσ(i)] log Tr[ρσ(i)] > log n− log d. (51)

We note here that 0 ≤ Tr[ρσ(i)] ≤M[σ(i)] < 1 (Eq.(46)), and therefore the
∑

Tr[ρσ(i)] log Tr[ρσ(i)] is non-zero.
For the upper bound, we point out that En(ρ) involves n probabilities, and therefore log n is an upper

bound.

Example V.3.

• If ρ = 1
d1 then

sρ(i) =
1

n
; En

(
1

d
1

)
= log n. (52)

• If ρ = |X;α〉〈X;α|, then

sρ(i) =
d

n
σαα(i)

En(|X;α〉〈X;α|) = (logn− log d)− d

n

n∑
i=1

[σαα(i)] log [σαα(i)] (53)

For ρ = |X; 0〉〈X; 0| and with the generalized basis in Eq.(33), we get

σ00(1) = 0.825; σ00(2) = 0.225; σ00(3) = 0.450

E3(|X; 0〉〈X; 0|) = log 3− log 2 + 0.569 = 0.974 (54)

For ρ = |X; 0〉〈X; 0| and with the generalized basis in Eq.(40), we get

σ00(1) = 0.850; σ00(2) = 0.316; σ00(3) = 0.516; σ00(4) = 0.316

E4(|X; 0〉〈X; 0|) = log 4− log 2 + 0.603 = 1.296 (55)

We use the base e for logarithms, and the results are in nats.

We have seen above, that the upper bound log n in the set of {En(ρ)}, is reached with the density matrix
ρ = 1

d1. We have also seen that log n− log d is a lower bound, but it is an open question what is the infimum.
We call the

R = log n− log d = log(R+ 1) (56)

entropic redundancy index. It plays a complementary role to the redundancy index R in Eq.(3).
We have shown that the Shannon entropies En(ρ) take values in the interval between R and R+ log d, which

has length log d, for any n. In the standard Shannon entropy with respect to an orthonormal basis, R = 0.
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VI. REPRESENTATION OF VECTORS IN THE GENERALIZED BASIS

An arbitrary normalized vector in Hd can now be expanded in terms of n > d component vectors, as

|V 〉 =

n∑
i=1

|V (i)〉; |V (i)〉 =
d

n
σ(i)|V 〉. (57)

The scalar product is given by

〈V |U〉 =
∑
i,j

〈V |g(i, j)|U〉; g(i, j) =
d2

n2
σ(i)σ(j)

∑
i,j

g(i, j) = 1; [g(i, j)]† = g(j, i). (58)

The ‘metric’ g(i, j) consists of n2 matrices, each of which is a d× d matrix.
We express the density matrices σ(i) in terms of their eigenvalues (probabilities) pα(i) and their eigenvectors

|Eα(i)〉, as:

σ(i) =

d∑
α=1

pα(i)|Eα(i)〉〈Eα(i)|;
d∑

α=1

pα(i) = 1;

d∑
α=1

|Eα(i)〉〈Eα(i)| = 1

d

n

n∑
i=1

d∑
α=1

pα(i)|Eα(i)〉〈Eα(i)| = 1. (59)

Our formalism renormalizes each projector |i〉〈i| into the density matrix σ(i) which can be viewed as a set of
orthonormal bases |Eα(i)〉 with probabilities pα(i) attached to them.

Example VI.1. In H2 we consider the vector

|V 〉 =
1√
15

(
1 + 2i
3− i

)
. (60)

We also consider the matrices σ(1), σ(2), σ(3), in Eq.(33), and using the resolution of the identity in Eq.(36)
we expand this vector as

|V 〉 =
2

3
[σ(1)|V 〉+ σ(2)|V 〉+ σ(3)|V 〉] =

(
0.094 + 0.357i
0.103− 0.090i

)
+

(
−0.060− 0.004i
0.309− 0.142i

)
+

(
0.223 + 0.163i
0.361− 0.025i

)
. (61)

There is redundancy and ‘duplication’ in this approach, which is precisely the merit for using it. Errors due to
noise in some of these components are compensated by the other components, and the overall error is small, as
discussed below.

A. Robustness of the representation in the presence of noise

We add noise to the n components of the vector |V 〉 in Eq. (57), and we get the vector:

|W 〉 =
d

n

n∑
i=1

(1 + Ni)σ(i)|V 〉. (62)
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Here Ni are n independent real random numbers, uniformly distributed in the interval [−µ, µ] (in all numerical
calculations in this paper µ = 0.5).

As a measure of the error we calculate the number

ε = |||W 〉 − |V 〉|| =
√
εD + εND

εD =
∑
i

N2
i 〈V |g(i, i)|V 〉

εND =
∑
i 6=j

NiNj〈V |g(i, j)|V 〉. (63)

εD contains the diagonal terms which are positive numbers, and εND contains the non-diagonal terms which
might be negative.

For comparison, we also expand the same vector in the orthonormal basis of position states, as

|V 〉 =

d∑
α=1

V (α)|X;α〉; V (α) = 〈X;α|V 〉, (64)

We then add noise in these d components as follows:

|Worth〉 =

d∑
α=1

[1 + Nα]V (α)|X;α〉 = |V 〉+

d∑
α=1

NαV (α)|X;α〉. (65)

Here Nα are d independent real random numbers, uniformly distributed in the interval [−µ, µ].
As a measure of the error in this case, we calculate the number

εorth = |||Worth〉 − |V 〉|| =

[∑
α

N2
α|V (α)|2

]1/2

. (66)

Here we only have diagonal terms which are positive numbers. Therefore we expect that in general the error ε
will be smaller than the error εorth. Numerical results below confirm that this is the case.

Example VI.2. In H2 we consider the vector of Eq.(60). We used the three density matrices σ(1), σ(2),
σ(3), in Eq.(33) (which are renormalizations of the three vectors in Eq.(30)) as a generalized basis. Using three
independent random numbers, we calculated the errors in Eq.(63), and we called them ε3D, ε3ND and ε3. We
repeated the calculation five times (with different sets of random numbers) and found the errors given in table I.

We also used the four density matrices σ(1), σ(2), σ(3), σ(4), in Eq.(40), (which are renormalizations of
the four vectors in Eq.(37)) as a generalized basis. Using Eq.(62) with four independent random numbers, we
calculated the errors of Eq.(63), and we called them ε4D, ε4ND and ε4. Results in this case are also given in
table I.

Furthermore, we used the orthonormal basis in Eq.(64), and added noise in the two components as in Eq.(65),
using two independent random numbers. We then calculated the error εorth of Eq.(66), and give the results in
table I.

The results show that the generalized bases of the density matrices σ(i), lead to smaller error than the orthonor-
mal bases. In some cases, the non-diagonal parts of the error ε3ND, ε4ND, are negative, and this contributes to
the reduction of the error.
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VII. USE OF GENERALIZED BASES TO DETECT PHYSICAL CHANGES IN THE PRESENCE
OF NOISE

A. Location indices of a Hermitian operator

Definition VII.1. Let θ(λ) be a Hermitian operator, e.g. a Hamiltonian that depends on a coupling parameter
λ. Also let sθ(i|λ) be the n coefficients defined in Eq(42) (which are here functions of λ). We order the
sθ(1|λ), ..., sθ(n|λ) as

sθ(i1|λ) ≥ sθ(i2|λ) ≥ ... ≥ sθ(in|λ). (67)

The location index of θ(λ), with respect to {σ(i)}, is the n-tuple

L[θ(λ)] = (i1, ..., in) ∈ T. (68)

Here T is the set of the n! permutations of the n labels i, of sθ(i|λ).

The L[θ(λ)] indicates the position of θ(λ) with respect to the generalized basis of {σ(i)}. θ(λ) is more close
to σ(i1) (because sθ(i1|λ) is the largest), less close to σ(i2), even less close to σ(i3), etc.

In ref[6], we used this concept with projectors Π(i) related to coherent states which are linked to the familiar
concept of phase space, and then the L[θ(λ)] (with n = d2) locates the operator θ(λ) in phase space. Here the
physical interpretation of L[θ(λ)] is more abstract, because the Π(i) are arbitrarily chosen. Nevertheless, the
L[θ(λ)] describes the position of θ(λ) with respect to {σ(i)}, which resolve the identity.

Operators θ(λ) for which the n values sθ(i|λ) (with i = 1, ..., n) are different from each other (i.e., there is no
equality in Eq.(67)) are described by only one permutation (i1, ..., in). This motivates the following definition.

Definition VII.2. For a given set Θ = {θ(λ) | λ ∈ [a, b]}, its subset Θ̃ = {θ(λ) | λ ∈ I ⊆ [a, b]} contains all
θ(λ) for which the n values sθ(i|λ) (with fixed λ and i = 1, ..., n) are different from each other. The interval I
excludes all values of λ for which there are some equalities in Eq.(67).

Proposition VII.3. Within the set Θ̃, we say that θ(λ1) and θ(λ2) are comonotonic, and denote it as θ(λ1) ∼
θ(λ2), if L[θ(λ1)] = L[θ(λ2)]. Then ∼ is an equivalence relation and Θ̃ is partitioned into equivalence classes,
each of which contains operators which are comonotonic to each other.

Proof. The proofs of reflexibity (θ(λ1) ∼ θ(λ1)), and symmetry (if θ(λ1) ∼ θ(λ2) then θ(λ2) ∼ θ(λ1)), are trivial.

Transitivity holds within Θ̃. Indeed if L[θ(λ1)] = L[θ(λ2)] and L[θ(λ2)] = L[θ(λ3)] then L[θ(λ1)] = L[θ(λ3)]. It
is important for the proof that only one permutation corresponds to a given θ(λ). For this reason, transitivity
does not hold within Θ, in general.

Definition VII.4. If all θ(λ) in the set {θ(λ) | λ ∈ (c1, c2)} are comonotonic to each other, the R = (c1, c2) is
called comonotonicity interval (with respect to the operators θ(λ)). The points in the set [a, b] \ I are crossing
points from one comonotonicity region to another.

In this paper we show with examples, that comonotonic operators are physically similar operators. As λ
varies within a comonotonicity interval, we get mild physical changes in the system. The crossing points from
one comonotonicity interval to another, might be related with drastic physical changes in the system. In the
example below, this involves abrupt change in the ground state of the system.

B. Ground state of a physical system

In the Hilbert space H2 we consider a system with Hamiltonian which is described with the matrix

θ(λ) =

(
1 0
0 1

)
+ λ

(
0 1 + i

1− i 0

)
. (69)
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This two-dimensional system is used many times as an approximation to an infinite-dimensional system, where
due to low energy the system is practically in the subspace of the lowest two states. Many of the experimentally
available qubits are of this type (e.g., the superconducting qubits).

We will study changes to the ground state of the system as the coupling parameter λ varies, from negative to
positive values. We will show that at λ = 0 the ground state of the system changes abruptly from one vector,
to another one which is orthogonal to it.

A method is practically useful if it is robust in the presence of noise. If we add to the ‘real’ values of the
parameters a small amount of noise (due to experimental and other errors), the results should not change much.
In order to study this we consider the ‘noisy Hamiltonian’

φ(λ) =

(
1 + N1 0

0 1 + N2

)
+ λ

(
0 1 + i

1− i 0

)
. (70)

For simplicity, we add noise only to the ‘free part’ of the Hamiltonian, with the independent random numbers
N1,N2, which are uniformly distributed in the interval [−µ, µ]. φ(λ) is an approximation to the ‘real Hamilto-
nian’ θ(λ). We will show that the ground state of φ(λ) changes rapidly but smoothly, within a small region of
λ, around λ = 0 with width |N1 −N2| . The abrupt change of the ground state of θ(λ) at λ = 0, becomes a
rapid but smooth change of the ground state of φ(λ), within a small region around λ = 0.

Our method based on generalized bases is complementary to the calculation of eigenvalues and eigenvectors,
and is robust in the presence of noise, because of the redundancy which is inherent in it. For the noiseless
Hamiltonian θ(λ), there are two comonotonicity regions (−∞, 0) and (0,∞), and the point λ = 0 is a crossing
point from the first comonotonicity region to the second one. For the noisy Hamiltonian φ(λ), there are more
crossing points near λ = 0, which indicate that drastic physical changes occur in that region. There are no
crossing points far from λ = 0, and this reflects the fact that only mild physical changes occur there.

1. Noiseless Hamiltonians at zero temperature in a generalized basis

The eigenvalues (energy levels) and eigenvectors of the ‘noiseless Hamiltonian’ θ(λ), are

e1(λ) = 1 + λ
√

2; |e1〉 =
1

2

(
(1 + i)√

2

)
e2(λ) = 1− λ

√
2; |e2〉 =

1

2

(
−(1 + i)√

2

)
; 〈e1|e2〉 = 0. (71)

For λ < 0, the |e1〉 is the ground state of the system, while for λ > 0, the |e2〉 is the ground state of the system.
At λ = 0 the two eigenvalues become equal to each other, and the ground state changes abruptly from |e1〉 for
λ < 0, to |e2〉 (which is orthogonal to |e1〉) for λ > 0.

We next use the generalized bases studied in this paper. We first use the density matrices in Eq.(33) we find
that the sθ(i|λ) are

sθ(1|λ) =
2

3
[1− 0.050λ]; sθ(2|λ) =

2

3
[1− 0.650λ]; sθ(3|λ) =

2

3
[1 + 0.700λ]

sθ(1|λ) + sθ(2|λ) + sθ(3|λ) = 2. (72)

Therefore we have two comonotonicity regions (which we give together with the corresponding location indices
for θ(λ)):

R1 = (−∞, 0) ; L[θ(λ)] = (2, 1, 3)

R2 = (0,∞) ; L[θ(λ)] = (3, 1, 2) (73)
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At λ = 0 we pass from the first comonotonicity region to the second one, and this is associated with drastic
physical changes in the ground state of the system.

We also use the density matrices in Eq.(40) we find that the sθ(i|λ) are

sθ(1|λ) =
1

2
[1− 0.168λ]; sθ(2|λ) =

1

2
[1− 0.700λ]

sθ(3|λ) =
1

2
[1 + 0.500λ]; sθ(4|λ) =

1

2
[1 + 0.368λ]

sθ(1|λ) + sθ(2|λ) + sθ(3|λ) + sθ(3|λ) = 2. (74)

Therefore we have two comonotonicity regions:

R1 = (−∞, 0) ; L[θ(λ)] = (3, 4, 1, 2)

R2 = (0,∞) ; L[θ(λ)] = (2, 1, 4, 3) (75)

It is seen that with this generalized basis also, we arrive at the same conclusions. Two different generalized
bases lead to the same conclusion as the method of eigenvectors and eigenvalues.

2. Noiseless Hamiltonians at finite temperature in a generalized basis

Let

E = exp[−βθ(λ)]; sE(i) =
d

n
Tr[Eσ(i)], (76)

where β is the inverse temperature. Then the partition function is

Z = TrE =

n∑
i=1

sE(i). (77)

For the Hamiltonian θ(λ), we get

E = e−β

(
cosh(βλ

√
2) − 1+i√

2
sinh(βλ

√
2)

− 1−i√
2

sinh(βλ
√

2) cosh(βλ
√

2)

)
(78)

We use the density matrices in Eq.(33), and we find that the sE(i|λ) are

sE(1|λ) =
2

3
e−β [cosh(βλ

√
2) + 0.035 sinh(βλ

√
2)]

sE(2|λ) =
2

3
e−β [cosh(βλ

√
2) + 0.459 sinh(βλ

√
2)]

sE(3|λ) =
2

3
e−β [cosh(βλ

√
2)− 0.494 sinh(βλ

√
2)]. (79)

We also use the density matrices in Eq.(40), and we find that the sE(i|λ) are

sE(1|λ) =
1

2
e−β [cosh(βλ

√
2) + 0.118 sinh(βλ

√
2)]

sE(2|λ) =
1

2
e−β [cosh(βλ

√
2) + 0.494 sinh(βλ

√
2)]

sE(3|λ) =
1

2
e−β [cosh(βλ

√
2)− 0.352 sinh(βλ

√
2)]

sE(4|λ) =
1

2
e−β [cosh(βλ

√
2)− 0.260 sinh(βλ

√
2)]. (80)
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In calculations that involve the partition function, we can use a generalized basis and the sE(i|λ), instead of
an orthonormal basis. The merit of this, is robustness of the results in the presence of noise, as we show with
examples below.

We note that the partition function is

Z = 2e−β cosh(βλ
√

2), (81)

and from this we find the average energy

< e(λ) >= − 1

Z

∂Z

∂β
= 1− λ

√
2 tanh(βλ

√
2). (82)

It is seen that at low temperatures (β →∞),

λ > 0 → < e(λ) >≈ 1− λ
√

2;

λ < 0 → < e(λ) >≈ 1 + λ
√

2. (83)

This is consistent with the result in Eq.(71), at zero temperatures.

3. Hamiltonians with noise at zero temperature: eigenvalues approach

The eigenvalues and eigenvectors of the ‘noisy Hamiltonian’ φ(λ), are

eA(λ) = 1 + S −
√
D2 + 2λ2; S =

N1 + N2

2
; D =

N1 −N2

2

eB(λ) = 1 + S +
√
D2 + 2λ2 (84)

It is convenient to replace the random numbers N1,N2, with the S,D which are also independent random
numbers. The corresponding eigenvectors (not normalized) are given by

|eA(λ)〉 =

 − λ
|λ| (1 + i)

D
|λ| +

√
2 +

(
D
|λ|

)2


|eB(λ)〉 =

 − λ
|λ| (1 + i)

D
|λ| −

√
2 +

(
D
|λ|

)2

 ; 〈eA(λ)|eB(λ)〉 = 0. (85)

The eigenvectors depend on the sign of λ and on the value of D
|λ| . The lowest eigenvalue is eA(λ) and the

corresponding eigenvector |eA(λ)〉.
For small values of D

|λ| the ground state |eA(λ)〉 can be written as

|eA(λ)〉 =

 − λ
|λ| (1 + i)

√
2 + D

|λ| +
√

2
4

(
D
|λ|

)2

− ...

 (86)

In this case for λ < 0, we get |eA(λ)〉 ≈ |e1〉, and for λ > 0, we get |eA(λ)〉 ≈ |e2〉. It is seen that when the
noise parameter D is much smaller than the coupling parameter, we recover the results of the noiseless case,
discussed earlier.
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Without loss of generality, we assume that D ≥ 0. The physically interesting and practically useful case, is
to assume a fixed noise parameter D, and study the ground state as λ varies within the region (−D,D), and
in particular very close to 0. This is the limit of large values of D

|λ| . We compare |eA(−|λ|)〉 with |eA(|λ|)〉, and

see to what extend they are orthogonal as in the noiseless case. In particular we calculate the overlap

r(|λ|) =
〈eA(−|λ|)|eA(|λ|)〉√

〈eA(−|λ|)|eA(−|λ|)〉〈eA(|λ|)|eA(|λ|)〉
=
−2 +A2

2 +A2
; A =

D

|λ|
+

√
2 +

(
D

|λ|

)2

. (87)

For fixed D and when λ is close to zero, the D
|λ| is large, and the r(|λ|) is close to 1. It is seen that as λ changes

from negative to positive values, the |eA(−|λ|)〉 changes quickly but smoothly to |eA(|λ|)〉 (the angle between
these two vectors is small and decreases gradually as |λ| goes near 0). There are no discontinuities, in the sense
that for any given value of r(|λ|), we can find the value of D

|λ| which leads to it. Therefore in the presence of

noise, the method of the eigenvalues and eigenvectors cannot find the abrupt change in the ground state of the
‘real system’, at λ = 0. Instead, it finds rapid but smooth changes of the ground state within the small interval
(−D,D), and slow changes in the large region outside it.

Above we worked with the eigenvalues eA(λ), eB(λ) which are random numbers. An alternative approximative
approach, will be to work with their expectation values. We assume that the average value of the random
variables S,D is 0, and that the standard deviation of D is σ. If g(D) is a function of D, then its expectation
value E[g(D)] is given by (e.g., Eq.(5-61) in [17])

E[g(D)] = g(0) + g′′(0)
σ2

2
+ ... (88)

If we ignore the higher moments, we get

E[
√
D2 + 2λ2] ≈ |λ|

√
2 +

σ2

23/2|λ|
. (89)

Therefore

E[eA(λ)] ≈ 1− |λ|
√

2− σ2

23/2|λ|
; E[eB(λ)] ≈ 1 + |λ|

√
2 +

σ2

23/2|λ|
. (90)

This approach also shows that the ground state energy (averaged over noise), is E[eA(λ)], and as we go from
negative to positive values of λ, the ground state changes from |eA(−|λ|)〉 to |eA(|λ|)〉. As we explained above
(using Eq.(87)) this is a smooth but quick change of the ground state.

4. Hamiltonians with noise at zero temperature: generalized bases approach

We next use the generalized bases studied in this paper. We first use the density matrices in Eq.(33) we find
that the sθ(i|λ) are:

sθ(1|λ) =
2

3
[1 + 0.825N1 + 0.175N2 − 0.050λ] =

2

3
[1 + N1 − 0.350D − 0.050λ]

sθ(2|λ) =
2

3
[1 + 0.225N1 + 0.775N2 − 0.650λ] =

2

3
[1 + N1 − 1.550D − 0.650λ]

sθ(3|λ) =
2

3
[1 + 0.450N1 + 0.550N2 + 0.700λ] =

2

3
[1 + N1 − 1.100D + 0.700λ]

sθ(1|λ) + sθ(2|λ) + sθ(3|λ) = 2 + N1 + N2. (91)
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We assume that D > 0 and we find the following comonotonicity intervals (which we give together with the
corresponding location indices of θ(λ)):

R1 = (−∞,−2D) ; L[θ(λ)] = (2, 1, 3)

R2 = (−2D,−0.333D) ; L[θ(λ)] = (1, 2, 3)

R3 = (−0.333D, 1.153D) ; L[θ(λ)] = (1, 3, 2)

R4 = (1.153D,∞) ; L[θ(λ)] = (3, 1, 2) (92)

There are three crossing points near λ = 0 (at −2D,−0, 333D, 1.153D), which indicate that drastic physical
changes occur in that region. There are no crossing points far from λ = 0, and this indicates that only
mild physical changes occur there. We note that if we average over the random variable D, then we get two
comonotonicity regions (−∞, 0) and (0,∞) as in the noiseless case.

We also use the density matrices in Eq.(40), and we find that the sθ(i|λ) are:

sθ(1|λ) =
1

2
[1 + 0.850N1 + 0.150N2 − 0.168λ] =

1

2
[1 + N1 − 0.300D − 0.168λ]

sθ(2|λ) =
1

2
[1 + 0.316N1 + 0.684N2 − 0.700λ] =

1

2
[1 + N1 − 1.368D − 0.700λ]

sθ(3|λ) =
1

2
[1 + 0.516N1 + 0.484N2 + 0.500λ] =

1

2
[1 + N1 − 0.968D + 0.500λ]

sθ(4|λ) =
1

2
[1 + 0.316N1 + 0.684N2 + 0.368λ] =

1

2
[1 + N1 − 1.368D + 0.368λ]

sθ(1|λ) + sθ(2|λ) + sθ(3|λ) + sθ(3|λ) = 2 + N1 + N2. (93)

We assume that D > 0 and we find the following comonotonicity intervals:

R1 = (−∞,−3D) ; L[θ(λ)] = (2, 1, 4, 3)

R2 = (−3D,−2D) ; L[θ(λ)] = (2, 1, 3, 4)

R3 = (−2D,−0.33D) ; L[θ(λ)] = (1, 2, 3, 4)

R4 = (−0.33D, 0) ; L[θ(λ)] = (1, 3, 2, 4)

R5 = (0, D) ; L[θ(λ)] = (1, 3, 4, 2)

R6 = (D, 1.99D) ; L[θ(λ)] = (3, 1, 4, 2)

R7 = (1.99D,∞) ; L[θ(λ)] = (3, 4, 1, 2) (94)

There are six crossing points near λ = 0 (at −3D,−2D − 0.33D, 0, D, 1.99D), which indicate that drastic
physical changes occur in that region. The fact that there are no crossing points far from λ = 0, indicates that
only mild physical changes occur there. This conclusion is the same as the conclusion derived earlier using a
different generalized basis, and also using eigenvalues and eigenvectors. Again, if we average over the random
variable D, then we get two comonotonicity regions (−∞, 0) and (0,∞) as in the noiseless case.

5. Shannon entropy in a generalized basis

Let

H(λ) =
1

h1(λ) + h2(λ)

(
h1(λ) h3(λ)

[h3(λ)]∗ h2(λ)

)
(95)
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be a positive semidefinite Hamiltonian, where the h1(λ), h2(λ) are real functions of the coupling parameter λ,
and h3(λ) is a complex function of λ. We consider the pseudo-probabilities

sH(i|λ) =
d

n
Tr[H(λ)σ(i)];

n∑
i=1

sH(i|λ) = 1. (96)

where {σ(i)} is a generalized basis, and the corresponding entropy

En(λ) = −
n∑
i=1

sH(i|λ) log[sH(i|λ)]. (97)

We also consider the von Neumann entropy

EvN (λ) = −Tr[H(λ) logH(λ)]. (98)

Proposition VII.5. A necessary and sufficient condition for the eigenvalues of H(λ) to be equal to each other
(and equal to 1/2), is that h1(λ) = h2(λ) and h3(λ) = 0. If there exists a value λ = λ0 which satisfies these
conditions, then the entropies for this Hamiltonian are:

En(λ0) = log n; EvN (λ0) = log 2. (99)

Proof. The characteristic equation of the matrix H(λ) is

(h1 − µ)(h2 − µ)− |h3|2 = 0. (100)

The discriminant of this equation is

∆ = (h1 − h2)2 + |h3|2. (101)

The eigenvalues are equal to each other when the discriminant is equal to zero and this gives the conditions
h1(λ) = h2(λ) and h3(λ) = 0. If there exists a value λ = λ0 which satisfies these conditions, the Hamiltonian
at this value is H(λ0) = 1

21, and therefore

sH(i|λ0) =
2

n
Tr

[
1

2
σ(i)

]
=

1

n
. (102)

From this follows that En(λ0) = log n. Also when the eigenvalues are equal to each other (and equal to 1/2),
then EvN (λ0) = log 2.

We have explained earlier that when the two eigenvalues are equal to each other, the ground state changes
abruptly from one state to another. In the proposition above we have shown that at this point the entropies
En(λ0) (and also the EvN (λ0)) take their maximum values.

We normalize the Hamiltonian θ(λ) and also the ‘noisy Hamiltonian’ φ(λ) in Eqs.(69),(70), so that their trace
is one:

θ1(λ) =
θ(λ)

Tr[θ(λ)]
; φ1(λ) =

φ(λ)

Tr[φ(λ)]
(103)

We calculated the pseudo-probabilities sθ1(i|λ), sφ1
(i|λ) for values of λ close to zero so that these operators are

positive semidefinite. We then calculated the entropy En with the generalized basis in Eq.(33), and also with
the generalized basis in Eq.(40) (we denote them E3, E4 for the noiseless normalized Hamiltonian θ1(λ), and
Enoise

3 , Enoise
4 for the noisy normalized Hamiltonian φ1(λ), correspondingly).
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We also calculated the von Neumann entropy EvN (λ) and Enoise
vN (λ), for θ1(λ) and φ1(λ), correspondingly.

There is an exact symmetry EvN (−λ) = EvN (λ) for the von Neumann entropy. For the entropy in Eq.(97),
there is an approximate symmetry En(−λ) ≈ En(λ), for small values of λ.

In table II we give the von Neumann entropy EvN/ log 2, and the entropies E3/ log 3 and E4/ log 4, for various
values of λ. We also give the quantities

EvN − Enoise
vN

EvN
;

E3 − Enoise
3

E3
;

E4 − Enoise
4

E4
. (104)

It is seen that the entropies En are more robust in the presence of noise, than the von Neumann entropy EvN (λ).
For the amounts of noise that we used, the von Neumann entropy has error of approximately 9%, and the other
entropies have error less than 1%. We note that in the example that we considered, all quantities in Eq.(104)
take positive values. This is because noise makes the eigenvalues more unequal (see Eq.(84)) and this decreases
the entropy.

We conclude that the entropies associated with our generalized bases, are more robust in the presence of noise
than the entropies associated with orthonormal bases.

VIII. DISCUSSION

We introduced redundancy into the concept of basis in a d-dimensional Hilbert space. We started with a
total set of n > d vectors, and renormalized it into a a generalized basis, which consists of n density matrices
that resolve the identity. The renormalization formalism uses Möbius operators, and is inspired by the Shapley
methodology in cooperative game theory, as discussed in [6] for the special case of n = d2 coherent states. In
the present paper we use an arbitrary n in the region d < n < d2. The non-independence and redundancy in
a generalized basis, is quantified with a Shannon type of entropy which takes values in the interval (log n −
log d, log n).

We have shown that the merit of calculations in a generalized basis, is that the results are sensitive to physical
changes and robust in the presence of noise. These two requirements may appear to be contradictive, but they
are not, because noise affects the whole basis in an almost equal way, while physical changes affect some parts
of the basis more than others. We have shown with examples, that addition of noise in the coefficients of a
vector in a generalized basis, does not change the vector significantly.

We have also applied the formalism to the study of the ground state of a system with the Hamiltonian
in Eq.(69), which is frequently used as an approximation to an infinite-dimensional system, operating in the
subspace of the lowest two states. The concepts ‘location index with respect to a generalized basis’, and
‘comonotonicity intervals of the coupling parameter’, have been used to detect drastic changes in the ground
state of the system, as the coupling parameter changes. It has been shown that the method is robust in the
presence of noise.

The work extends the area of coherent states, POVMs and frames and wavelets, in a new direction. It starts
from any total set of n > d vectors, and leads to n mixed states that resolve the identity. The method has
been used only with finite-dimensional Hilbert spaces. However cooperative game theory, is also applied to
a continuum of players (e.g. [18]), and this could be used to extend our methodology to infinite-dimensional
Hilbert spaces. In this case the sums contain an infinite number of terms, and the challenge is to ensure that
they converge.

We note that the present paper is not related to work on quantum game theory, which is game theory with
the superposition principle. Here we use the mathematical methodology of Shapley in cooperative game theory,
to renormalize the vectors in a total set, into density matrices that resolve the identity.

[1] C. E. Shannon, Bell Syst. Tech. J., 30, 47 (1951)



22

[2] J. von Neumann, O. Morgenstern, ‘Theory of games and economic behaviour’ (Princeton Univ. Press, Princeton,
1944)

[3] L.S. Shapley, Ann. Math. Studies 28, 307 (1953); (reprinted in [4])
[4] A. Roth (Ed.), ‘The Shapley value: Essays in honour of Lloyd S. Shapley’ (Cambridge Univ. Press, Cambridge,

1988)
[5] B. Peleg, P. Sudholter, ‘Introduction to the theory of cooperative games’ (Springer, Berlin, 2003)
[6] A. Vourdas, Ann. Phys. 376, 153 (2017)
[7] J.R. Klauder, B-S Skagerstam (Ed.) ‘Coherent states’ ((World Sci., Singapore, 1985)
[8] S.T. Ali, J-P Antoine, J-P Gazeau, ‘Coherent states, wavelets and their generalizations’ (Springer, Berlin, 2000)
[9] Y. Meyer, ‘Wavelets and operators’ (Cambridge Univ. Press, Cambridge, 1992)

[10] A. Vourdas, J. Phys. A49, 145002 (2016)
[11] A. Vourdas, J. Geom. Phys. 101, 38 (2016)
[12] G.C. Rota, Z. Wahrseheinlichkeitstheorie 2, 340 (1964)
[13] M. Barnabei, A. Brini, G.C. Rota, Russian Math. Surveys, 41, 135 (1986)
[14] I.S. Gradshteyn, I.M. Ryzhik, ‘Table of integrals, series and products’ (Academic, London, 1965)
[15] E. Carlen, Contemp. Math., 529, 73 (2009)
[16] M.B. Ruskai, J. Math. Phys., 43, 4358 (2002)
[17] A. Papoulis, ‘Probability, random Variables and stochastic processes’ (Mc Graw-Hill, New York, 1965)
[18] R. Aumann, L. Shapley, ‘Values of non-atomic games’ (Princeton Univ. Press, Princeton, 1974)



23

TABLE I: The vector |V 〉 in Eq.(60), is represented with 3,4,2 component vectors, using the generalized bases in Eqs.
(33), (40) and the orthonormal basis in Eq.(64), correspondingly. Random numbers (uniformly distributed in the interval
[−0.5, 0.5]) are added to these components as in Eq.(62), and approximations to |V 〉 are calculated. The corresponding
errors ε3, ε4, εorth are shown. Their diagonal parts (ε3D, ε4D) and non-diagonal parts (ε3ND, ε4ND) are also shown. The
calculation has been repeated five times, with different sets of random numbers.

ε3 ε3D ε3ND ε4 ε4D ε4ND εorth

0.212 0.058 −0.013 0.296 0.049 0.038 0.310

0.245 0.075 −0.015 0.144 0.021 0 0.340

0.181 0.032 0 0.088 0.025 −0.017 0.233

0.187 0.026 0.008 0.204 0.018 0.022 0.383

0.143 0.051 −0.030 0.066 0.019 −0.015 0.347
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TABLE II: Various entropies for the Hamiltonians θ1(λ) and φ1(λ) in Eq.(103) (the entropies in the latter case have the
superfix ‘noise’). EvN is the von Neumann entropy, E3 is the entropy with respect to the generalized basis in Eq.(33) ,
and E4 is the entropy with respect to the generalized basis in Eq.(40).

λ EvN/ log 2 E3/ log 3 E4/ log 4
EvN−Enoise

vN
EvN

E3−Enoise
3

E3

E4−Enoise
4

E4

−0.4 0.754 0.977 0.987 0.098 0.019 0.007

−0.3 0.866 0.987 0.992 0.094 0.019 0.007

−0.2 0.941 0.994 0.996 0.092 0.018 0.008

−0.1 0.985 0.998 0.999 0.091 0.016 0.009

0 1 1 1 0.091 0.015 0.009

0.1 0.985 0.998 0.999 0.091 0.011 0.009

0.2 0.941 0.994 0.996 0.092 0.009 0.008

0.3 0.866 0.987 0.992 0.094 0.005 0.008

0.4 0.754 0.977 0.986 0.098 0 0.006
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