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Abstract—Failure in a cloud system is defined as an even that 
occurs when the delivered service deviates from the correct 
intended behavior. As the cloud computing systems continue to 
grow in scale and complexity, there is an urgent need for cloud 
service providers (CSP) to guarantee a reliable on-demand 
resource to their customers in the presence of faults thereby 
fulfilling their service level agreement (SLA). Component failures 
in cloud systems are very familiar phenomena. However, large 
cloud service providers’ data centers should be designed to 
provide a certain level of availability to the business system. 
Infrastructure-as-a-service (Iaas) cloud delivery model presents 
computational resources (CPU and memory), storage resources 
and networking capacity that ensures high availability in the 
presence of such failures. The data in-production-faults recorded 
within a 2 years period has been studied and analyzed from the 
National Energy Research Scientific computing center (NERSC). 
Using the real-time data collected from the Computer Failure Data 
Repository (CFDR), this paper presents the performance of two 
machine learning (ML) algorithms, Linear Regression (LR) Model 
and Support Vector Machine (SVM) with a Linear Gaussian 
kernel for predicting hardware failures in a real-time cloud 
environment to improve system availability. The performance of 
the two algorithms have been rigorously evaluated using K-folds 
cross-validation technique. Furthermore, steps and procedure for 
future studies has been presented. This research will aid computer 
hardware companies and cloud service providers (CSP) in 
designing a reliable fault-tolerant system by providing a better 
device selection, thereby improving system availability and 
minimizing unscheduled system downtime. 

Keywords— Failure; Cloud Computing; Machine Learning; 
Availability. 

I. INTRODUCTION 

Increasing amount of cloud resources provide the infrastructure 
of ICT utilities at a global proportion. Cloud users request for 
cloud resources from Cloud service providers (CSP) to provide 
diverse ICT utilities such as business-critical processes, high 
performance computing, social networking and scientific 
computing. Due to the sheer scale of cloud datacenters, 
resources failure are inevitable and bound to happen, therefore 
it is of critical importance to ensure the reliability and 
availability in such systems. There is also an urgent need for 
CSP to offer a scalable, efficient and reliable on-demand 
resource to their customers in the presence of faults thereby 
fulfilling their service level agreement (SLA). Component 
failures within the cloud infrastructure are common, but large 
cloud datacenters should be designed to guarantee a certain level 
of availability to the Business system. Infrastructure-as-a-

Service (IaaS) cloud presents computational resources (e.g., 
CPU and memory), storage resources, and networking capacity 
that ensures high availability in the face of such failures[1]. 
Cloud systems can have tremendous failure rates as they feature 
many servers that are geographically dispersed with a high 
workload. The availability of such systems can be quickly 
endangered if the failure is not sufficiently handled[2]. To 
guarantee availability of services to cloud users, cloud 
infrastructures should be designed such that they should have 
minimal or insignificant system downtime. Replication of data 
and check pointing technique are some of the common existing 
strategies used to ensure availability of cloud services[3]. 

Failure prediction is necessary for predictive maintenance due to 
its ability to prevent failure incidents and maintenance costs[4]. 
Predictive maintenance is about anticipating failures and taking 
proactive actions[5]. Recent advances in machine learning and 
cloud storage have created a great opportunity to utilize the huge 
amount of data generated from cloud infrastructures which 
provides room to predict when a component is likely to 
malfunction or fail. Currently, mathematical and statistical 
modeling are the prominent approaches used for failure 
predictions, these are based on equipment degradation physical 
models and machine learning techniques, respectively[6]. 
According to [7], Cloud computing is usually associated with 
failures. The risk of failure can be viewed as the possibility of 
suffering loss, or exposure in the cloud-computing life cycle. 
Generally, cloud computing risk management consists of 
processes, approaches, and techniques that are employed to 
reduce cloud computing risks failure. Although, much research 
and advancement have been carried out in this area cloud, some 
companies have suffered a huge amount of downtime as a  result 
of cloud failure which has led to a significant revenue loss [7]. 
Some instances of cloud failures are the Database Cluster failure 
caused at Saleforce.com. Also in 2011 Microsoft Cloud service 
outage lasted for 2.5 hours[8], with Google Docs service outage 
lasting for an hour. These were because of memory leaks due to 
a software update [9], [10], costing both business millions of 
dollars. Similar reports were witnessed by Gmail services down 
for about 50 minutes, Amazon Web services for 6 hours, while 
Facebook’s photos and “likes” services were down costing 
customer satisfaction. Multiple business hosting their websites, 
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such as with GoDaddy, suffered 4 hours’ downtime affecting 5 
million websites[10]. So having a pre-knowledge of the failures 
emerging within the cloud infrastructures will assist in 
minimizing the effect of cloud failures thereby preventing 
business and financial losses, even though according to some 
researchers there are possibilities that in the future, SLA-Based 
Google App engine would expect to manage all causes of 
failures[11]. The paper is organized as follows: Section 2 
presents some related work while Section 3 briefly discusses the 
concept of cloud computing and its deployment models. Section 
4 presents an overview of the NERSC data while Section 5 
describes the methodology of our approach. Experiments and 
discussion of results is  presented in Section 6 and finally Section 
7 concludes the paper and suggests future work. 

II. RELATED WORK 

A large number of research effort have been devoted to improve 
the efficiency of several approaches and procedures in failure 
prediction[12],[13]–[16],[17],[6], [18] but very few have 
addressed the issue of failure prediction in a cloud based 
environment[4],[19],[17],[20]. We limit our review to recent 
research work conducted in this area. For instance the authors in  
[6] used Bayesian network to predict failure probabilities. While 
the research seamed interesting, they did not disclose the dataset 
used in conducting the analysis thus making it hard to replicate 
or compare other Machine Learning (ML) Algorithms to their 
proposed strategy. Authors in [19] used an ensemble classifier 
to achieve hard drive failure prediction on a cloud infrastructure. 
The data they conducted their work on was acquired through two 
sources, namely Windows performance counts and Self-
Monitoring Analysis and Reporting Technology (S.M.A.R.T or 
SMART)[21]. This research closely resembles the intended 
work, but they only considered hard disk failure in the cloud 
architecture while real time business critical systems relies on 
other components and not only hard drive, but rather a host of 
Hardware (such as: CPU, Disk, DIMM, Cable .etc.).  

Recently, authors in [18] used data acquired from cycles to 
predict Integrated Circuit (IC) failures. Same  in the case of [19] 
they also considered only one Hardware failure occurrence. 
They analyzed fourteen (14) hardware samples which is quite 
impressive. However, the main limitation is that the data they 
used has not been made publicly available. Our approach is to 
use a publicly available hardware dataset to gain a machine 
leaning (ML) classifier to predict hardware failures, contrary to 
most of the state- of- the art research work being conducted in 
this area. Our choice of selecting a public dataset in performing 
our analysis is simply to enable other researchers in the field to 
compare their outcome with our obtained results. Furthermore, 
in this work we are not limiting our experiments to a single 
hardware, rather we attempt to predict several hardware failures 
within a cloud infrastructure. For more comprehensive review 
on other literatures or works by other scholars, the reader is 
referred to [22],[23] ,[24],[25],[26] ,[27],[28],[29],[5], [6], [30] 

III. OVERVIEW OF THE NERSC DATA 

 
This NERSC data [42] was collected with the purpose of 
providing failure specifics for I/O related systems and 
components in as much detail as possible so that analysis might 
produce some useful findings. Data were collected for storage, 
networking, computational machines, and file systems in 
production use at NERSC from the 2001-2006 timeframe. The 
data was extracted form a database used for tracking system 
troubles, called Remedy, and is currently stored in a mySQL 
database and available for export to Excel format. As part of the 
SciDAC Petascale Data Storage Institute (PDSI) project 
Collaboration this is the failure data for the High Performance 
Computing System-2 (MPP2) operated by the Environmental 
and Molecular Science Laboratory EMSL), Molecular Science 
Computing Facility (MSCF)[14], [42]. 
The MPP2 computing system has the following equipment and 
capabilities: 

 HP/Linux Itanium-2 
 980 node/1960 Itanium-2 processors 

(Madison, 1.5 GHz) configured as follows: 
 574 nodes are "fat" compute nodes 

with 10 Gbyte RAM and 430 Gbyte 
local disk 

 366 nodes are "thin" compute nodes 
with 10 Gbyte RAM and 10 Gbyte 
local disk 

 34 nodes are Lustre server nodes (32 
OSS, 2 MDS) 

 2 nodes are administrative nodes 
 4 nodes are login nodes 

 Quadrics QsNetII interconnect 
 11.8 TFlops peak theoretical performance 
 9.7 terabytes of RAM 
 450 terabytes of local scratch disk space 
 53 terabytes shared cluster file system, Lustre 

IV. METHODOLOGY 

The approach we employed is to analyze the data because out of 
all the datasets available on Computer Failure Data Repository 
(CDFR) website[14][42]. The National Energy Research 
Scientific Computing Center (NERSC)[42] is one dataset that 
has never been analyzed or reported on in any paper. Thus, the 
data is examined to explore the correlations that may exist 
between failed hardware and the time (in years). A summary of 
the process is depicted in Figure 1. In this research, work time is 
considered as the predictor variable (𝑿𝑿), hardware failures are 
the response variables (𝒀𝒀), and we use two machine-learning 
algorithms, Linear Regression Model (LRM) and Support 
Vector Machine (SVM) with a Gaussian kernel. A linear 
regression model that considers that the relationship between the 
predictor and response variable is linear in nature. Therefore, the 
relationship can be expressed as follows: 

ϕ(X) Y = βX  + α (1) 

Observed  
Dataset 

System Component 
Categorization 

Correlation 
Analysis 

Classification Failure Prediction  

INPUT 

Figure 1. Failure Prediction Process 



 

Where β is the vector of regression coefficients and α is the 
intercept also known as an offset. The support Vector Machine 
model with a Gaussian Kernel assumes that the relationship 
between X and Y is Nonlinear in nature and can be expressed as: 

                              

                             Y=wϕ(X) + b                                  (2)                          

Where φ(X) is the nonlinear mapping of X using a Gaussian 
kernel function given in Equation (3). 
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Where 𝒘𝒘 are the weights while  𝒃𝒃 is the intercept. 
 

V. EXPERIMENT AND DISCUSSION OF RESULT 
 

Contrary to what is written on the CDFR website, the dataset 
covers a whole range from 2001-2006[42]. The actually dataset 
when downloaded covers from 2006 to 2008 only[42]. This 
dataset is first analyzed in this paper. The System components 
are   categorized into seven (7) groups; Disk, DIMM (dual in-
line memory module), OS, Platform, HSV, CPU, and Others. 
We present our obtained results using bar charts as shown in 
Figure 2, This enabled us have a deeper insight and better 
understanding  of the data as well as  visualizing the relationship 
between the individual component failures and the time (in 
years).  

From the obtained predicted result presented in Table 1, 2 
and 3, using there (3) different machine learning algorithms, it 
is evident that there exist a correlation between component 
failures and time as shown in Figure 1. In terms of the CPU 
failure as presented in Figure 2(a), it was observed that the 
number of failure in the year 2006 was over 90 while in 2007 the 
failure significantly decreased to about 40, and in 2008 a slight 
decrease was noticed above 20.  

 

 

 
 
                                                         (a)                                                                                      (b)  
 

TABLE 1 
 

DISK 
X linearP GausianP PolynomialP 

2009 223 253 0 
2013 0 215 0 
2016 0 145 0 

 

TABLE 2 
 

DIMM 
X linearP GausianP PolynomialP 

2009 88 90 0 
2013 0 72 0 
2016 0 23 0 

 
 

TABLE 3 
 

CPU 
X LinearP GausianP PolynomialP 

2009 18 23 0 
2013 0 17 0 
2016 0 10 0 

 



            
 
                                                    (c)                                                                                                  (d) 
 
 
 
In another related scenario, the DIMM failure graph as presented 
in 2(b) indicates that in 2006 the failure was about 350, while in 
2007 there was a rapid drop to about 150 and finally in 2008 it 
decreased to about 100.  

The Disk failure graph was presented in Figure 2(c) where it was 
observed that in 2006 the failure increased to over 800, and in 
2007 it drooped a little bit over 600 and finally in 2008, it 
dropped to almost 300.The results for other failures were also 
presented in Figure 2(d) where it was observed that in 2006 the 
failure was over 120, while in 2007 it went down to a little bit 
above 100, and finally in 2008 a large decrease was noticed 
where it went further down to about 30. Unfortunately, the data 
 is insufficient for this present task. We have successfully shown 
the possibility of predicting some components that will fail in 
the future. However, as the number of predicted year’s increases, 
both models (especially the linear model) fails, as shown in 
Table 1, 2, 3, thus consistently given a zero value which might 
be as a result of   insufficient data obtained. 

We believe that better results may be achieved if the data 
collected spanned over 20 years. 

 Nonetheless, we have seen that as the years come near our 
present day, the failure rates decrease. This can be attributed to 
improvement in technology, more awareness, and training and 
the availability of some improved fault tolerance systems. 

VI. CONCLUSION 

As failure becomes more prevalent in cloud systems, the ability 
to predict them is becoming critical .A good failure prediction 
model should not only focus on accuracy but also focus on how 
easily the obtained predicted result can be interpreted to a better 
fault tolerance. In this paper, we demonstrate how public 
available data can be invaluable regardless of the data size even 

though more data would have allowed us more system design 
insight into the data. We present an approach to failure 
prediction in the cloud-based environment to increase system 
availability using Liner Regression (LG) and Support vector 
machine (SVM) model respectively. In the future, this work will 
further examine a huge dataset that will be spanned over many 
years in order to get a more accurate predictions based on SVM. 
Another machine learning approach, Decision trees may be 
explored that provides superior performance over SVMs in the 
current scenario setting or similar problem setting. 

ACKNOWLEDGMENT  
We would like to thank Bill Kramer and Akbar Mokhtarani 

from NERSC for collecting the data and sharing it. 

 

REFERENCES 
[1] R. Ghosh, L. Francesco, F. Frattini, S. Russo, and S. T. Kishor, 

“Scalable analytics for IaaS cloud availability,” IEEE Trans. Cloud 
Comput., vol. 2, no. 1, pp. 57–70, 2014. 

[2] T. Chalermarrewong, T. Achalakul, and S. C. W. See, “The Design 
of a Fault Management Framework for Cloud,” 2012 9th Int. Conf. 
Electr. Eng. Comput. Telecommun. Inf. Technol., pp. 1–4, 2012. 

[3] D. Sun, G. Chang, C. Miao, and X. Wang, “Analyzing, modeling and 
evaluating dynamic adaptive fault tolerance strategies in cloud 
computing environments,” J. Supercomput., vol. 66, no. 1, pp. 193–
228, 2013. 

[4] A. Sirbu and O. Babaoglu, “Towards Data-Driven Autonomics in 
Data Centers,” Proc. - 2015 Int. Conf. Cloud Auton. Comput. ICCAC 
2015, pp. 45–56, 2015. 

[5] D. Pop, “Machine Learning and Cloud Computing: Survey of 
Distributed and SaaS Solutions,” Inst. e-Austria Timisoara, Tech. 

Figure 2. Component Failure Analysis 



Rep 1, 2012 

[6] A. Abu-Samah, M. K. Shahzad, E. Zamai, and A. Ben Said, “Failure 

prediction methodology for improved proactive maintenance using 
Bayesian approach,” IFAC Proc. Vol., vol. 48, no. 21, pp. 844–851, 
2015

[7] A. Elzamly, B. Hussin, A. Samad, H. Basari, and C. Technology,    
“Classification of Critical Cloud Computing Security Issues for 
Banking Organizations: A cloud Delphi Study,” Int. J. Grid Distrib. 
Comput., vol. 9, no. 8, pp. 137–158, 2016. 

 [8] B. Mohammed, M. Kiran, K. M. Maiyama, M. M. Kamala, and I.-U. 
Awan, “Failover strategy for fault tolerance in cloud computing 
environment,” Softw. Pract. Exp., 2017. 

 [9] K. Bilal, O. Khalid, S. U. . Malik, M. U. S. Khan, S. . Khan, and A. . 
Zomaya, “Fault Tolerance in the Cloud,” “Fault Tolerance in the 
Cloud” Encyclopedia on Cloud Computing. John Wiley & Sons, 
Hoboken, NJ, USA, 2015, pp. 291–300, 2015. 

[10] ITProPortal, “ITProPortal.com: 24/7 Tech Commentary & Analysis,” 
2012. [Online]. Available: http://www.itproportal.com/. [Accessed: 
24-Jun-2015]. 

[11] D. Sheng and C. Franck, “GloudSim: Google trace based cloud 
simulator with virtual machines,” Softw. - Pract. Exp., vol. 39, no. 7, 
pp. 701–736, 2015. 

[12] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure 
prediction methods,” ACM Comput. Surv., vol. 42, no. 3, pp. 1–42, 
2010. 

[13] B. Schroeder and G. a. Gibson, “Disk failures in the real world: What 
does an MTTF of 1,000,000 hours mean to you,” Conf. File Storage 
Technol., pp. 1–16, 2007. 

[14] B. Schroeder and G. Gibson, “The Computer Failure Data Repository 
(CFDR): collecting, sharing and analyzing failure data,” SC ’06 Proc. 
2006 ACM/IEEE Conf. Supercomput., no. March, p. 154, 2006. 

[15] B. Schroeder and G. a Gibson, “A Large-Scale Study of Failures in 
High-Performance Computing Systems,” IEEE Trans. Dependable 
Secur. Comput., vol. 7, no. 4, pp. 337–350, 2010. 

[16] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Y. Z. Y. 
Zhang, “Failure data analysis of a large-scale heterogeneous server 
environment,” Int. Conf. Dependable Syst. Networks, 2004, pp. 1–10, 
2004. 

[17] K. Singh, S. Smallen, S. Tilak, and L. Saul, “Failure analysis and 
prediction for the CIPRES science gateway Kritika,” Concurr. 
Comput. Pract. Exp., vol. 22, no. 6, pp. 685–701, 2016. 

[18] G. H. Thomas Gentner, Klau p. Gungl, “Patent US9319030 - 
Integrated circuit failure prediction using clock duty cycle recording 
and,” 2016. 

[19] A. Khan, B. Bussone, J. Richards, and A. Miguel, “A practical 
Approach to Hard Disk Failure Prediction in Cloud Platforms,” in 
2016 IEEE Second International Conference on Big Data Computing 
Service and Applications ??, 2016, pp. 105–116. 

[20] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, F. Silva, and 
K. Vahi, “Failure analysis of distributed scientific workflows 
executing in the cloud,” Proc. 2012 8th Int. Conf. Netw. Serv. Manag. 
CNSM 2012, pp. 46–54, 2012. 

[21] Rajashekarappa and K. M. Sunjiv Soyjaudah, “Self Monitoring 
Analysis and Reporting Technology (SMART) Copyback,”  

Commun. Comput. Inf. Sci., vol. 157 CCIS, pp. 463–469, 2011. 

[22] S. A. E. Keke Gai, Meikang Qiu, “Security-Aware Information 
Classifications Using Supervised Learning for Cloud-Based Cyber 
Risk Management in Financial Big Data,” in 2016 IEEE 2nd 
International Conference on Big Data Security on Cloud, IEEE 
International Conference on High Performance and Smart 
Computing, IEEE International Conference on Intelligent Data and 
Security, 2016, pp. 197–202. 

[23] L. Zhang, K. Rao, R. Wang, and Y. Jia, “Risk Prediction Model 
Based on Improved AdaBoost Method for Cloud Users,” Open 
Cybern. Syst. Journal, 2015, vol. 9, pp. 44–49, 2015. 

[24] S. Büsch, V. Nissen, and A. Wünscher, “Automatic classification of 
data-warehouse-data for information lifecycle management using 
machine learning techniques,” Inf. Syst. Front., 2016. 

[25] D. Fall, T. Okuda, Y. Kadobayashi, and S. Yamaguchi, “Risk 
Adaptive Authorization Mechanism (RAdAM) for Cloud 
Computing,” J. Inf. Process., vol. 24, no. 2, pp. 371–380, 2016. 

[26] C. Guo, Y. Liu, and M. Huang, “Obtaining Evidence Model of an 
Expert System Based on Machine Learning in Cloud Environment,” 
J. Internet Technol., vol. 16, no. 7, pp. 1339–1349, 2015. 

[27] Z. Amin, N. Sethi, and H. Singh, “Review on fault tolerance 
techniques in cloud computing,” Int. J. Comput. Appl., vol. 116, no. 
18, pp. 11–17, 2015. 

[28] A. Pellegrini, P. Di Sanzo, and D. R. Avresky, “Proactive Cloud 
Management for Highly Heterogeneous Multi-cloud Infrastructures,” 
in 2016 IEEE International Parallel and Distributed Processing 
Symposium Workshops (IPDPSW), 2016, pp. 1311–1318. 

[29] S. P. P. K.S. Thakur., T. R.Godavarthi., “10.1.1.416.6042,” vol. 3, no. 
6, pp. 698–703, 2013. 

[30] A. Bellet, A. Habrard, and M. Sebban, “A Survey on Metric Learning 
for Feature Vectors and Structured Data,” 2013. 

[31] P. Mell, T. Grance, and T. Grance, “The NIST Definition of Cloud 
Computing Recommendations of the National Institute of Standards 
and Technology,” Natl. Inst. Stand. Technol. Spec. Publ. 800-145 7 
pages, 2011. 

 [32] B. Schroeder and G. Gibson, “The computer failure data repository 
(CFDR),” … Reliab. Anal. Syst. Fail. Data …, no. March, p. 6, 2007. 

 
 
 

 


	I. introduction
	II. related work
	III. overview of the nersc data
	IV. methodology
	V. experiment and discussion of result
	VI. conclusion
	Acknowledgment
	References




