
Author draft for the accepted paper to the IET SMT Journal May 2017 
 

Calibration Model for Detection of Potential Demodulating 
Behaviour in Biological Media Exposed to RF Energy  

 
C.H. See1,2*, R. A. Abd-Alhameed2, A. Ghani3, N.T. Ali4 , P.S. Excell2,5, N.J. 
McEwan2,5, Q. Balzano6 

 

1School of Engineering, University of Bolton, Deane Road, Bolton, BL3 5AB, UK,  
2 Antennas and Applied Electromagnetics Research Group, University of Bradford, Bradford, 
BD7 1DP, UK, 
3 School of Computing, Electronics and Mathematics, Coventry University, CV1 5FB, UK 
4 Khalifa University of Science, Technology & Research (KUSTAR), Sharjah, UAE 
5 Wrexham Glyndwr University, Wrexham, LL11 2AW, UK, 
6 Department of Electronic and Computer Engineering, University of Maryland, College Park 
MD, USA 

             * corresponding author: Dr. Chan H. See (c.see@bolton.ac.uk) 
 

Abstract— Potential demodulating ability in biological tissue exposed to Radio Frequency 
(RF) signals intrinsically requires an unsymmetrical diode-like nonlinear response in tissue 
samples. This may be investigated by observing possible generation of the second harmonic 
in a cavity resonator designed to have fundamental and second harmonic resonant frequencies 
with collocated antinodes. Such a response would be of interest as being a mechanism that 
could enable demodulation of information-carrying waveforms having modulating 
frequencies in ranges that could interfere with cellular processes. Previous work has 
developed an experimental system to test for such responses: the present work reports an 
electric circuit model devised to facilitate calibration of any putative nonlinear RF energy 
conversion occurring within a nonlinear test-piece inside the cavity. The method is validated 
computationally and experimentally using a well-characterised nonlinear device. The 
variations of the reflection coefficients of the fundamental and second harmonic responses of 
the cavity due to adding nonlinear and lossy material are also discussed. The proposed model 
demonstrates that the sensitivity of the measurement equipment plays a vital role in deciding 
the required input power to detect any second harmonic signal, which is expected to be very 
weak. The model developed here enables the establishment of a lookup table giving the level 
of the second harmonic signal in the detector as a function of the specific input power applied 
in a measurement. Experimental results are in good agreement with the simulated results. 
 
Keywords: Radio Frequency, cavity resonator, Computational Electromagnetics, nonlinear 
material. 
 
1. Introduction 

        With the rapid growth of mobile communication usage over recent decades, public 

concerns have been raised about the possible biological effects of nonionising radiation with 

specific regard to radio-frequency (RF) radiation from mobile phones [1,2]. The possible 

effects of this radiation can be categorised into two groups: thermal effects resulting from 



high-level RF power and putative non-thermal effects due to low power radiation. Thermal 

effects of RF radiation have been extensively studied by many researchers and are well 

understood and uncontroversial [1,2]; in contrast, non-thermal effects of such radiation are 

still debated by many scientists, with conflicting arguments still being presented. As a result, 

intensive effort worldwide continues to develop research in aspects of bioelectromagnetics at 

macroscopic and microscopic levels. This has led to different defined levels of analysis, i.e. 

human level, tissue level, cell level and ionic level [3-22]. 

        From the published literature [1-7], it may be observed that many of the works have 

treated RF and tissue interaction mechanism effects as a linear problem. Relatively few 

papers [8-13] have moved towards searching for proof of the existence of nonlinear 

biological tissue responses, including molecular processes and microscopic studies at cellular 

level. These studies are typically either theoretical or experimental, the latter covering 

molecular, cellular, or tissue-level experiments, or else statistical studies of whole-organism 

effects in human or animal cohorts. Recently, Balzano, with co-workers, [8-11] has proposed 

novel experiments to detect the presence of asymmetrical (rectifying) nonlinear interactions 

at cellular or tissue-sample level, under exposure by low-amplitude RF carrier signals. These 

build on the observation that demodulation of a modulated carrier inherently requires such 

asymmetrical behaviour and this would necessarily cause the production of second harmonics. 

Such demodulation has been postulated as a plausible mode for putative non-thermal effects 

of RF radiation on any contiguous living system. 

        Balzano’s proposals adopted the concept of an ingenious doubly-harmonic resonant 

cylindrical cavity model having co-located antinodes at fundamental and second harmonic 

frequencies [8-11]: the work presented here develops an electric circuit mathematical model 

to link the cavity model with second harmonic generation from a given nonlinear device. The 

results can be used to indicate the amount of input power needed to stimulate the biological 

sample in order to maximize the likelihood of detecting any second harmonic reradiation.  

 

 

2. Methodology 

    The proposed mathematical model is an extension of some of the authors’  earlier work 

[23,24]. It consists of two parts: cavity model and electric circuit model: in addition, 

experimental verification was undertaken. In the cavity model, the electric field distributions 

were studied at TE111 and TE113 modes. Following this, the cavity model was used to extract 



its S-parameters by using CST Microwave Studio [25] and ANSYS HFSS [26] software. 

Once these data were obtained, they could be adopted into the derived equations from the 

proposed circuit model to compute the second harmonic power level with a given input 

power. 

2.1 Cavity Model and Electric Fields analysis 

     The previously-reported practical work [13] was undertaken with an RF carrier frequency 

in the 880-890 MHz band. To examine whether biological tissues exhibit unsymmetrical 

nonlinearity when exposed to RF signals in this band, an efficient and high quality-factor 

dual-resonant cylindrical cavity with height 272 mm and diameter 248 mm was used, based 

on Balzano’s proposals [8,10,11]. Fig. 1 shows the cavity structure, including two loop 

antennas (for fundamental input and second-harmonic output) and a biosample support 

structure consisting of a butterfly-shaped Lexan lamina (polycarbonate) [11] and a Petri dish 

[27]. This supporting structure is designed to minimise dielectric loss in the cavity, other than 

the energy dissipation in the biosample. Lexan is practically lossless at the frequencies of 

operation of the cavity and has a relative dielectric permeability of between 2.5 and 3.0. The 

holes in the lamina were added to decrease the overall dielectric loading of the cavity. The 

central circle in the lamina has a 1mm depression to hold a 3.5 cm diameter Petri dish 

centrally.  



 

Fig. 1. The dimensions of the cavity model, with two rectangular loop antennas and Lexan sample 

support structure. 

 Loop antennas were selected for coupling because they couple with both H�ž  (the 

azimuthal magnetic field) and Er (the radial electric field) and thus have a much wider 

reactive matching range than a monopole [8]. The cavity is excited by a loop antenna with 

dimensions of 14 × 105 mm located in the middle of the bottom plate, the dimensions 

corresponding to a total length of 0.4 �O at 882 MHz. This acts as a transmitter to excite the 

TE111 cavity mode in the frequency range of 880-890 MHz. The other antenna on the side 

wall of the cavity has dimensions of 12.5 × 56.5 mm, which is equivalent to length of 0.48�O 

at 1764 MHz (the second harmonic). This acts as a receiver to detect the energy of the TE113 

�F�D�Y�L�W�\�� �P�R�G�H�� �L�Q�� �W�K�H�� �������������������� �0�+�]�� �E�D�Q�G���� �L���H���� �H�[�D�F�W�O�\�� �G�R�X�E�O�H�� �W�K�H�� �L�Q�S�X�W�� �I�U�H�T�X�H�Q�F�\���� �7�R��

maintain the highest sensitivity for detection of second harmonic responses, it is important to 

place both antennas at maxima of their corresponding operating modes, i.e. TE111 or TE113. It 

is also essential to fine-tune the lengths of both antennas to achieve the resonance of the 

TE113 mode at exactly double the resonance frequency of the TE111 mode. To better 

understand these modes, Fig. 2 depicts the total electric field distributions for both modes. As 

can be seen, the TE111 mode has a maximum E-field in the centre of the cavity while the 

TE113 also has a field maximum at this point, plus others at d/6 and 5d/6, where d is the 

height of the cavity. 



  

(a) (b) 
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Fig. 2. Electric fields distributions through the centre of the cavity: 
a) Total E-field of TE111 mode on xz-plane,  
b) Total E-field of TE111 mode on yz-plane 
c) Total E-field of TE113 mode on xz-plane,  
d) Total E-field of TE113 mode on yz-plane 

 

      To verify the accuracy of the predicted electric field intensity in the cavity model, 

computer simulation studies were undertaken to establish the maximum permissible input 

signal which will prevent to sample from reaching damaging levels of power dissipation. By 

using two different EM software packages (CST Microwave Studio and ANSYS HFSS), the 

field strength in the sample region as a function of input power was computed (Fig. 3). Two 

media samples were considered: air (�Hr = 1, �V = 0) and generic biological medium (�Hr = 50, �V 

= 1 S/m), with a volume of 60�PL. This 60�PL lossy medium was modelled as a cylindrical 



structure with diameter of 35 mm and height of 62.36 �Pm. The results, presented in Fig. 3, 

show that the biosample does not substantially alter the fields in the cavity, thus not 

degrading substantially its high Q that is necessary to detect weak second harmonic fields. 

 

       The International Commission on Non-Ionising Radiation Protection (ICNIRP) limit for 

SAR in functioning human tissue is 2 W/kg [28], which has been argued to include a large 

safety factor. The UK National Radiological Protection Board (NRPB) [29] formerly argued 

that its preferred limit of 10W/kg was more realistic, although that would also include some 

safety factor: the NRPB has now become the Health Protection Agency (HPA) and has 

adopted the internationally-agreed 2 W/kg limit. Because of this safety factor, plus the 

convection cooling that would occur in the cavity and the fact that a contiguous living 

organism is not involved in the tests, it was concluded that the option of going up to 100 

W/kg should be available to the experiment. From the SAR equation, where SAR = 

�VE2
peak/2�U, Epeak can be found for a specified value of SAR.§

�6�� × �Ì�º�Ë

��
 Taking SAR = 100 

W/kg as the upper limit  and using the properties of pure water at this frequency, �U = 1000 

kg/m3 and �V = 1 S/m, as reasonable approximations for biological tissue, it is found that Epeak 

= 447 V/m. This field strength applies within the sample, and the value outside could be 

higher, depending on its orientation. This indicates that a maximum power of the order of 

250mW (from Fig. 3) must be the limit for the experiment.  



 

Fig.3 Electric field intensity in the cavity with and without presence of biological tissue, as computed 
by two different simulation packages 

 

2.2 Electric Circuit Model for Calibrations 

     A mathematical technique was developed to compute the second harmonic power with a 

known input power in the presence of a known unsymmetrical non-linear device in the Petri 

dish. This method enables more precise quantification of the amount of input power required 

in the excitation port in order to generate a detectable second harmonic signal. An outline of 

the method has been published elsewhere [24], although without verification test results, and 

hence it is given in summary form here. 

     For derivation of the required formulas, the cavity model used in the previous study [11-

13] was adopted. Then, a discrete floating port with dipole structure, having metal leads 1mm 

long, is considered to be placed in the centre of the Petri dish in the cavity and oriented 

parallel to the transmit antenna, as illustrated in Fig. 1. This port receives the maximum RF 

signal from the transmit antenna. In order to extract the 3×3 Z-parameters at the two resonant 

frequencies of the TE111 and TE113 modes, two simulations were carried out, one for each 

mode and frequency. Based on this, an equivalent 3-port network can be established, as 

shown in Fig. 4. From this network, two separate sets of 3×3 Z-parameters were found, one 

for each frequency: these were then applied in the 3-port models shown in Figs 4(a) and 4(b). 

As can be seen in Fig. 4(a), a diode is used as a well-characterised unsymmetrical nonlinear 



element in the Petri dish in the cavity, its leads constituting the dipole arms, while the input 

and output ports can be represented as transmit and receive antennas respectively. Fig. 4(a) 

depicts the equivalent electric circuit of the diode model. It should be noted that Fig 4 was 

drawn by the electrical circuit symbols from Keysight ADS [30]. 

 

(a) 

 

(b) 

Fig. 4. 3-port models for TE111 and TE113 modes of the cavity, including equivalent circuit of the 
nonlinear element (diode). 

 

    By applying Ohm’s law to the circuits in Fig 4(a), a matrix equation can be derived. 

                                                           [V] = [Z][ I]                   (1) 



Where [V] = [V1 V2 V3]T is a vector of port voltages, [Z] is a 3×3 symmetrical matrix of 

impedances and [I] = [I1 I2 I3]T is a vector of port currents.  

The currents for the TE111 mode can be easily derived from the applied input voltage and the 

load/source impedances (these are equal to the characteristic impedance Zo = 50�¡  as shown 

in Figure 4a). The [Z] matrix in this case is evaluated for the TE111 mode. It should be noted 

that the voltage (Vd) and the current (Id) across the diode can be simply expressed by I3 and V3.   

For the diode parasitic components, values of R1 = 106.5�¡  and C1 = 1.5 fF were adopted [31]; 

then Equation (1), subject to input voltage Vi at port 1 can be established to compute Vd. Once 

Vd is found, it can be applied as the excitation source to the nonlinear element. By 

substituting the Z-parameters of the TE111 mode into Equation (1) and choosing a value for 

the input voltage, the parameters V1, V2 and Vd can be calculated. Then, the input power of 

the model can be calculated by Pin = 0.5 Re(V1×I1). 

The circuit in Fig. 4(a) was modified to apply to TE113 mode, as in Fig. 4(b). By simple 

manipulation of the new voltage matrix elements, [V’ ] = [V’1 V’2 V’3]T and applying the 

standard Shockley diode equation, the currents in the ports of the TE113 mode of Fig. 4b can 

be found, and hence the output power on port 2 can be calculated by . 

 

3. Simulation Results 

     Fig. 5 illustrates the reflection coefficients of the two antennas in the cavity found from 

simulations over the designed bands of operation: the dashed lines and solid lines represent 

the return losses of the antennas under unloaded and loaded tests. In the simulated unloaded 

test, an empty 3 cm Petri dish in the cavity was considered, while the loaded test added a 15µl 

volume of deionised water���� �K�D�Y�L�Q�J�� �S�U�R�S�H�U�W�L�H�V�� �0r � �� �������������� �1�� � �� ������������ �6���P�� �>���@���� �7�K�L�V�� �I�R�U�P�H�G�� �D 

lamina of cylindrical shape in the bottom of the Petri dish inside the cavity. The purpose of 

the loaded test was to examine whether additional dielectric material introduced into the 

cavity, e.g. cells, tissue and/or medium, would result in any changes in resonant frequencies. 

In both test result graphs, the frequency fed to the transmitting antenna has been multiplied 

by a factor of two to enable direct comparison with second harmonic responses in the desired 

operating band. It is clear that both loaded and unloaded tests demonstrate that the antennas 

demonstrate reasonable reflection coefficients within spectrum bands covering both modes. 

�� ��*
22Re5.0 IVPout �c�u�c� 



Since a good margin of operational frequency of around 150 kHz at -10 dB reflection exists 

for both modes (i.e. both ports maintain good matching to 50 ohm loads). It is observed that 

when the cavity is loaded, the resonant frequency is slightly decreased for both modes, which 

continue to track each other in a 2:1 ratio.  

 

4. Experimental Validation 

An experimental corroboration of the simulated results was derived from the equipment 

assembled to undertake the earlier tests on biological samples [12]: this comprised the dual 

mode (TE111/113) cavity based on Balzano’s proposals [8, 10-11], with a sensitive 

measurement system based on an HP8510C vector network analyser. It may be observed that 

the simulated and measured results for return loss (Fig. 5) are in very good agreement. Slight 

discrepancies between the four sets of simulated and measured results can be attributed to 

uncertainties in the electrical properties of the materials used in the simulation model, the 

simplifications in the simulated structure and fabrication variations. 

 

Fig. 5. The fundamental and second harmonic responses of the loaded and unloaded cavity, showing 
simulated and measured results (fundamental frequency doubled for convenience of display purposes). 

 

An important objective of the work was a calibration curve giving the second harmonic 

power as a function of the input power as the input voltage was increased. This was initially 



computed using the model of the cavity based on CST software, but in order to cross-validate 

the result, ANSYS HFSS software was also adopted for comparison [26]. The resulting 

curves are shown in Fig. 6: as can be seen, both simulation results were in excellent 

agreement. 

To further validate this result, an experiment with a Schottky diode placed in the centre of the 

Petri dish in the cavity was set up as shown in Figs. 7 and 8. An Anritsu Synthesized Signal 

Generator MG3632A was used to generate the input signal to the bottom excitation antenna 

at 0.882GHz. Two stages of low pass filters were used to suppress frequencies above 1 GHz, 

minimizing any second harmonic products created by the input generator. On the output port, 

an Anritsu Spectrum Analyser MS2802A was set to display the expected second harmonic 

frequency component, at a minimum bandwidth of 1.764GHz ±100kHz. High-pass and 

narrow band-pass filters were applied to the output to ensure at least -60 dB rejection of the 

fundamental frequency component. Comparing both predicted sets of results with the 

experimental ones, as shown in Fig. 6, it is observed that they are almost indistinguishable.  

 

Fig. 6. Input power at Port 1 versus second harmonic power at Port 2. 

 



 

Fig. 7. Experimental setup for validation test. 

 

 

Fig. 8. Block diagram for the experimental setup. 

 

In addition, the variation of the second harmonic signal intensity against different lengths of 

the diode leads was also investigated experimentally. It should be noted that two 

experimental setups were used, i.e. with and without the two stage low noise amplifiers 



shown in Fig. 8 (ZRL-2400 LN and Zel01724LN, from Mini-Circuits Inc.). The diode lead 

lengths were varied between 0mm and 28mm and placed into the middle of the dish inside 

the cavity: the diode body was 4mm in length. The orientation direction was kept parallel to 

the transmit antenna at port 1. The results with and without amplifiers are shown in Figs.9 

and 10. These illustrate that as the length of the diode leads is reduced, the second harmonic 

signal strength is decreased, as expected.  

As can be seen in the case without amplification, a minimum noise floor of -115dBm was 

observed, and as the length of the diode leads gradually reduced from 28mm to 0mm, the 

second harmonic signal strength dropped down linearly from -58dBm to -108dBm, 

corresponding to a difference between the noise floor and the second harmonic signal varying 

from 57dBm to 7dBm. It is noticeable that the generation of the second harmonic by the 

diode without leads, is indistinguishable from the noise signal. However, when �����—�O��of 

deionised water was added to the diode without leads, the second harmonic signal was 

improved from -108dBm to -95dBm i.e., 13dBm enhancement in second harmonic power 

level.  

When the amplifiers were used in the measurements, the noise floor of the spectrum analyser 

rose up to -100dBm, as seen in Fig.10.  As can be seen, the second harmonic signal is raised 

to -62dBm, and when the water was added a further increase of 20dBm was observed (i.e. the 

second harmonic rose to -42dBm). This strongly suggests that the presence of water acts as a 

return path for current, creating a distributed complete circuit which will act as a form of loop 

antenna and hence be much more effective than the short dipole antenna constituted by the 

diode leads alone. Since biological tissue is generally more conductive than pure water, this 

effect might be expected to be manifested more strongly, although a discrete single rectifying 

junction is not to be expected in any speculative theory of bioelectromagnetic interactions 

and hence any ‘loop antenna’ effect may be expected to be distributed throughout any sample 

 



 

Fig. 9. Output signal levels for detection system without amplification. 

 

Fig. 10. Output signal levels for detection system with amplification. 



 

5.  Conclusion 

     A circuit-based model for calibration of unsymmetrical nonlinear (rectifying) responses of 

electrically-small samples in a doubly-resonant cylindrical cavity has been presented. The 

cavity was loaded with a support structure for testing of potentially nonlinear samples and the 

S-parameter analysis of the cavity model shows that the tuned TE113 mode has double the 

resonant frequency of the TE111 mode, with co-located central antinodes. Any unsymmetrical 

nonlinear behaviour in a centrally-located test sample will necessarily generate a second 

harmonic frequency and in order to calibrate the desired sensitivity of the detection of the 

produced harmonic signal, an electric circuit model was introduced and tested. By using a 

simulated diode connected to very short dipole arms, the nonlinear response of the proposed 

model was established. For this rectifying element model, a nonlinear relationship was 

demonstrated between fundamental input power and second harmonic output power. The 

mathematical model based on the cavity design enhances the reliability of the system as a 

measurement testbed that can be applied for investigation of the behaviour of biological cells 

or tissues (or other non-linear materials) for future applications. The diode is used as a well-

characterised test-piece to prove the operational concept, although its behaviour is more 

extreme than might be expected in biological media, but this does not affect the validity of 

the calibrated electrical circuit. However, the cavity testbed can confirm the limits of any 

second harmonic radiation that might result from replacing the diode with biological media.   

An experimental programme with a Schottky diode having variable lead lengths was also 

undertaken and this validated the cavity and circuital model methods, showing very good 

agreement with predictions. Further experimental tests underlined the effect of diode lead 

lengths, but, more significantly, showed the effect of immersing the diode in a small quantity 

of deionised water: this provided a return current path even when the diode lead lengths were 

minimal, thus constituting a form of distributed loop antenna. Such loop-type distributed 

circulating current behaviour will also be present in aqueous test samples, such as biological 

tissue, and can be expected to be the main coupling mechanism for such samples. 
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