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Abstract 

Bayesian statistical inference relies on the posterior distribution. Depending on the model, the 

posterior can be more or less difficult to derive. In recent years, there has been a lot of interest in 

complex settings where the likelihood is analytically intractable. In such situations, approximate 

Bayesian computation (ABC) provides an attractive way of carrying out Bayesian inference. For 

obtaining reliable posterior estimates however, it is important to keep the approximation errors 

small in ABC. The choice of an appropriate set of summary statistics plays a crucial role in this 

effort. Here, we report the development of a new algorithm that is based on least angle regression 

(LARS) for choosing summary statistics. In two population genetic examples, the performance of 

the new algorithm is better than a previously proposed approach that uses partial least squares.  

Keywords: Likelihood-free Methods, Least Angle Regression, Mutation, 

Population Genetics, Recombination. 

1 Introduction 

In Bayesian statistics, the relevant information in data is summarized by 

the posterior distribution  𝑓(𝜃|𝐷). The posterior is proportional to 

𝑓(𝜃|𝐷)   𝑓(𝜃)𝑓(𝐷|𝜃),   where 𝑓(𝜃) is prior distribution and 𝑓(𝐷|𝜃) the 

likelihood. In many applications, the normalizing constant of 𝑓(𝜃|𝐷) is 

computationally intractable. In such cases simulation based approaches such as 

MCMC are often used to sample from the posterior. Furthermore the numerical 
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computation of the likelihood function 𝑓(𝐷|𝜃)  itself can sometimes be 

prohibitively expensive or even impossible. Such a situation frequently occurs for 

instance in population genetics, where the likelihood involves the summation over 

a huge number of potential genealogical trees.  

Approximate Bayesian computation (ABC) methods provide an 

approximation to the posterior without the need to compute the likelihood 

explicitly. Instead, data are simulated from the model under various parameter 

values. For each simulated data set, a vector 𝑆′ = [𝑠1
′ , 𝑠2

′ , … , 𝑠𝑝
′  ] of summary 

statistics is computed. If  𝑆′ is close to the summary vector 𝑆 = [𝑠1, 𝑠2, … , 𝑠𝑝] 

observed for the actual data, the parameter vector 𝜃 used to generate 𝑆′ is added to 

an approximate posterior sample. In typical applications, no sufficient summary 

statistics are available. Thus the choice of summary statistics involves a trade-off 

between computational efficiency and speed: Relevant information may be lost 

when choosing too few summaries, but the computations become inefficient when 

too many are chosen. To illustrate this feature, we now introduce rejection 

sampling as the most basic version of ABC: 

Algorithm 1: ABC-REJ-1 Algorithm 

(1) Simulate a parameter vector 𝜃 from the chosen 

prior distribution 𝑓(𝜃).   

(2) Simulate 𝐷′ from model 𝑀 with parameter 𝜃,  

    and calculate the summary statistics 𝑆′ from 𝐷′. 

(3) Calculate the distance 𝑑(𝑆′, 𝑆) between 𝑆′ and 𝑆. 

(4) Accept 𝜃, if 𝑑(𝑆′, 𝑆) ≤ 𝜖.   

(5) Go to step 1 until 𝑁 iterations have been carried 

out. 
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As an alternative to step (4), the values from the N iterations 𝜃1, … , 𝜃𝑁 can 

be sorted with respect to their (ascending) distances 𝑑(𝑆𝑖
′, 𝑆).  Out of the sorted 

values 𝜃1
∗, … , 𝜃𝑁

∗ , the subset 𝜃1
∗, … , 𝜃𝑟

∗ consisting of the r parameter values with 

smallest distances 𝑑(𝑆𝑖
′, 𝑆) is then taken as sample from the approximate 

posterior For details concerning the choice of r  see e.g. Faisal et al. (2013).  We 

summarize the resulting algorithm: 

Algorithm 2: ABC-REJ-2 Algorithm 

1. For 𝑖 = 1, … , 𝑁, repeat 

1.1. Simulate parameter 𝜃 from prior distribution 𝑓(𝜃)  

1.2. Simulate 𝐷′ from model 𝑀 with parameter 𝜃 , and  

1.3. Calculate the summary statistics 𝑆′ = [𝑠1
′ , … , 𝑠𝑝

′ ] 

1.4. Calculate the distance  𝑑(𝑆′, 𝑆) where 𝑆 = [𝑠1, … , 𝑠𝑝]. 

2. Sort 𝜃1, … , 𝜃𝑁 in ascending order with respect to their corresponding 

distances 𝑑(𝑆𝑖
′, 𝑆). For a pre-specified cut-off 𝑟, return the subset 

𝜃1
∗, … , 𝜃𝑟

∗. 

 

 

It can be shown (see Marjoram et al., 2003) that Algorithm 1 generates a 

sample from 𝑓(𝜃|𝑑(𝑆, 𝑆′) ≤ 𝜀). Besides summary statistics S, this approach also 

requires the selection of a suitable distance metric 𝑑 as well as a choice for the 

acceptance cut-off 𝜖. Notice that small values of 𝜖 lead to a sample close to the 

posterior  𝑓(𝜃|𝑆),  but for the price of a low acceptance rate. For larger 𝜖, the 

acceptance rate gets higher, but the distribution of the sample obtained will 

deviate further from the actual posterior. In particular, as 𝜖 → ∞, observations 

from the prior are generated, and as ϵ → 0 observations from the posterior density 

𝑓(𝜃|𝑆). Acceptance rates can be very low for Algorithm 1 as candidate parameter 

vectors 𝜃 are generated from the prior 𝑓(𝜃), which can be diffuse with respect to 

the posterior. Algorithm 2 faces an analogous challenge. 
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ABC estimates can usually be improved by adjusting the 𝑖𝑡ℎ accepted 

parameter value 𝜃𝑖 to correct for the (small) discrepancy between the observed 

summary statistic 𝑆  and its corresponding simulated summary statistic 𝑆′. For this 

purpose, (Beaumont et al., 2002) proposed a regression adjustment. Blum and 

François (2009) suggest a more general method for mean and variance 

adjustments using feed-forward neural networks. 

Several other flavours of ABC methods are available that aim for 

improving the computational efficiency. They include ABC with Markov chain 

Monte Carlo (Marjoram et al., 2003), ABC with sequential Monte Carlo (Sisson 

et al., 2007), and ABC with population Monte Carlo (Beaumont et al., 2009). For 

a review on ABC methods see Marjoram and Tavaré (2006) as well as Csilléry et 

al. (2010). 

All these methods depend on a good choice of summary statistics for the 

parameter of interest 𝜃 (Nunes and Balding, 2010). With complex models, such as 

those commonly considered in population genetics, sufficient summary statistics 

usually cannot be found (Marjoram et al., 2003). Therefore several alternative 

approaches have been proposed, such as approximate sufficiency (Joyce and 

Marjoram, 2008), maximum entropy (Nunes and Balding, 2010), averaged results 

of neural networks (Blum and Tran, 2010), partial least squares (Wegmann et al., 

2010), and a semi-automatic approach (Fearnhead and Prangle, 2012). Blum et al. 

(2012) review and compare the performance of these methods with further ones 

(AIC and BIC, and Ridge regression). 

Wegmann et al. (2010) suggest partial least squares (PLS) regression 

together with leave-one-out cross-validation to choose a good set of summaries. 

An implementation is available in “pls” package of R (Mevik and Wehrens, 

2007).    
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 We will compare our proposed algorithm with PLS using the root sum of 

square error (RSSE) and the mean of RSSE (MRSSE) as performance measures: 

More specifically, we consider 

𝑅𝑆𝑆𝐸 = (
1

𝑟
∑ 𝐼𝑖‖𝜃𝑖 − 𝜃‖2

𝑁

𝑖=1

)

1
2

 

with 𝑟  being the number of accepted observations and 𝑁 the number of 

simulations. If the pair (𝜃𝑖  , 𝑆𝑖)  is accepted, we define 𝐼𝑖 = 1 , otherwise, 𝐼𝑖 = 0. 

As an estimate of E(RSSE) we consider the following average over q generated 

pseudo observed data sets: 

𝑀𝑅𝑆𝑆𝐸 =
1

𝑞
∑ 𝑅𝑆𝑆𝐸(𝑗),

𝑞

𝑗=1

 

In section 2, we propose a new algorithm for choosing summary statistics 

that is based on least angle regression (LARS) We will illustrate our approach 

with two examples from population genetics in section 3. Our first example is 

simpler involving 7 candidate summary statistics and 2 unknown parameters. The 

second example is more complicated with 32 available summary statistics and 4 

unknown population genetic parameters. Finally, we discuss our findings in 

section 4. 

2 Proposed Method 

Our proposed approach for choosing summary statistics relies on 

regressing each parameter of interest onto all possible summary statistics. For 

selecting suitable summary statistics, we use least angle regression (LARS) (see 

Efron et al., 2004) together with cross validation (CV) for estimating the 

prediction error. First we introduce these two methods and afterwards we will 

establish how they can be used to extract informative summary statistics. 
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Subsequently, we use our method together with the Algorithm 2 (ABC-REJ-2). 

Since a good choice of summary statistics is important for other variants of ABC 

as well, our algorithm should be useful also with other versions of approximate 

Bayesian computation. 

Algorithm 3: Least Angle Regression (LARS) 

1.  Standardize the predictors to have mean zero and unit norm and start 

with the residual vector 𝜙 = 𝜃,     𝛽̂𝑝 = 0, ∀𝑝 

2. Find the predictor 𝑠𝑗 most correlated with 𝜙. 

3. Increase 𝛽̂𝑗 in the direction of the sign of  𝑐𝑜𝑟𝑟(𝜙, 𝑠𝑗)  until some other 

competitor 𝑠𝑘 has as much correlation with the current residual as does 𝑠𝑗 

4. Update 𝜙, and move (𝛽̂𝑗,  𝛽̂𝑘) in the joint least squares direction for the 

regression of 𝜙  on (𝑠𝑗 ,  𝑠𝑘), until some other competitor 𝑠𝑙 has as much 

correlation with the current residual. 

5. Continue in this way until all 𝑝  predictors have been entered. Stop when 

𝑐𝑜𝑟𝑟(𝜙, 𝑠𝑗) = 0 ∀ 𝑗  that is, the OLS solution. 

 

Least angle regression (LARS) may be viewed as a less greedy alternative 

to traditional forward selection. At each step, the predictor most correlated with 

the residuals is included into the model. This process continues until all predictors 

are in the model. It can be shown that the classical least squares solution is 

reached at this termination point (see Cohen, 2006). Notice that LARS can 

produce the least absolute shrinkage and selection operator (LASSO) solution 

after an additional step. 

A further motivation for using LARS is that the algorithm is 

computationally fast. In population genetics, there is often a large set of potential 

summary statistics for each parameter. Sophisticated methods available in the 

literature are often computationally very demanding in such a context. 
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The cross-validation (CV) procedure is used for model selection, i.e. to 

find which solution to retain in the infinite number of solutions provided by the 

LARS algorithm. It is probably the simplest and most widely used method for 

estimating the expected prediction error 𝐸𝑟𝑟 = 𝐸 [𝐿 (𝜃, 𝑓(𝑆))], where 𝐿(. )  is 

the loss function and 𝑓(𝑆) is the fitted regression model. Leave-one-out cross 

validation (LOOCV) is a common variant of cross validation, where we leave out 

the 𝑖𝑡ℎ  observations and estimate the fitted regression model on the rest of the 

data. A computationally faster alternative is 𝑘-fold cross-validation (CV) where 

the data are partitioned into k subsets. In each of the 𝑘 steps one specific subset is 

left out when fitting the function, and is used for validation instead. Here we use 

10-fold cross-validation for estimating the prediction error. 

The risk 𝑅̂𝐶𝑉 with any type of crodd validation is given as 

𝑅̂𝐶𝑉 =
1

𝑁
∑ (𝜃𝑖 −  𝑓𝑖(𝑆𝑖))

2𝑁
𝑖=1 , 

with  fi denoting the estimate where the respective subset containing observation 

(Si,θi) has been omitted. 

From a computational point of view, it can also be advantageous not to carry out a 

cross-validation step at each iteration. One way of achieving this, is to choose a 

moderate number of instances m, at which cross-validation steps are carried out. 

To spread these instances out evenly, consider the L1 norm w of the coefficient 

vector for the full least squares solution. Setting 𝑥𝑗 =  𝑗/𝑚 (1 ≤ 𝑗 ≤ 𝑚), a cross 

validation step is carried out each time the coefficient vector reaches one of the 

levels 𝑥𝑗
∗. This strategy is available as an option within the R package LARS 

(Hastie and Efron, 2013). 
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We implemented our approach using the following algorithm for choosing 

summary statistics: 

Algorithm 4: Choosing summary statistics for ABC 

1. Take the sorted parameter values 𝜃1
∗, … , 𝜃𝑁

∗ , and the corresponding 

simulated summary statistics 𝑆𝑖 = [𝑠1𝑖
′ , … , 𝑠𝑝𝑖

′ ] (1≤i≤N) from Algorithm 2. 

2. Let  θ∗ ≔ [𝜃1
∗, … , 𝜃𝑟

∗ ], where 𝑟 > 𝑝 is a user defined cutoff. 

3. Apply LARS (Algorithm 3) on the following multiple linear regression 

model 𝑓(θ∗| 𝑆′) = 𝛼 + 𝛽1𝑠1
′ + 𝛽2𝑠2

′ + ⋯ + 𝛽𝑝𝑠𝑝
′ + 𝜙, with residuals 𝜙 

4. Define 𝑥𝑗 ≔  
𝑗

𝑚
, 1 ≤ 𝑗 ≤ 𝑚, where 𝑚 is a user defined number of points at 

which cross validation (CV) is carried out; 

5. Compute the CV prediction error at 𝑥𝑗; 

 𝑅̂𝐶𝑉(𝑥𝑘) =
1

𝑟
∑ (𝜃𝑘

∗ −  𝑓𝑘,𝑥𝑗
(θ∗|𝑆𝑘

′))
2

𝑟
𝑘=1   

At the proportion 𝑥𝑗 of the full model, 𝑓𝑘,𝑥𝑗
(θ∗|𝑆′) is the predicted  

value for θ when the 𝑘𝑡ℎ  observation is not used for fitting the model.  

Define 𝑅̂𝐶𝑉
∗ ≔ 𝑚𝑖𝑛𝑗 [𝑅̂𝐶𝑉(𝑥𝑗)], and calculate the cutoff  

𝑥𝑗
∗ = arg 𝑚𝑖𝑛𝑗[𝑅̂𝐶𝑉(𝑥𝑗)]  

6. At the cutoff 𝑥𝑗
∗, if |𝛽̂𝑝(𝑥𝑗

∗)| > 0 , then select  𝑠𝑝
′  as a summary statistic, 

otherwise reject 𝑠𝑝
′ . 

 

In our simulations, we observed an improved performance of the above  

algorithm when modifying step 5 using the one standard error rule (‘1 SE rule’) as 

a stopping cut-off (see Breiman et al., 1984; Hastie et al., 2009): This slightly 

more parsimonious strategy calculates the smallest cutoff 𝑥𝑜 such that  

𝑅̂𝐶𝑉( 𝑥𝑜) ≤ 𝑅̂𝐶𝑉
∗ + 𝑆𝐸[𝑅̂𝐶𝑉

∗ ]. 

In the following section we consider two examples and evaluate the 

performance of our proposed method and compare it in particular to PLS, another 

computationally fast method. 
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3 Simulation Results 

3.1 Example 1: Estimation of the Mutation and Recombination 

Rates  

The setup of our simulation study is similar to studies done previously (see  Joyce 

and Marjoram, 2008; Nunes and Balding, 2010). The parameters are the scaled 

mutation and recombination rates, θ  and ρ respectively. Each simulated data set 

consists of 50 haplotypes generated by using the ms software (Hudson, 2002) 

under the standard coalescent infinite-sites (IS) model (Nordborg, 2007). We 

chose the prior distribution for the scaled mutation rate as θ~U(2, 10), and 

ρ~U(0, 10) for the scaled recombination rate. We computed seven summary 

statistics (see the appendix for details on the summary statistics). To carry out 

ABC, we used the R packages “abctools” (see Nunes and Balding, 2010) and 

“abc” (see Csilléry et al., 2012). Further parameters were chosen as follows: the 

number of ABC simulation runs N = 106, and the number of observed data sets 

q = 102.  Furthermore, we used 1% as our acceptance cutoff (r = 0.01 ∗ N =

10000) and the Euclidean distance for our metric 𝑑(. ). To carry out least angle 

regression, the R package LARS (Hastie and Efron, 2013) has been used.  

 

We now discuss the accuracy of the resulting estimates of the mutation and the 

recombination rate.  
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Figure 1: Choosing summary statistics for mutation and recombination rate by 

using LARS  

 

For Figure 1, the number of iteration is 𝑁 = 104, and 𝑚 = 100. This figure 

consists of four plots (A1, A2, B1, B2). In all these plots, solid vertical lines 

indicate the model complexity selected by the algorithm. For comparison 

purposes, the x-axis is normalized in the same way for all plots (range of 

coefficients 0 - 1).   The plots A1 and B1 display the 10-fold cross validation 

prediction error both for the mutation and recombination rate.  The plots A2 and 

B2 show at which stages the predictors enter the model. In plot A2, summary 

statistics 𝑠1
′  and 𝑠4

′  have been entered before the cutoff, and therefore will be used 

for estimating the mutation rate. Similarly, for estimating the recombination rate, 

𝑠1
′ , 𝑠4

′ , and 𝑠5
′  have been chosen by the algorithm in this particular example (see 

plot B2).  

The summary statistic 𝑠2
′  has been chosen by generating independent uniform 

random numbers.  As 𝑠2
′  and the responses are independent it makes sense that  

𝑠2
′  is included in neither set of summary statistics. As the summary statistics 𝑠1

′  
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(number of segregating sites) provides important information on 𝜃 (Hudson, 1990; 

Nordborg, 2007) and 𝑠5
′  (number of distinct haplotype) important information on 

𝜌, it is natural that they are included in the optimal sets of summary statistics 

(Nunes and Balding, 2010). 

 

Table 1: Performance of PLS, and LARS methods, by MRSSE 

PAR 𝑠1
′  𝑠2

′  𝑠3
′  𝑠4

′  𝑠5
′  𝑠6

′  𝑠7
′  All6 PLS LARS 

𝜃 1.75 3.27 2.26 3.15 2.33 2.89 2.45 1.89 1.85 1.75 

𝜌 3.93 3.95 3.93 3.92 3.83 3.84 3.88 3.60 3.56 3.46 

 

In Table 1, the performance of LARS is compared to that of other approaches in 

terms of the MRSSE. Additionally, the first seven columns (𝑠1
′ − 𝑠7

′ ) state the 

performance when only a single summary statistic is used; column eight (All6) 

shows the MRSSE when all summary statistics except the uninformative statistic 

𝑠2
′  are used together. The last two columns show the results for LARS and PLS. 

From Table 1 we can conclude that the sets of summary statistics selected by 

LARS produce—on average—the most accurate estimates. 
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Table 2: MRSSE with All6, PLS, and LARS for different choices of the 

acceptance cutoff, both with and without regression adjustment. 

Acceptance 
Cutoff (r) 

Regression 
Adjustment 

Mutation (𝜽) Recombination (𝝆) 

All6 PLS LARS All6 PLS LARS 

 
No Adj 1.804 1.786 1.743 3.480 3.525 3.342 

1000 Mean 1.723 1.763 1.738 3.294 3.510 3.291 

 
Mean + Var 1.689 1.755 1.738 3.200 3.501 3.261 

 
No Adj 1.858 1.824 1.751 3.563 3.545 3.425 

5000 Mean 1.737 1.771 1.743 3.317 3.518 3.314 

 
Mean + Var 1.701 1.750 1.740 3.209 3.487 3.240 

 
No Adj 1.890 1.849 1.754 3.604 3.559 3.464 

10000 Mean 1.744 1.776 1.743 3.326 3.524 3.320 

 
Mean + Var 1.701 1.747 1.738 3.212 3.484 3.230 

 
No Adj 1.931 1.892 1.766 3.647 3.579 3.521 

20000 Mean 1.752 1.786 1.747 3.330 3.530 3.327 

 
Mean + Var 1.701 1.745 1.737 3.218 3.478 3.220 

 
No Adj 1.959 1.925 1.776 3.675 3.593 3.561 

30000 Mean 1.757 1.793 1.750 3.333 3.535 3.332 

 
Mean + Var 1.701 1.741 1.737 3.222 3.475 3.215 

 
No Adj 1.983 1.955 1.786 3.694 3.605 3.591 

40000 Mean 1.762 1.799 1.753 3.335 3.538 3.336 

 
Mean + Var 1.701 1.739 1.737 3.226 3.473 3.225 

 
No Adj 2.004 1.981 1.795 3.709 3.614 3.614 

50000 Mean 1.766 1.805 1.756 3.335 3.540 3.338 

 
Mean + Var 1.701 1.737 1.736 3.228 3.470 3.214 

 
No Adj 2.087 2.089 1.839 3.759 3.649 3.693 

100000 Mean 1.781 1.827 1.769 3.341 3.550 3.346 

  Mean + Var 1.698 1.737 1.733 3.247 3.466 3.222 

 

In Table 2, both methods (PLS and LARS) are compared for different values of 

the acceptance cut off. Regression adjustment is also considered. With regression 

adjustment, the choice of the acceptance cut off becomes less important. This is 

since the adjustment applies corrections to the parameter points that increase with 

the distance measured in terms of the summary statistics. In general regression 

adjustment leads to an improved performance, both with LARS and PLS. Though 

smaller, there is still a slight advantage visible when using LARS instead of PLS. 

Also, in our example mean plus variance adjustment (Blum and François, 2009) 

leads to slightly better results than just mean adjustment (Beaumont et al., 2002).  



13 

3.2 Example 2: Estimation of Mutation, Recombination, Migration 

and Time Parameters. 

This example is on population genetic inference under a model that includes 

demography: two subpopulations that split in the past with migration occurring 

between them. We consider the estimation of four parameters; the mutation rate 𝜃, 

the recombination rate 𝜌, the migration rate 𝜃𝑚, and the time 𝜂𝑐 at which sub-

population 2 and sub-population 1 have split. The ms (Hudson, 2002) software is 

again used to generate data sets that consist of 50 haplotypes. The prior 

distributions for the parameters were chosen as 𝜃~𝑈(0, 10), 𝜌~𝑈(0, 10), 

𝜃𝑚~𝑈(0, 0.4), and 𝜂𝑐~𝑈(0.5, 0.9). Twenty-nine summary statistics have been 

calculated using msABC (see Pavlidis et al., 2010), and three uniform random 

variables (see appendix) unrelated to the parameters are added to this set of 

summary statistics. We compare PLS with LARS using 𝑁 = 106 simulation runs, 

𝑟 = 500 accepted observations, and  𝑞 = 102 different data sets . Thus we tried 

ABC with 𝑁 = 106 runs on each of 𝑞 = 102  data sets. As before, we used the 

Euclidean distance as our metric 𝑑(. ). 
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Table 3: Comparison of PLS and LARS methods, by MRSSE. 

Summary statistics 𝜽 𝝆 𝜽𝒎 𝜼𝒄 

𝑠1
′  1.875 3.479 0.148 0.151 

𝑠2
′  1.893 3.480 0.149 0.152 

𝑠3
′  1.528 3.488 0.153 0.152 

𝑠4
′  2.025 3.484 0.148 0.151 

𝑠5
′  2.058 3.456 0.149 0.151 

𝑠6
′  1.733 3.468 0.153 0.148 

𝑠7
′  1.876 3.479 0.148 0.151 

𝑠8
′  1.894 3.480 0.149 0.152 

𝑠9
′  1.528 3.488 0.153 0.152 

𝑠10
′  3.023 3.480 0.152 0.152 

𝑠11
′  2.961 3.485 0.152 0.153 

𝑠12
′  3.113 3.470 0.153 0.149 

𝑠13
′  2.959 3.398 0.151 0.153 

𝑠14
′  2.951 3.418 0.151 0.152 

𝑠15
′  3.006 3.446 0.152 0.151 

𝑠16
′  3.167 3.514 0.148 0.154 

𝑠17
′  2.296 3.443 0.132 0.155 

𝑠18
′  2.213 3.563 0.145 0.151 

𝑠19
′  3.006 3.507 0.145 0.155 

𝑠20
′  3.167 3.514 0.148 0.154 

𝑠21
′  3.077 3.483 0.151 0.153 

𝑠22
′  3.122 3.525 0.153 0.153 

𝑠23
′  3.196 3.515 0.152 0.153 

𝑠24
′  2.089 3.229 0.151 0.152 

𝑠25
′  2.307 3.296 0.151 0.152 

𝑠26
′  2.187 3.301 0.151 0.152 

𝑠27
′  2.353 3.354 0.151 0.152 

𝑠28
′  1.899 3.202 0.152 0.152 

𝑠29
′  2.084 3.289 0.152 0.152 

𝑠30
′  3.168 3.502 0.152 0.152 

𝑠31
′  3.168 3.502 0.152 0.152 

𝑠32
′  3.174 3.516 0.152 0.153 

All 29 1.579 3.060 0.134 0.152 

PLS 1.595 3.119 0.132 0.153 

LARS 1.536 3.042 0.129 0.149 

 

In Table 3, we present the estimates for the error (MRSSE) when estimating the 

four model parameters. Here, both PLS and LARS select from 32 individual 

summary statistics (𝑠1
′ − 𝑠32

′ ) separately for each parameter. We also consider the 

use of all 29 informative summary statistics. Notice that the other three summary 

statistics (𝑠30
′ , 𝑠31

′ , 𝑠32
′ ) have been chosen as random numbers, unrelated to the 
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actual data. In Table 3, bold indicates the lowest value in each column. LARS 

produced slightly better results than PLS.  

4 Discussion 

For implementing ABC reliably, an appropriate choice of summary statistics is 

crucial. We propose a new approach for this purpose that uses least angle 

regression (LARS) in combination with cross validation.  It is computationally 

fast, and related to LASSO which is a popular approach for selecting sparse sets 

of coefficients for a large set of potential variables. We compared our approach to 

partial least squares (PLS, Wegmann et al., 2010), another computationally fast 

method for choosing summary statistics. In our simulations, least angle regression 

performed slightly better than PLS. 

Several other methods are available, such as approximate sufficiency (Joyce and 

Marjoram, 2008), maximum entropy (Nunes and Balding, 2010), avarages over 

neural networks (Blum and Tran, 2010), a semi-automatic approach (Fearnhead 

and Prangle, 2012). These methods tend to be computationally more expensive, 

making them less attractive when the goal is to choose from a large set of 

candidate summary statistics (say greater than 10).   

Applications where large sets of potential summary statistics often occur is 

population genetics (up to a few 100 for instance when allele frequency spectra 

are involved). Thus we illustrated our approach in the context of two population 

genetic examples with different levels of complexity. 

A limitation of our approach may be that we consider only one parameter a time 

as response. This seems appropriate when aiming for marginal posteriors, but 

does not permit to investigate the joint distribution of several parameters. 
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However, any version of ABC will suffer from the curse of dimensionality at least 

when trying to explore high dimensional joint distributions of several parameters. 

 

Furthermore, this study also demonstrates that mean and variance regression 

adjustment can help to make ABC less sensitive with respect to the choice of an 

acceptance cutoff (see Table 2). While we assumed a linear relationship between 

parameter and summary statistics, it would be interesting to explore also nonlinear 

relationships.  

 

Appendix 

List of Summary Statistics for Example 1 

 

Statistic Description 

    

𝑠1
′  No. of segregating sites 

𝑠2
′  Uniform [0,25] random variable 

𝑠3
′  Mean no. of differences over all pairs of haplotypes 

𝑠4
′  25*(mean r

2
 across pairs separated by <10% of the 

 

simulated genomic region) 

𝑠5
′  No. of distinct haplotypes  

𝑠6
′  Frequency of the most common haplotype 

𝑠7
′  No. of singleton haplotypes 

 

 

List of Summary Statistics for Example 2 

Statistic Description 

𝑠1
′  number of segregating sites for sub-population 1 

𝑠2
′  number of segregating sites for sub-population 2 

𝑠3
′  number of segregating sites for total sample 

𝑠4
′  Tajima’s π pi for sub-population 1 

𝑠5
′  Tajima’s π for sub-population 2 

𝑠6
′  Tajima’s π for total sample 

𝑠7
′  Watterson’s estimator for sub-population 1 

𝑠8
′  Watterson’s estimator for sub-population 2 

𝑠9
′  Watterson’s estimator for total sample 

𝑠10
′  Tajima's D for sub-population 1 

𝑠11
′  Tajima's D for sub-population 2 
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𝑠12
′  Tajima's D for total sample 

𝑠13
′  the Zns for sub-population 1 

𝑠14
′  the Zns for sub-population 2 

𝑠15
′  the Zns for total sample 

𝑠16
′  the Fst (total sample, hbk calculation) 

𝑠17
′  the percentage of shared polymorphisms between  

 
sub-populations 1 and 2 

𝑠18
′  the percentage of private polymorphisms between  

 
sub-populations 1 and 2 

𝑠19
′  the percentage of fixed difference polymorphisms  

 
between sub-populations 1 and 2 

𝑠20
′  the Fst between sub-populations 1 and 2 

𝑠21
′  H in sub-population 1 

𝑠22
′  H in sub-population 2 

𝑠23
′  H in total sample 

𝑠24
′  the number of haplotypes in sub-population 1 

𝑠25
′  the heterozygosity of haplotypes in sub-population 1 

𝑠26
′  the number of haplotypes in sub-population 2 

𝑠27
′  the heterozygosity of haplotypes in sub-population 2 

𝑠28
′  the number of haplotypes in the total sample 

𝑠29
′  the Heterozygosity of haplotypes in the total sample 

𝑠30
′  Uniform [0,1] random variable 

𝑠31
′  Uniform [0,10] random variable 

𝑠32
′  Uniform [0,25] random variable 

 

For a further description of these summary statistics see (Pavlidis et al., 2010). 
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